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A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL)
peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures
and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric
fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the
oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic
hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was
shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the
cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition
showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane
potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative
stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial
cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In
addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of
human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the
initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation.
These data point to a possible participation of oxidized CL in cell signalling and differentiation.

1. Introduction constitutes about 18% of phospholipids. CL supports the

functional activity of mitochondria by shaping the mem-
Cardiolipin (CL) is a unique diphosphatidylglycerol phos-  brane curvature and defining the crista morphology [1], sta-
pholipid with four acyl chains. In eukaryotic cells, it is exclu- ~ bilizing respiratory supercomplexes [2-5], mediating proton
sively located in the inner mitochondrial membrane where it~ transfer to energy-converting enzymes [6-8], and preventing
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FiGUre 1: Chemical structure of MitoCLox.

proton leakage [9]. Almost all membrane energy-converting
enzymes contain tightly bound CL molecules as important
structural components [10-12].

In intact mitochondria, CL is located exclusively in the
inner membrane, but various mitochondria-damaging agents
induce translocation of CL to the outer mitochondrial mem-
brane [13]. It was found that nucleoside diphosphate kinase
D (NDPK-D) binds CL in the intermembrane space and
facilitates its redistribution [13, 14]. The externalized CL
can interact with the dynamin-related GTPase Drpl and
stimulate its oligomerization, which is critical for the fission
of mitochondria [15]. Interestingly, the other dynamin-
related GTPase OPA1, which stimulates the inner membrane
fusion, also interacts with CL [13, 16]. In addition, CL mole-
cules exposed at the surface of fragmented mitochondria can
be recognized by receptors of autophagosomes including
LC3, which induces the engulfment of damaged organelles
(mitophagy) followed by their digestion in lysosomes [17].
The other important partners of externalized CL are inflam-
masome NLRP3 [18] and caspase-1 [18]. It was suggested
that independent interactions of the NLRP3 and caspase-1
with CL at the outer mitochondrial membrane contribute
to the proinflammatory activation of macrophages [19].
These findings indicate that CL is an important player in
the regulation of mitochondrial dynamics and in the mecha-
nisms of quality control.

The content of unsaturated fatty acids in CL is signifi-
cantly higher than that in other mitochondrial phospholipids.
In combination with the proximity to respiratory enzymes,
which are potential sources of reactive oxygen species
(ROS), the high content of unsaturated fatty acids makes CL
especially sensitive to oxidation. It was found that a small
respiratory protein cytochrome c, after its binding to oxidized
CL at the outer surface of the inner mitochondrial membrane,
can catalyze CL peroxidation, which induces the cytochrome ¢
release from mitochondria and apoptosis [20, 21]. Oxidation
and age-dependent loss of CL were suggested to contribute
to age-related cardiac [22] and neurodegenerative [23] dis-
eases, as well as to diabetes [24]. It was suggested that the
protective effects of mitochondria-targeted peptide SS-20
owe to its binding to CL and preventing cytochrome c-
dependent CL peroxidation [25]. Imidazole-substituted
analogs of fatty acids that were conjugated with TPP*
inhibited cytochrome c-dependent CL peroxidation and
protected mouse embryonic cells exposed to ionizing irradi-
ation [26]. As argued elsewhere, the protective and antiaging

effects of mitochondria-targeted antioxidants with various
cationic maieties could be due to the specific protection of
CL against peroxidation [27, 28].

Elsewhere, we have described MitoCLox, a new
mitochondria-targeted fluorescence probe for tracing cardio-
lipin (CL) oxidation [29]. In MitoCLox, similar to the previ-
ously introduced MitoPerOx [30], a BODIPY (581/591)
fluorophore is linked with a triphenylphosphonium cation
(TPP™). However, the linker in MitoCLox is longer than
the linker of MitoPerOx and contains not one but two
peptide bonds (see Figure 1). The flexible linker was cho-
sen as a mimic of the SS-20 peptide from Ref. [25]; this
long linker has a capacity to accommodate additional pos-
itively charged moieties.

It was shown that MitoCLox can report CL oxidation in
liposomes but did not react with organic hydroperoxides
even in the presence of ferric ions [29]. Based on results of
molecular dynamic simulations, it was suggested that Mito-
CLox and its derivatives, owing to the positive charge(s),
could be selectively sensitive to oxidation of cardiolipin, the
dominant negatively charged phospholipid in the inner
mitochondrial membrane [29].

Here, we have used MitoCLox for tracing peroxidation of
mitochondrial lipids in living cells. MitoCLox selectively
accumulated in their mitochondria and reported lipid perox-
idation induced by exogenous prooxidants or by internal
redox changes.

2. Materials and Methods

2.1. Chemicals. MitoCLox was synthesized as described in
[29]. SkQ1l was synthesized, as described in [31]. Other
reagents were from Sigma-Aldrich (USA).

2.2. Cell Cultures. Human carcinoma cell line RKO (ATCC
CRL-2577), human fetal lung fibroblasts MRC5 transformed
with SV-40 (MRC5 SV2, ECACC Cat. No. 84100401), and
human endothelial cell line EA.hy926 (ATCC CRL-2922)
were cultured in DMEM medium (Dulbecco’s modified
Eagle’s medium) (Gibco, USA) supplemented with 2mM
glutamine and 10% fetal bovine serum (FBS) (HyClone,
USA) and 100 U/ml streptomycin and 100 U/ml penicillin
(all from Gibco, CA). Hela cells were cultured in minimal
essential medium with Earle’s salts (MEM, PAA Lab GmbH,
E15-888) with 5.6 mM glucose, 2 mM stable glutamine, and
sodium bicarbonate, supplemented with 10% FBS (Biochrom
AG), 1% MEM nonessential amino acids (Biochrom AG),
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and 1% 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES, PAA Lab GmbH). Immortalized human myo-
blast MB135 were cultured in mixture of DMEM and 199
medium (4:1) supplemented with 15% FBS (HyClone,
USA), basic fibroblast growth factor FGF-2 (10ng/ml
PanEco, Russia), and 0.1 yM dexamethasone.

2.3. Microscopy. MRC5-SV40 fibroblasts and EA.hy926
endothelial cells were grown on glass coverslips placed in 6-
well cell culture plates at 200,000 cells per well and analyzed
using an Axiovert microscope (Carl Zeiss). For analysis of
mitochondrial membrane potential, Ea.hy926 cells were
incubated with TMRM (100 4M, 30 min) and with Mito-
Tracker Green (250 nM, 30 min). For detection of mitochon-
drial lipid peroxidation, MitoCLox (200 nM) was added for
2h. Myoblast MB135 were seeded in 35 mm dishes with glass
bottom (SPL) for confocal microscopy at initial density from
0.5 to 6 x 10° cells/dish and cultured for 4 days. Then, Mito-
CLox (200 nM) was added for 5h, and cells were analyzed
using a Nikon Eclipse Ti (Nikon) confocal microscope with
excitation at 488 and 562 nm.

Fluorescence imaging of HeLa cells was carried out with a
confocal laser scanning microscope (Leica TCS SP8 SMD)
equipped with a 63x water objective (water, HCPL Apo
63x/1.2W CS2) and two spectral detectors, an Argon and a
tunable white light laser. Measurements were performed at
37°C. Hela cells were incubated with 25 yM menadione or
with 100 uM tert-butyl hydroperoxide (tBOOH) for 1h,
and 200 nM MitoCLox was added for the indicated time. In
the green channel, fluorescence was excited with the
448 nm wavelength of an argon ion laser, and emission was
collected in the range of 500-560 nm. In the red channel,
fluorescence was excited with the 559 nm laser wavelength
of the white light laser, and emission was recorded in the
range of 580-630 nm.

2.4. Image Processing. The fluorescence intensity of HeLa
cells stained with MitoCLox was analyzed with ImageJ (Mac-
Biophotonics). To exclude the background intensity, the
Otsu mask was used as a mask for mitochondria and the
background was set to NaN. Ratios were determined from
mean grey values for each channel and represent basically
the mitochondrial network of a cell.

2.5. Flow Cytometry. MRC5-SV40 cells were incubated with
MitoCLox (100-200 nM) for 1h before addition of H,O, or
cumene hydroperoxide. SkQl was added for 24h before
stimulation of oxidative stress. To measure the mitochon-
drial membrane potential (MMP), the cells were stained with
100nM TMRM for 15 min.

Myoblast MB135 were seeded in 6-well cell culture
plates (9.6 cm” surface area per well) at initial density 0.5,
1, 2, 4, and 6 (x10° cells/well) and cultured for 4 days.
Then, 200 nM MitoCLox was added for 5h, and cells were
analyzed.

Flow cytometry analyses were performed using a Beck-
man Coulter FC 500, equipped by a single blue (488 nm) laser
or BDFACSAria IIT with 5 lasers (375 nm, 405 nm, 488 nm,
561 nm, and 633 nm). For ratiometric analysis, the Flowing

software 2.4 (Cell Imaging Core, Turku Centre for Biotech-
nology) was used.

2.6. Statistics. Data analysis is presented as the mean +
standard deviation (SD). Comparisons were analyzed by
one-way ANOVA. The significance was analyzed with Prism
7.0 software (GraphPad, USA); a p value < 0.05 was consid-
ered to be statistically significant. Data analysis of
MitoCLox-stained HeLa cells was performed using Origin™
(OriginLab Cooperation, Northampton, MA). The data are
presented as means in box-and-whisker plots, with boxes
representing the 25th to 75th percentiles. In order to deter-
mine differences between treatment groups, analysis of vari-
ance (ANOVA) for a single factor (One-way) was performed
with the post hoc Scheffe test. Differences were considered to
be statistically significant if p < 0.05.

3. Results

3.1. Interaction of MitoCLox with Mitochondria of
Fibroblasts. To assess the ability of MitoCLox to accumulate
in the cell mitochondria of human MRC5-SV40 fibroblasts,
we used fluorescence microscopy with the red filter corre-
sponding to the fluorescence of the reduced probe. We
observed MitoCLox accumulation in fibroblasts and its colo-
calization with the mitochondria-specific dye MitoTracker
Green (Figure 2(a)). The green fluorescence of MitoCLox
was not significant since the dye was reduced and did not
affect the colocalization analysis.

The dynamics of dye accumulation and the rate of its
release from the cells were evaluated using flow cytometry.
Maximal accumulation of MitoCLox in the cells was reached
in 45-60 minutes (Figure 2(b)). After removal of MitoCLox
from the medium, the fluorescence of the cells slowly
decreased and reached 50% of the maximum in approxi-
mately 1 h. The addition of a membrane depolarizing agent
FCCP during probe removal significantly accelerated the
release of MitoCLox from the cells (Figure 2(b)), which indi-
cates the dependence of its accumulation on the mitochon-
drial membrane potential. When FCCP was added before
MitoCLox, the fluorescent dye was diffusively distributed all
over the cytosol (not shown).

Oxidation of MitoCLox was analyzed in the same fibro-
blast cells by minimal flow cytometry setup using a single
blue (488 nm) laser and standard bandpass filters 525 + 40
nm (FL1) to record the emission peak of oxidized MitoCLox
versus the peak at 575 + 40 nm (FL2). Although these settings
did not perfectly fit the peaks of BODIPY581/591 fluores-
cence (Figure 3(a)), the changes in the FL1 signal increased
11-fold after the addition of 500 uM H,O, to living cells.
The FL2 signal also raised slightly, which was mostly due to
the contribution from the long wavelength shoulder in the
fluorescence spectra of the oxidized form (Figure 3). As a
result, the oxidation of MitoCLox resulted in a 5-6-fold
increase of the FL1/FL2 emission signal ratio. In an attempt
to further improve the sensitivity, we applied the flow cytom-
etry setup with two lasers, namely, the blue laser (488 nm)
and green laser (561 nm) and bandpass filters of 530 + 30
nm (FL1) and 582 + 15nm (FL2). These settings fit better
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MitoCLox (200 nM) as measured by FACS in FL2 channel. After 60 min, the medium was changed to the same but without MitoCLox.

FCCP (10 uM) was added after change of the medium where indicated.

the parameters of BODIPY581/591 fluorescence, but the
dynamic range of the FL1/FL2 signal for MitoCLox was not
significantly better than that in the minimal setup (not
shown), so flow cytometry with a single blue laser was used
in the further experiments.

The analysis of H,0,-induced oxidative stress demon-
strated that the MitoCLox oxidation occurred only in a frac-
tion of the cell population at low levels of H,O,. At higher
doses of H,O,, almost normal distribution of oxidized Mito-
CLox was observed (Figure 3(c)). Kinetics of MitoCLox oxi-
dation induced by 500uM H,O, reached saturation at
approximately 60 min (Figure 3(d)). Cumene hydroperoxide
(CumOOH) induced similar responses of MitoCLox but at
lower doses (not shown). Mitochondrially targeted antioxi-
dant SkQ1 (10-(6'-plastoquinonyl)decyltriphenyl-phospho-
nium [27]) inhibited oxidation of MitoCLox induced by
H,0, or by CumOOH (Figure 3(e)).

3.2. Measurements of Lipid Peroxidation in Mitochondria of
HeLa Cells. HeLa cells were pretreated with such oxidizing
compounds as menadione (25 yM) and fert-butyl hydroper-
oxide (tBOOH; 100 uM), respectively, for 1h. In the cells
treated with these oxidants, mitochondria were then stained
with MitoCLox (200 nM) for 30 min, and the fluorescence
in two channels (A, =448nm/A,,, =500-560 nm; A, =

559/A,,, = 580-630 nm) was recorded by confocal micros-
copy (Figure 4(a)). The respective fluorescence images dem-
onstrated significant increase of fluorescence in the green
channel and almost no changes in the red channel
(Figure 4(a)). Calculations of the green/red fluorescence ratio
showed that the increase in the fluorescence ratio (emission
ratio A,,, = 500-560 nm/A,,, = 580-630 nm) after menadione
and tBOOH treatment was significant (Figure 4(b)), indicat-
ing oxidation of MitoCLox.

3.3. Application of MitoCLox for Tracing Separate Steps in
Cell Reaction to Oxidative Stress. Oxidative stress is known
to cause both mitochondrial lipid peroxidation and a
decrease in the mitochondrial membrane potential (MMP)
[9, 24]. To analyze the time pattern of lipid peroxidation

and MMP decrease under oxidative stress, we measured
MitoCLox oxidation concurrently with the potential-
dependent accumulation of tetramethylrhodamine (TMRM)
in MRC5-5V40 cells (Figure 5). In cells treated with 0.5 mM
hydrogen peroxide, oxidation of MitoCLox started without
a delay and was almost complete during the first hour
(black squares in Figure 5). A notable drop in MMP could
be observed after 40 minutes of incubation (red squares in
Figure 5).

3.4. Heterogeneity of MitoCLox Oxidation in a Single Cell.
Staining of an endothelial cell culture with MitoCLox
revealed a fraction of mitochondria with an increased level
of lipid peroxidation (Figure 6(a)). These mitochondria were
small, rounded, and located near the nucleus.

In Figure 6(b), we show for comparison a similar example
of mitochondrial heterogeneity in endothelial cells that we
observed earlier [32, 33]. Using a combination of Mito-
Tracker Green that stained mitochondria independently
of MMP and methyl ester of TMRM that accumulated
only in mitochondria with high MMP, we revealed a frac-
tion of depolarized mitochondria located near the cell
nucleus. These perinuclear mitochondria were smaller
and more rounded than the mitochondria with higher
potential in the same cell. A comparison of images in
Figures 6(a) and 6(b) indicates similarities in heterogeneity
patterns for the MitoCLox oxidation and MMP in the
mitochondrial population.

3.5. Application of MitoCLox in Myoblast Cell Culture. We
have applied MitoCLox to analyze mitochondrial lipid per-
oxidation in the culture of human myoblast MB135.
Mitochondrial oxidative status is critical for various pro-
cesses in muscle, including myogenic differentiation (myo-
genesis)—the process of formation of muscle fibers during
embryonic development and muscle regeneration. Myogen-
esis is accompanied by dramatic reorganization of mitochon-
drial reticulum through mitophagy and mitochondria
biogenesis [34, 35] the processes that critically depend on
mitoROS [36]. Thus, analysis of CL peroxidation in myoblast
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FIGURE 3: Measurements of MitoCLox oxidation in living cells by flow cytometry. MRC5-SV40 cells were incubated with MitoCLox (200 nM)
for 1 h before the addition of peroxides. (a) Fluorescence spectra of reduced MitoCLox (blue line) and MitoCLox oxidized by 500 uM H,0O,
(red line) at 488 nm excitation. The green area is the part of the spectrum detected by the standard bandpass filter 525/40 nm (FL1); the red
area is the part of the spectrum detected by filter 575/40 nm (FL2). (b) The ratiometric measurements (FL1/FL2) of MitoCLox oxidation
induced by 1h incubation with H,O,. (c) An example of typical histograms obtained in experiments where the cells were treated with

H,0, and MitoCLox oxidation was measured as the FL1/FL2 ratio.

(d) The time dependence of the MitoCLox oxidation in response to

the addition of H,0, (500 uM). (e) Incubation of the cells with mitochondria-targeted antioxidant SkQ1 (20 nM, 2h) protects the cells
from oxidative stress induced by H,0, (500 uM) or 25 uM cumene hydroperoxide (CumOOH). All experiments were triplicated, and each
bar represents the mean + SD (*p < 0.05 vs. the control or treated cells without SkQ1).

cell cultures could be a valuable tool for studies of myogen-
esis. We found that a specific fraction of cells exhibited a
significant oxidation of MitoCLox in the otherwise homoge-
nous culture of human myoblast MB135. Fluorescence
microscopy demonstrated that cells with oxidized MitoCLox
formed compact islets in the cell monolayer (Figure 7(a)).
The antioxidant Tempol prevented the MitoCLox oxidation.
Flow cytometry made it possible to quantify the size of this

fraction (Figure 7(b)). The cells with oxidized MitoCLox
got accumulated in the cultures that were seeded at an initial
density of 1-6 x 10° cells/well and reached a high density (80-
100% confluence) in 4 days of culturing. If the initial seeding
density was too low for the cells to become close to con-
fluency after 4 days (0.5 x 10° cells/well), no cells with oxi-
dized MitoCLox were detected. The fraction of the cells
with oxidized MitoCLox increased proportionally to the
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15 min before measurements to estimate the membrane potential.
Flow cytometry analyses were performed using a Beckman Coulter
FC 500. All experiments were triplicated, and each bar represents
the mean + SD.

increase of initial seeding density (Figure 7(c)). If the cells
were seeded at high density of 6 x 10° cells/well, but cultured
only for 24 h instead of 4 days prior to MitoCLox addition,

the population of the cells with oxidized MitoCLox was not
observed (data not shown). These data allow us to exclude
a possible preexistent (either genetic or epigenetic) heteroge-
neity of the cell culture.

We have observed that mitochondrial fragmentation was
significantly more pronounced in the cells with oxidized
MitoCLox (Figure 7(a)) in agreement with the key role of
mitochondrial ROS in mitochondrial fragmentation [36].

4. Discussion

Here, we tested a new mitochondria-targeted LPO fluores-
cent probe MitoCLox with different cell cultures and under
conditions leading to oxidative stress. In all tested cases,
MitoCLox was reliable in reporting LPO. The data obtained
are fully consistent with the behavior of MitoCLox in the
model liposome system [29].

Specifically, MitoCLox accumulated in the cells in a
MMP-dependent way and changed its fluorescence in
response to addition of H,O,, menadione, and tBOOH
(Figures 2-5). The oxidation of MitoCLox could be prevented
by a mitochondria-targeted antioxidant SkQ1 (Figure 3), as
well as an antioxidant Tempol (Figure 7), which is in a
good agreement with high efficiency of these antioxidants
in protection of the mitochondrial structure and functions
in various cellular models of oxidative stress [27, 37] and
their protective action in vivo [38, 39].

It is noteworthy that the response of MitoCLox, as mea-
sured by flow cytometry (Figure 3), was more pronounced
than that in microscopy experiments (Figures 2 and 4-7),
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Cells were incubated with TMRM (100 nM; 30 min) and with MitoTracker Green (250 nM; 30 min). The arrows indicate the area where

mitochondria with decreased membrane potential are located.

which renders MitoCLox as a suitable marker of lipid oxida-
tion for flow cytometry measurements.

Oxidation of CL increases the proton leak through the
inner mitochondrial membrane and causes a drop in
MMP [9, 24]. As suggested by Korshunov and colleagues,
the drop in MMP protects cells from oxidative damage by
suppressing the generation of ROS [40]. Another mecha-
nism of attenuating oxidative damage is the MMP-
dependent fragmentation of the mitochondrial network,
which allows to separate damaged mitochondria from inte-
ger ones and eliminate the former [9, 41]. Since oxidation
of CL is also known to serve as a trigger for assembly of
apoptosome [42, 43], it appears that the oxidation of CL
triggers both pro- and antiapoptotic reactions. As a result,
the fate of the cell appears to be determined by the balance
between pro- and antiapoptotic reactions triggered by the
same event of CL oxidation [9]. For understanding this
interplay, it is needed to follow both the CL oxidation
and changes in MMP in vivo. Figure 5 shows that the drop
in MMP follows the oxidation of MitoCLox with a certain
lag. Although the reason of the lag deserves further investi-
gation, it seems tempting to speculate that cells could main-
tain their MMP for tens of minutes by hydrolyzing their
ATP stock. Concentration of ATP should not decrease rap-
idly in highly glycolytic cells that we used, so the expected
increase in membrane proton leakage could be initially
counteracted by MMP generation by ATPase (and other
proton pumps).

Earlier, it was shown that oxidative stress initially results
in an exclusive oxidation of CL molecules [44-46]. Therefore,

the fast PLO, as reported by MitoCLox in response to oxida-
tive stress in diverse systems (Figures 2-5), was, most likely,
due to the predominant oxidation of CL.

The observation of small perinuclear mitochondria
with a low MMP (Figure 6) could be related to the earlier
report on mitochondrial heterogeneity in endothelial cells
[32, 33]. The data in Figures 6(a) and 6(b) indicates the
existence of a specific small subpopulation of mitochon-
dria with a reduced MMP and oxidized CL in endothelial
cells. Earlier, similar results were reported by Kuznetsov
and Margreiter who observed small round perinuclear
mitochondria with decreased MMP in HL-1 cardiac mus-
cle cells [47, 48]. It is tempting to speculate that peroxida-
tion of mitochondrial lipids (primarily CL) could be
responsible for the decrease in the MMP in the fraction
of the mitochondrial population shown by arrows in
Figure 6. Probably, these small mitochondria serve as sen-
sors of cellular homeostasis. It is known that oxidative
phosphorylation is not a significant source of ATP in
endothelial cells [48] so that a small fraction of depolar-
ized mitochondria would not significantly affect the energy
balance of these cells. Our observations indicate that CL
peroxidation in a fraction of mitochondrial population
could be a reason for functional and structural heterogene-
ity of mitochondria in a single cell.

Application of MitoCLox allowed us to detect a specific
fraction of cells with a high level of mitochondrial lipid per-
oxidation in the culture of human myoblast MB135. The
size of this cell fraction increased with an increase in cell
density with increasing culturing time. These specific
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FIGURE 7: Analysis of MitoCLox oxidation in the culture of myoblast MB135. (a) Myoblasts were seeded in 35 mm dishes at an initial density
of 2 x 10° cells/well and cultured for 4 days. Tempol (0.1 mM) was added at the beginning of culturing. Then, 200 nM MitoCLox was added
for 5h, and cells were analyzed using a Nikon Eclipse Ti (Nikon) confocal microscope with excitation at 488 and at 562 nm. Higher
magnification was used to reveal mitochondrial morphology. (b) Myoblasts were seeded and cultured as in (a). Then, MitoCLox (200 nM)
was added for 5h, and cells were analyzed using the FC 500 flow cytometer in green (FL1) and red (FL2) channels. (c) Myoblasts were
seeded in 6-well cell culture plates (9.6 cm® surface area per well) at initial density 1 -6 x 10> cells/well and cultured for 4 days. Then,
200 nM MitoCLox was added for 5h, and cells were analyzed as in (b). The cell fraction with oxidized MitoCLox was measured. Phase-
contrast images of the final cultures seeded at different densities are shown.

conditions correlate with increased probability of spontane-
ous myogenesis in vitro [49]. At high cell density, cell-cell
contacts initiate contact inhibition of the cell cycle progres-
sion, cell fusion, and expression of the key players of myo-
genesis such as MyoD and myogenin [50]. Moreover,
myoblasts were shown to secrete their own extracellular

matrix glycoproteins that facilitate myogenic differentiation
[51]. It is tempting to speculate that a subpopulation of
myoblasts with oxidized mitochondrial CL includes the
myoblasts that are committed for differentiation.
Fragmentation of the mitochondrial network and mito-
phagy are required for mitochondrial biogenesis and
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myogenic differentiation [34, 35]. Deregulation of these pro-
cesses contributes to various types of genetic muscular dystro-
phy and in age-associated sarcopenia [36]. Cardiolipin is
deeply involved in the regulation of mitochondria dynamics
since it interacts both with profission (Drpl) [15] and with
profusion (Opal) [13] dynamin-related GTPases. Further-
more, externalization of CL to the outer mitochondrial
membrane could act as one of the elimination signal for
mitophagy [15]. These data suggest that oxidation of CL
(and, perhaps, other lipids) is one of the early events that
lead, via mitochondrial fragmentation and mitophagy, to
myogenesis. This suggestion is in good agreement with
the findings that high doses of mitochondria-targeted anti-
oxidants inhibited myogenesis via inhibition of mitochon-
drial fragmentation and mitophagy [52-54]. Interestingly,
mild depletion of mitochondrial ROS did not block
in vitro fusion of primary myoblasts and even stimulated
differentiation of myoblasts with some genetic defects
[55]. Myogenesis is not the only example of the differentia-
tion program that depends on mitoROS. In mesenchymal
stem cells, mitoROS were found not only to initiate differ-
entiation but also to contribute to cell fate determination
[56]. Mitochondrial ROS (at least partially via modulation
of mitochondrial dynamics and mitophagy) contribute also
to keratinocyte differentiation within the epidermis and
hair follicle development [57] and differentiation of adipo-
cytes [58] and of immune cells [59]. MitoCLox could be a
valuable tool for studies of these differentiation programs.

5. Conclusions

Here, we showed that molecules of a new mitochondria-
targeted probe MitoCLox accumulated in mitochondria of
living cells and reported the oxidation of mitochondrial
lipids under conditions of oxidative stress. Ratiometric
measurements of MitoCLox oxidation using flow cytometry
revealed a very good dynamic range of the probe.
Mitochondria-targeted antioxidant SkQ1 inhibited Mito-
CLox oxidation that was induced either by hydrogen perox-
ide or by organic hydroperoxide. The earlier findings
demonstrated that CL (a) was selectively oxidized under
conditions compatible to those of our experiments and
(b) could be protected against oxidation by cationic
mitochondria-targeted antioxidants [44-46]. We suggest
that MitoCLox most likely preferably reports on the oxida-
tion of CL, in agreement with results of molecular dynamic
modeling that predicted a particular affinity of MitoCLox to
CL [29]. Specifically, the application of MitoCLox revealed
that the oxidation of lipids took place immediately after
addition of hydrogen peroxide and preceded the drop in
MMP. In the in vitro model of myogenesis, the use of
MitoCLox revealed a cell subpopulation with an increased
level of lipid oxidation and fragmented mitochondria.
These cells were observed only after prolonged culturing
of a dense culture of myoblasts, which is a necessary condi-
tion for the onset of myogenic differentiation. In sum, the
new probe has demonstrated a notable potential for mito-
chondrial lipid peroxidation studies in living cells.
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