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PARP2 mediates branched poly ADP-ribosylation
in response to DNA damage
Qian Chen1, Muzaffer Ahmad Kassab1, Françoise Dantzer2 & Xiaochun Yu1

Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification involved in multiple

biological processes, including DNA damage repair. This modification is catalyzed by poly

(ADP-ribose) polymerase (PARP) family of enzymes. PARylation is composed of both linear

and branched polymers of poly(ADP-ribose) (PAR). However, the biochemical mechanism of

polymerization and biological functions of branched PAR chains are elusive. Here we show

that PARP2 is preferentially activated by PAR and subsequently catalyzes branched PAR

chain synthesis. Notably, the direct binding to PAR by the N-terminus of PARP2 promotes the

enzymatic activity of PARP2 toward the branched PAR chain synthesis. Moreover, the PBZ

domain of APLF recognizes the branched PAR chain and regulates chromatin remodeling to

DNA damage response. This unique feature of PAR-dependent PARP2 activation and sub-

sequent PARylation mediates the participation of PARP2 in DNA damage repair. Thus, our

results reveal an important molecular mechanism of branched PAR synthesis and a key

biological function of branched PARylation.
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Poly(ADP-ribose) polymerases (PARPs) catalyze poly(ADP-
ribosyl)ation of target proteins (PARylation) using NAD+

as the donor of ADP-ribose1,2. ADP-ribose moieties are
covalently linked to the side chains of several amino acid residues,
such as Aspartic acid, Glutamic acid, Arginine, Lysine, and Ser-
ine3–5. Four members of the PARP family, including PARP1, 2,
5A, and 5B, are able to add additional ADP-ribose to the first
ADP-ribose through 1, 2-glycosidic bond, and keep elongating
the chain with up to one hundred ADP-ribose units; whereas, the
rest of PARP family enzymes catalyze only mono(ADP-ribosyl)
ation (MARylation)6–8.

Although, the basal level of ADP-ribosylation is relatively low,
PARPs can consume up to 90% of cellular NAD+ upon DNA
damage, synthesizing massive ADP-ribosylation, especially
PARylation9–11. Since each ADP-ribose reside contains two
negatively charged phosphate groups, poly(ADP-ribose) (PAR)
chains add huge amounts of negative charge to DNA lesions.
Electrostatic repulsion between negatively charged DNA and PAR
leads to relaxation of chromatin structure12–14. Moreover, PAR is
recognized by PAR-binding modules found in many chromatin
remodeling complexes and DNA damage repair factors, which
mediates the recruitments of these DNA damage repair machi-
neries to the sites of DNA damage further facilitating chromatin
remodeling and DNA damage repair12,14–17. Hence, PARylation
plays a pivotal role in DNA damage repair18,19.

Among the four PARPs known to catalyze PARylation, only
PARP1 and PARP2 are localized in the nucleus and both of them
participate in the early DNA damage response. Once DNA
damage occurs, PARP1 is immediately recruited to the damaged
DNA ends through its N-terminal DNA-binding motif, and sti-
mulates PARylation via its C-terminal enzymatic domain20,21.
The quick PARylation signal also mediates the recruitment of
PARP2 to the damaged site and both of them act together to
expand the PARylation signal at DNA lesions for the ultimate
repair22. Like PARP1, PARP2 also contains an N-terminal reg-
ulatory domain and a C-terminal enzymatic domain23; however,
the mechanism of activation of PARP2 and the role of PARP2-
mediated PAR chain formation in DNA damage remains elusive.

Interestingly, PAR chains synthesized during the DNA damage
repair (DDR) are not homogenously linear polymer forms of
ADP-ribose (ADPr)9,24. The ADPr unit in the PAR chains has
two ribose sugars. Each ribose in the unit is linked to the ribose
sugar of an adjacent ADP-ribose (ribose–ribose glycosidic bond)
forming the linear polymer. The distal ribose in one ADPr unit
can also be linked with the distal ribose of another ADPr resulting
in the branching of PAR25,26. However, how the branched PAR
chain is synthesized and the biological function of the branched
PAR remains unclear.

Here we examined the activation of PARP2, and found that
PARP2 could be activated by PAR and subsequently catalyze the
branched PAR chain formation. Moreover, the branched PAR is
recognized by the PBZ domain of APLF for the removal of his-
tone barrier during DNA damage repair.

Results
Loss-of-PARP2 affects the branched PAR chain formation. To
study the molecular mechanism of PARP2-mediated PAR poly-
merization, we thoroughly examined PARP2-dependent PAR-
ylation induced by hydrogen peroxide (H2O2) in wild-type mouse
embryonic fibroblasts (MEFs) versus Parp2−/− MEFs using a
panel of complementary approaches aimed to decipher the bio-
chemistry of PAR (Fig. 1a). Compared to wide-type MEFs, we
only observed a slight reduction of PARylation in the Parp2−/−

MEFs using an anti-PAR antibody (monoclonal antibody, Tre-
vigen 4335-MC-100) in dot blotting (Fig. 1b). In contrast, loss of

PARP1 abolished majorities of DNA damage-induced PARyla-
tion (Supplementary Figure 1). The results are in agreement with
previous studies and have shown that PARP2 only contributes a
set of PARylation events during DNA damage repair27,28. We
also confirmed that the total PAR was slightly reduced in the
absence of PARP2 using UV spectroscopy, whereas the PARP1
deficiency caused ~85% of total PARylation reduction (Fig. 1c).

To examine whether PARP2 mediates any specific PARylation
events, we analyzed these samples with LC–MS/MS. Prior to mass
spectrometry, the extracted PAR chains from the wild-type MEFs
or the Parp2−/− MEFs were treated with venom pyrophophatase
(PPase) and alkaline phosphatase (AP) to generate adenosine
(Ado), ribosyladenosine (R-Ado) and diribosyladenosine (R2-
Ado), which represent the terminal, linear, or branched unit in
PAR chain, respectively (Supplementary Figure 2A and 2B).
Consistent with the results of dot blotting, we detected only a
slight reduction of R-Ado in the Parp2−/− MEFs, suggesting that
total PARylation is modestly impaired in the absence of PARP2.
In contrast, the levels of Ado and R2-Ado were significantly
reduced (Fig. 1d), suggesting that the branched PAR chain
polymerization is notably affected in the absence of PARP2. To
further validate these results, we used the CRISPR-Cas9 system to
knockout PARP2 in U2OS cells. Consistently, we found that loss
of PARP2 impaired branched PAR chain formation in these cells
as shown by the important decreased production of R2-Ado
(Fig. 1e). In addition, we reconstituted PARP2-deficient cells with
full length PARP2 or the E545-to-A mutant (E545A), which
disrupts the catalytic cage23. Only full length PARP2 but not the
E545A mutant rescued the branched PAR chain formation
(Fig. 1e). Collectively, these results indicate that PARP2 is
absolutely needed for the formation of branched PAR chain.

Moreover, we quantitatively measured the branched chain (R2-
Ado) in both wide type and PARP2-null cells with LC–MS/MS.
Based on a previously demonstrated approach29, we compared
the ratio between R2-Ado and R-Ado, and found that the
branched unit is ~2% of the linear chain unit in the wild-type
cells. In PARP2-null cells, the branched site is <1% of the linear
chain unit (Supplementary Figure 3).

PARP2 is activated by PAR. Having established the role of
PARP2 in branched PARylation, we sought to characterize the
molecular mechanism involved in PARP2 activation during
this phenomenon. Different from PARP1, PARP2 has a short
N-terminal motif and a WGR domain that may recognize
nucleic acid. It has been shown that both 5′ phosphorylated
DNA oligo (5′P-ssDNA) and ssRNA are able to activate
PARP227,28. Using the in vitro PARylation assay, we confirmed
that either 5′P-ssDNA or ssRNA can trigger PARP2 activity
(Supplementary Figure 4A). Similar to DNA and RNA, PAR is a
type of nucleic acid polymer. Strikingly, we observed that PAR
chain is sufficient to activate PARP2, but not PARP1, in the
in vitro PARylation assay (Supplementary Figure 4A and 4B).
Compared to the similar length of 5′P-ssDNA or ssRNA, PAR
was more potent to activate PARP2 in the colorimetric assays
(Supplementary Figure 4C). However, the auto-PARylation of
PARP2 could not be induced by single ADPr (Supplementary
Figure 4D). Moreover, in contrast to PARP2, the E545A mutant
of PARP2 cannot be activated by PAR (Supplementary Fig-
ure 4E). This robust and preferential activation of PARP2 by PAR
suggests that PARylation itself could be an important source to
activate PARP2.

PARP2 mediates the branched PAR chain formation. As PAR
is able to activate PARP2, we next investigated the identity of
PARP2 substrate and hypothesized that the most favorite target
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would be PAR itself. To test this possibility, we first excluded
PARP2 after in vitro PARylation assay, harvested the activator
PAR chains, and subjected them to the mass spectrometry
(Fig. 2a). Interestingly, we found that the branched chains mea-
sured by the production of R2-Ado were remarkably increased in

the activator PAR chains after incubation with PARP2 (Fig. 2b).
In contrast, under similar assay condition, PARP1 alone could
not add branched PAR chains on the existed PAR chains
(Fig. 2c). Notably, the catalytic inactive mutant of PARP2 also
failed to synthesize the branched chains (Fig. 2d). Taken together,
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Fig. 1 Loss-of-PARP2 affects the branched PAR chain formation. a Diagram depicting the procedure of sample preparation for dot blot, UV spectroscopy or
mass spectrometry. Wide type or Parp2−/− MEFs were treated with 500 μM H2O2 for 10min to induce DNA damage. PAR was extracted and followed by
digestion with pyrophosphatase (PPase) and alkaline phosphatase (AP) prior to LC–MS/MS. b Dot blot assays were performed with anti-PAR antibody. 5X
means five-fold loading samples. Actin was used as the control of cell lysates (monoclonal antibody, Sigma A2228). c Depletion of PARP2-induced minor
reduction of total PAR in response to DNA damage, whereas lacking PARP1 remarkably suppressed total PAR level. The levels of PAR were examined at
259 nm using UV spectroscopy. d Mass spectrometry detection of adenosine (Ado), ribosyladenosine (R-Ado) and diribosyladenosine (R2-Ado). LC–MS/
MS quantitative analysis showed that Ado (terminal PAR unit) and R2-Ado (branched PAR unit) were remarkably reduced in PARP2-deficient cells, but not
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these results suggest that PARP2 is able to add additional bran-
ched chains on top of the activator PAR. Due to the poly-
merization of branched chains, additional Ado and R-Ado were
also increased in the activator PAR (Fig. 2b).

In addition, we also measured the branching sites in PARP1-
dependent PARylation. We measured the ratio between R2-Ado
and R-Ado the in vitro PARylation assays. With only PARP1, we
found that the branched site is ~1% of the linear unit when only
PARP1 was used to catalyze the PARylation (Supplementary
Figure 5A). When we added PARP2, we found that branched site
increased ~2-fold (Fig. 2b). Moreover, we over-expressed PARP1
in the PARP2 KO cells, and found that the branched sites were
increase with additional PARylation catalyzed by PARP1
(Supplementary Figure 5B). The results suggest that PARP1 is

also able to catalyze branched chain, but at lower rate30.
Moreover, other PARPs, such as PARP3 and PARP10, also
participate in DNA damage repair31–33. It is possible that other
PARPs catalyze single or oligo branch units on top of the existed
PAR chains.

Branched PARylation is regulated by the N-terminus of
PARP2. Besides the C-terminal catalytic domain, PARP2 has a
short N-terminal region (NTR) and a WGR domain. Similar to
the Zinc Finger motifs of PARP1, the NTR and the WGR
domains of PARP2 recognize PARP2 activators and induce
conformational changes in the catalytic domain for the activation
of PARP2-dependent PARylation23,28. To study if the NTR and
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the WGR domain mediate PAR-dependent activation of PARP2,
we examined the interaction between PAR and these two
domains, and found that the NTR interacted with PAR (Fig. 3a).
Deletion of the NTR but not the WGR domain abolished the
interaction between PAR and PARP2, suggesting that the NTR of
PARP2 is required for the interaction of PARP2 with PAR
(Fig. 3b).

Next, we examined whether the NTR played a role for the
PARP2-dependent PARylation. The recombinant full length
PARP2 or the NTR deletion mutant were generated and

examined in the in vitro PARylation assays. Consistent with the
PAR-binding results, lacking the NTR domain abolished PARP2-
dependent PARylation (Fig. 3c).

We also examined the functional requirement of the NTR in
the PARP2-dependent PARylation in cells. Full length PARP2 or
NTR deletion mutant were reintroduced into PARP2-deficient
cells and the expression of the proteins were verified by western
blot (Fig. 3d). We found that the NTR deletion mutant could not
rescue the PARP2-dependent PARylation in these cells, including
the PARP2-dependent branched chain formation (Fig. 3e).
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Collectively, the NTR is required for the PARP2-dependent
PARylation, especially the branched chain formation.

PARP1-dependent PARylation mediates the recruitment of
PARP2 to the sites of DNA damage. Since, PARP2 recognizes
PAR, we asked whether PARylation facilitates the recruitment of

PARP2 to the sites of DNA damage. It has been reported that
PARP1 reaches the sites of DNA damage within one second
following laser micro-irradiation34. With the laser micro-irra-
diation, we examined the kinetics of PARP2 recruitment at the
damage site, and found that unlike PARP1, PARP2 started to
accumulate at around 30 s and reached the peak level at around 2
min (Fig. 4a). Similar recruitment kinetics of endogenous PARP2
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was observed (Fig. 4b). Moreover, the NTR domain alone was
sufficient to be recruited to the damaged sites (Fig. 4c). And the
recruitment of either full length PARP2 or NTR was disrupted
with the treatment of PARP inhibitor olaparib (Supplementary
Figure 6A). Collectively, these results suggest that the NTR of
PARP2 may recognize locally produced PAR for the recruitment
of PARP2.

Compared to PARP2, we observed that PARP1 is recruited to
the sites of DNA damage much earlier (Fig. 4a). At around 20 s
following DNA damage, we were able to clearly detect
PARylation at lesions (Supplementary Figure 6B), while PARP2
had not been recruited at the same time point. It indicates that
PARP1 mediates the early PARylation at lesions. As PARylation
may mediate the recruitment of PARP2, we next examined the
recruitment kinetics of PARP2 in PARP1-deficient cells. Both the
full length and the NTR of PARP2 were recruited to the sites of
damage in the presence of PARP1. However, loss of PARP1
largely impaired the recruitment of PARP2 (Fig. 4d), indicating
that the recruitment of PARP2 is dependent on PARP1.

To validate our hypothesis, we re-expressed wild type or the
catalytically inactive mutant PARP1 (E988A) in PARP1-deficient
cells, and found that only wild type but not the PARP1E988A
mutant can rescue the recruitment of PARP2 (Fig. 4e), suggesting
that the catalytic activity of PARP1 is required for the recruitment
of PARP2. Of note, the recruitment kinetics of PARP1 was not
affected by the E988A mutation (Supplementary Figure 6C).
Taken together, these results confirm that the NTR of PARP2
recognizes the PARP1-dependent PARylation, which mediates
the recruitment of PARP2 to the sites of DNA damage.

APLF recognizes the branched PAR chain. Although, the
branched PAR chain has been identified more than 35 years
ago26, the biological function and the binding module of the
branched PAR chain are still unclear. One unique feature of
chemical structure in the branched chain is that three ADPr units
are linked to each other. Based on the structural analysis, until
now all the PAR-binding modules have been reported to recog-
nize only one or two ADPr units15,35–41. These observations open
up the possibility that multiple PAR-binding modules may be
coordinating together to interact with the branched site of the
PAR chain. Structural studies have demonstrated that APLF
contains two tandem PBZ motifs, in which the first PBZ motif
binds to two ADPr units, and the second one recognizes the third
ADPr36. Based on these studies, we hypothesize that the tandem
PBZ motifs of APLF may be the readers of branched sites in a
PAR polymer.

To test the hypothesis, we generated recombinant APLF PBZ
protein and incubated it with branched PAR chains. The APLF
PBZ-PAR complex was harvested and partially digested with
PARG. The APLF binding PAR residues were eluted and digested
with PPase and AP, and analyzed by LC–MS/MS (Fig. 5a).
Interestingly, the R2-Ado but not Ado or R-Ado, was remarkably
enriched compared with the controls (Fig. 5b), indicating that
APLF PBZ preferentially binds the branched sites over linear PAR
chains. The specificity of this binding was confirmed by using the
WWE domain of RNF146 as a control that is known to recognize
only iso-ADPr; the linker between tandem ADPr in the PAR
chains37. In agreement with previous studies, only R-Ado was
isolated by the pull down with the WWE domain under the same
assay condition (Fig. 5c).

To further analyze the tandem PBZ motifs of APLF, we
mutated the key residues in each PBZ motif, and examined the
PAR-binding activities. We found that loss of the first PBZ motif
(PBZ1) remarkably reduced the total PAR-binding, whereas loss
of the second PBZ (PBZ2) also impaired the interaction with PAR

(Supplementary Figure 7A). With mass spectrometry, we found
that loss of either PBZ motif abolished the recognition of
branched sites (Supplementary Figure 7B). Notably, loss of PBZ2
had slightly increased association with Ado and R-Ado
(Supplementary Figure 7B). It indicates that loss of one PBZ,
especially PBZ2, may switch the recognitions of APLF from the
branched sites to linear chain or terminal ADPr.

APLF acts as a histone chaperon and nuclease during DNA
damage repair42. Previous study showed that PARylation
mediates the recruitment of APLF to the sites of DNA
damage18,43. Since, our data suggest that PARP2 mediates the
branched PAR chain formation, and APLF recognizes branched
PAR chains; we examined whether PARP2 mediates the
recruitment of APLF to the sites of DNA damage. We examined
the recruitment kinetics of APLF in PARP2-deficient cells, and
found that lacking PARP2 clearly impaired the recruitment of
APLF to the sites of DNA damage (Fig. 5d), which is also in
agreement with previous studies44. Collectively, the results
suggest that the branched PAR chains mediate the recruitment
of APLF to the sites of DNA damage.

PARP2-dependent branched PAR chain polymerization is
important for histone H3 removal in response to DNA
damage. APLF is a DNA damage repair specific histone cha-
perone that preferentially binds to the H3/H4 tetramer, and
mediates histone barrier eviction for relaxing the chromatin
structure45. Since our data suggest that the recruitment of APLF
relies on the branched PAR chains, we examined whether
PARP2-dependent branched PAR chains mediate histone evic-
tion at the sites of DNA damage. To induce DNA damage, we
used doxycycline inducing system to express Cas9 nuclease in
PARP2-deficient or proficient cells. With the specific gRNA, the
controlled Cas9 nuclease generated a DNA double-strand break
(DSB) at the unique AAVS1 locus on the chromosome 19
(Fig. 6a). The solitary DSB was confirmed by the phosphorylation
of H2AX at the flanking regions (Fig. 6b). This system would
remove the nucleosomes within 300 bp at each side of the DSB46.
Interestingly, histone H3 removal was largely suppressed in
PARP2-deficient cells (Fig. 6c), suggesting that this histone H3
removal event was dependent on PARP2. Consistently, loss of
APLF also suppressed histone H3 removal at the sites of DNA
damage (Fig. 6d). In contrast, without DNA damage, histone H3
was present at this locus, and lacking PARP2 or APLF did not
affect H3 deposition when DNA damage did not occur (Sup-
plementary Figure 8A).

Because PARylation is a very transient posttranslational
modification, we could not directly detect APLF at the sites of
DNA damage in this assay system. However, these results
convincingly suggest that PARP2 mediates branched PAR chain
formation may regulate the APLF-dependent histone H3 removal
at the sites of DNA damage. Moreover, we used q-PCR with
primers on each side of the DSB to quantitatively measure the
repair kinetics (Fig. 6e), and found that the loss of either PARP2 or
APLF significantly delayed the DNA damage repair (Fig. 6f). To
exclude any off-target effect, we reintroduced full length PARP2 or
APLF in the deficient cells. And full length PARP2 or APLF were
able to rescue the DNA damage repair (Supplementary Figure 8B).
In addition, the tandem PBZ motifs of APLF mediated this
molecular event as well (Supplementary Figure 8C).

To further validate the DSB repair function of PARP2 and
APLF, we treated APLF and PARP2-deficient cells with IR and
used neutral comet assays to examine the DSB repair. Again, we
found that the DSB repair kinetics in APLF and PARP2-deficient
cells were similar (Supplementary Figure 9A). The results are
consistent with previous publications that both APLF and PARP2
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are important for DSB repair47–49. To further examine whether
the PARP2-APLF pathway is involved in HR and NHEJ, we
depleted PARP2 or APLF in DR-GFP U2OS and EJ5-GFP U2OS
cells, respectively. Based on these GFP reporter assays, we found
that NHEJ was clearly impaired when cells lost PARP2 or APLF.
However, HR was also mildly suppressed when cells were
lacking PARP2 or APLF (Supplementary Figure 9B). The results
are in agreement with previous studies on PARP2 and APLF49–52.

Taken together, these results suggest that PARP2-dependent
branched PAR chains play a potentially important role in DNA
damage repair.

Discussion
The major finding of this study is that PARP2 is involved in
branched PAR synthesis which in turn governs APLF mediated
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histone H3 removal during DNA damage repair. In particular,
PARP2 itself gets activated by PAR and plays an important role in
the branched PAR chain polymerization. Previous studies have
reported that PARP2 can be activated by nucleic acids, including
DNA and RNA. Here we demonstrate that PAR can act like other
nucleic acids and activate PARP2. We also provide evidence that
the NTR domain of PARP2 is able to recognize PAR and facil-
itates the activation of PARP2. In fact, ADPr itself is a unique
type of nucleic acid, and it is likely that the NTR utilizes the
common binding pocket to interact with PAR, DNA, or RNA.
Additionally, the NTR domain is required for the localization of
PARP2 to the sites of DNA damage. This process is also largely
dependent on PARP1-mediated PARylation. Taken together, it is
likely that the NTR of PARP2 recognizes PARP1-mediated
PARylation following DNA damage, which subsequently targets
PARP2 to the sites of DNA damage and facilitates the activation
of PARP2 (Supplementary Figure 10).

Once PARP2 is activated by PAR, it catalyzes additional
PARylation on top of the existing PAR chains, resulting in for-
mation of branched PAR chain. With mass spectrometry analysis,
we have shown that PARP2 is able to catalyze branched PAR
formation in the in vitro PARylation assays. Moreover, lacking
PARP2 in cells suppresses the branched PAR chain formation.
Thus, it is likely that PARP2 acts as the secondary PARP during
PARylation and synthesizes additional PAR chains (Supplemen-
tary Figure 10). Previous studies have demonstrated de novo
PARylation in absence of PARP1, albeit at much lower level10.
Thus, there is a possibility that PARP2 recognizes DNA or RNA
to catalyze de novo PARylation in the absence of PARP1. Besides
PARP2, other PARPs including PARP7, 9, 11, 12, 13, 14, and 15
may also act as the secondary PARPs. These PARPs contain the
Macro domain and/or the WWE domain both of which are PAR-
binding modules5,6,16,24. Besides PARP1 and PARP2, PARP3,
and PARP10 have been shown to participate in DNA damage
repair. It is also possible that these PARPs may recognize PAR-
ylation and catalyze additional ADP-ribosylation on top of the
PAR chains.

Although PARP1 is also able to catalyze the branched chain, we
found that the level of branched chain was relatively low in
PARP2-deficient cells. The structures of the catalytic pockets of
PARP1 and PARP2 have been examined. In fact, the detailed
structures are quite different in PARP1 and PARP2. The catalytic
pocket can be divided into acceptor site and donor site. Although,
the binding sites of NAD+ donor are quite similar, the substrate
acceptor sites are quite different. Compared to that in PARP1,
PARP2 has a unique extended loop with six additional residues
(Leu523-Thr529) in the acceptor pocket that changes the tertiary
structure53. It is very likely that the different orientation of sub-
strate acceptor pocket determine the linear and branched PAR
chain formation.

The branched site of PAR chain has a unique chemical struc-
ture with three ADPr clustered around, indicating that it may act
as a signal and be specifically recognized by some motifs. Here we
have shown that the tandem PBZ motifs of APLF recognize the
branched PAR site. Previous studies have shown that the first
PBZ motif of APLF recognizes two ADPr units; whereas, the
second one only recognizes one ADPr unit because of a proline
residue substation at the conserved ADPr-binding pocket36. Loss
of either PBZ motif abolishes the binding with the branched sites.
Interestingly, loss of PBZ2 does not abolish the recognition of
PAR. Instead, it switches the PAR recognition from the branched
site to the linear chain. Thus, it would be intriguing to elucidate
the structure of this unique binding module in future. Besides the
tandem PBZs motifs of APLF, other motifs may also recognize
the branched PAR chains, especially those containing three
ADPr-binding modules. An interesting example of this kind of

PARP is, PARP14 containing three tandem Marco domains,
which may be involved in recognizing the branched sites.
Uncovering other branched site-binding domains will further
elucidate the biological function of the branched PAR chain.

Previous studies have shown that APLF is involved in histone
eviction during DNA damage repair43, our results and the results
from other groups suggest that APLF may recognizes the PARP2-
mediated PARylation during DNA damage repair44. Moreover,
with a site specific system to generate a solitary DSB, we found
that the PARP2-mediated PARylation regulates histone H3
removal at the sites of DNA damage. Thus, it is possible that
APLF acts as a reader and downstream effector of the PARP2-
mediated PARylation for histone H3 removal. Of note, loss of
PARP2 arrests spermatogenesis during the last few steps54,55, at
which the majorities of nucleosomal histones have to be replaced
by histone like proteins including transition protein 1 and 2 as
well as protamine 1 and 2. These studies and our data are in
strong support of a key contribution of PARP2 in histone
removal. Although, the molecular mechanism of this chromatin
remodeling event during spermatogenesis mimics the histone
removal process at the sites of DNA damage, there are obvious
differences in these events. While, the histone removal during
spermatogenesis is a global event; the histone removal at the sites
of DNA damage is a locally confined event. Our belief stems from
the fact that similar phenomena of chromatin remodeling has
been described for other DNA damage repair factors, such as
RNF8, which mediates histone removal in both spermatogenesis
and DNA damage repair56,57.

Moreover, our results show that similar the repair defects have
been observed in PARP2 or APLF-deficient cells. However, the-
oretically, DSB repair defects in PARP2-deficient cells should be
milder than that in APLF-deficient cells, because lacking PARP2
only reduces >50% of branched chains, and a set of APLF was still
able to be recruited to the sites of DNA damage. However, it is
possible that besides APLF, other repair factors may also recog-
nize the PARP2-dependent branched chain. Lacking PARP2-
dependent branched chain may also impair the recruitments of
other branch chain readers. In other words, APLF and PARP2
have overlapping but also independent functions in DNA damage
repair. It is also possible that PARP2 ADP-ribosylates one sub-
strate for the recruitment of APLF. But our results suggest that
the PBZ motif of APLF specifically recognizes the branched chain
formation (Fig. 5). Moreover, loss of the PBZ motif of APLF
abolishes the function of APLF in DNA damage repair. Thus, it is
likely that the activation of APLF relies on the interaction
between the PBZ and the branched PAR chain. Further analysis
on APLF-dependent pathway and identification of the
PARP2 substrates will elucidate the detailed molecular
mechanism.

Methods
Cell culture. Mouse embryonic fibroblasts (MEFs) were derived from PARP1- or
PARP2- wide-type or knockout mice. U2OS and 293T cells were purchased from
ATCC and maintained in DMEM medium supplemented with 10% fetal bovine
serum at 37 °C in 5% CO2. To generate knockout cell lines, U2OS cells were
transfected with PX459 vector containing either PARP2-sgRNA for the PARP2
knockout or APLF-sgRNA for APLF knockout. Transfected cells were plated at low
density in 1.5 μg/ml puromycin. Single colonies were propagated, and individual
clones were analyzed by western blotting. Depletion of PARP2 or APLF in U2OS
cells was validated by western blotting using anti-PARP2 antibody (monoclonal
antibody, Millipore MABE18) or anti-APLF antibody (polyclonal antibody,
Thermo Fisher Scientific PA5-39776). U2OS PARP2- or APLF-null cells were
transfected with vectors encoding HA-tagged either full length wide-type or
mutants. Stable cell lines were established with 200 µg/ml hygromycin B selection.
Western blotting was conducted to validate the efficiency of the reconstitution of
indicated protein. To generate doxycycline-inducible cell lines, doxycycline was
added to media to induce the Cas9 expression at a final concentration of 1 μg/ml
for 24 h.
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Vector constructs. To generate GFP-, HA-, GST-, and His-tagged proteins, DNA
fragment containing the full-length PARP2 (NM_001042618.1) were cloned in-
frame with tags into pEGFP-C1, pcDNA3.1/Hygro(+), pGEX-4T-1 and pET28a
vectors, respectively. GST-tagged NTR (1–100 aa), WGR (100–220 aa) and CAT
(201–570 aa) were cloned into pGEX-4T-1 vector. Full-length APLF, the PBZ
domain of APLF (335–511 aa) and the WWE domain of RNF146 (98–190 aa) were
inserted into pGEX-4T-1 vector to express recombination proteins. The NTR
domain of PARP2 was cloned into pEGFP-C1 with nuclear localization sequence
(PKKKRKV) at N terminus. Deletion mutants or point mutation of PARP2 or
APLF were generated using site-directed mutagenesis kit. The corresponding pri-
mers are listed in Supplementary Table 1 and 2. pSpCas9(BB)-2A-Puro (PX459)
V2.0 (plasmid #62988) and pCW-Cas9 (plasmid #50661) were purchased from
Addgene. The sgRNA sequence for PARP2 knockout was 5′-CGACTATACCA
TGACCTTGC-3′. The sgRNA sequence for AAVS1 knockout was 5′-
GTTAATGTGGCTCTGGTTCT-3′. The sgRNA sequence for APLF knockout was
5′-TACCATTGAAGCCAAATCTA-3′. The siRNA sequence targeting PARP2 was
5′-GGAGAAGGAUGGUGAGAAAdTdT-3′. The siRNA sequence targeting APLF
was 5′-CAAUCAGUGGAGGUAAUGUdTdT-3′. The corresponding antibodies
are listed in Supplementary Table 4.

Recombinant protein production. All recombinant proteins were expressed in
BL21 cells. His-tagged PARP1 or PARP2 was purified using Ni2+-NTA chroma-
tography. GST fusion proteins were purified using Glutathione Sepharose 4B. All
recombinant proteins were examined by SDS-PAGE followed by Coomassie Blue
staining.

PAR synthesis and purification. PAR synthesis reaction was carried out in a 2 ml
mixture containing 100 mM Tris-HCl, pH 8.0, 150 mM NaCl, 10 mM MgCl2, 2
mM NAD+, 5 µM DTT, 50 μg octameric activator oligonucleotide GGAATTCC
and 1mg PARP1. The reaction was incubated at 30 °C for 40 min and stopped by
addition of 2 ml ice-cold 20% TCA. Oligo DNA was cleaved by DNase I and
proteins were digested by proteinase K. Following precipitation the pellet was
washed with ice-cold pure ethanol. PAR was detached from histones or PARP1
protein using 0.5 M KOH/50 mM EDTA and extracted with phenol-chloroform-
isoamyl alcohol. Purified PAR was fractionated according to chain length by anion
exchange HPLC protocol58. 22-mer length PAR was chosen as activator in PARP2
ADP-ribosylation in vitro assay. The accurate length of PAR was confirmed by 20%
native PAGE and the band was visualized using Pierce™ Color Silver Stain Kit
(Thermo Fisher Cat#24597) according to the manufacturer’s instructions.

In vitro ADP-ribosylation assay. The auto-PARylation assay was performed using
60 nM PARP2 or PARP2 mutant protein incubation with indicated activators (200
nM PAR, 5′P-ssDNA, ssRNA or ADPr) in PAR reaction buffer (100 mM Tris-HCl,
pH 8.0, 150 mM NaCl, 10 mM MgCl2, 500 µM DTT, and 0.125 μM 32P-NAD+).
The reaction was carried out for 20 min at 30 °C and stopped by the addition of
SDS-loading buffer. The products were separated in SDS-PAGE gel and subjected
to autoradiography. The protein in each reaction was stained by Coomassie blue.

To test the possibility of PARP2 or Δ NTR PARP2 could catalyze branched PAR
chains formation on the activator PAR, biotinylated-NAD+ was used as substrate
in the reaction. The newly synthesized biotinyl-PAR was coupled with streptavidin
beads for 1 h, and then was released by boiling in the SDS-loading buffer without
bromophenol blue. The dot blotting was performed using streptavidin-HRP. The
protein in each reaction was stained by Coomassie blue.

For PAR-dependent activation of PARP2 assay using LC–MS/MS detection,
200 nM PAR as activator and 100 nM PARP2, PARP2 E545A mutant or PARP1
were included in the reaction. The newly synthesized PAR on the existing PAR
activator was examined using LC–MS/MS.

PAR-binding assay. Briefly, 32P-PAR was synthesized and purified using 32P-
NAD+ as substrate. Approximately 200 nM of each recombinant protein was
incubated with 500 nM 32P-PAR, and 25 μl Glutathione agarose in the PBS buffer.
The reaction mixture was incubated for 1 h followed by extensive washing of beads
with PBS. The protein-PAR complex was released by heating at 90 °C for 5 min in
the SDS-loading buffer without bromophenol blue. One microliter of sample was
spotted onto the nitrocellulose membrane and subjected to autoradiography. The
protein in each reaction was stained by Coomassie blue.

Colorimetric PARP2 modification assay. The catalytic activity of PARP2 mea-
surement was carried out using a colorimetric assay which can detect the incor-
poration of biotinylated-NAD+ into PAR. A total of 60 nM of His-tagged PARP2
protein was coupled on the Ni2+-NTA-His 96-well plates (5′). The indicated
activators (200 nM PAR, 5′P-ssDNA or ssRNA) and NAD+ at various con-
centrations (15–1000 μM) were added in the 50 μl PAR reaction buffer. The ratio of
NAD+ to biotinylated-NAD+ was 99:1. Reactions were processed59. The absor-
bance at 450 nm was recorded and fitted in the Michaelis-Menten model to yield
Km and Vmax values. Vmax was divided by the molecular weight of PARP2 to
calculate Kcat. The kinetic parameters presented represent the average of three
independent experiments.

Purification of intercellular PAR. Cultured cells were stimulated with 500 μM
H2O2 for 10 min, then the media were removed and cells were rinsed three times
with PBS. Cells were collected by adding 20% TCA. Subsequently, the pellets were
suspended in 0.5 M KOH/50 mM EDTA and incubation at room temperate for 2 h.
A total of 37% HCl was added to stop the alkaline treatment by adjusting the pH
value to 7.0. DNA and RNA were cleaved by DNase I and RNase A at 37 °C for 1 h,
following digestion with proteinase K overnight. Finally, PAR was precipitated by
phenol-chloroform-isoamyl alcohol. For dot blotting assay, the PAR was spotted
onto the nitrocellulose membrane and subjected to western blot using anti-PAR
antibody. For the total level of PAR detection, the PAR sample was examined at
259 nm using UV-spectrophotometer. For PAR chain components examination,
the product was subjected into LC–MS/MS.

LC–MS/MS. Due to the chain length and complexity of PAR is variable, the PAR
was digested to single nucleosides by pyrophosphatase (PPase) and alkaline
phosphatase (AP) prior to LC–MS/MS detection29. Three compositions of the
digestion products are adenosine (Ado), ribosyladenosine (R-Ado) and diribosy-
ladenosine (R2-Ado), which represent the terminal, linear, or branched PAR,
respectively. Liquid chromatography (HPLC) for all LC–MS/MS runs were per-
formed on Agilent 6520B QTOF mass spectrometer equipment with analytic
column (Phenomenex, size 150 × 2 × 3 micro) at a maximum pressure of 300 bars.
Solution A for HPLC was 0.1% formic acid in water and Solution B for HPLC was
acetonitrile. The most dominant daughter ion of R-Ado (m/z of 400) after collision
was adenine (m/z of 136). Therefore the transitions of m/z 400→ 136 and m/z
532→ 136 were monitored for the quantification of R-Ado and R2-Ado, respec-
tively. The ratio of Ado, R-Ado and R2-Ado were quantified by their respective
peak areas. The branch frequency was calculated by R2-Ado/R-Ado.

For the APLF recognized branched PAR chain detection, the PAR was
incubated with the beads-coupled GST-tagged APLF PBZ protein for 2 h at 4 °C.
Then the PAR-protein complex was partially digested by PARG catalytic truncated
protein in PBS buffer for 10 min at room temperature. The APLF PBZ-bound
residues were eluted and digested by PPase and AP prior to LC–MS/MS.
Meantime, purified GST protein and GST-tagged RNF146 WWE protein were used
as negative and positive controls under the same tested condition.

Inducible CRISPR/Cas9 platform to generate solo DNA double-strand break.
To produce Cas9 lentivirus, pCW-Cas9 was co-transfected into 293T cells along
with packaging (psPAX2) and envelope (pMD2.G) using Lipofectamine 2000
(Invitrogen). The lentivirus-containing media were collected 48 h post-transfection
and filtered to remove cells. The lentiviral particles were used to infect the cells for
48 h. To generate the U2OS-Cas9 cell line, the cells were treated with 1.5 μg/ml
puromycin to select the U2OS cells stably expression of Cas9. Considering of U2OS
PARP2- or APLF-null cells were puromycin-resistant, we replaced the screen
maker with blasticidin by modifying the pCW-Cas9 vector. A total of 5 μg/ml
blasticidin was used to select the U2OS PARP2- or APLF-null cells stably
expression of Cas9. The antibiotics were removed until uninfected control cells
were completely killed. The Cas9 induction efficiency was tested after treatment
with 1 μg/ml doxycycline (DOX) for 24 h. gRNA targeting AAVS1 was then
introduced into the iCas9 cell lines to generate solo DNA double-strand break
(DSB) for subsequent histone H3 removal analysis by chromatin immunopreci-
pitation or DNA damage repair kinetics using q-PCR.

Immunofluorescence analysis. To analyze γH2AX foci after induction of DSB,
U2OS-iCas9 cells grown on coverslips were transfected with a mock or gRNA and
cultured at 37 °C for 5 h to allow DNA damage repair. Then cells were immu-
nostained for γH2AX foci, images were recorded microscopically.

To examine the PARylation on the DNA damage sites, U2OS cells were
subjected to laser micro-irradiation, following 20 s, the cells was immunostained
with anti-PAR antibody. The fluorescence images were captured using microscope.

To monitor the kinetic of endogenous PARP2 recruitment following DNA
damage, laser micro-irradiation was performed to generate local DNA damage in
U2OS cells. And the cells were immunostained with anti-PARP2 antibody. Image
acquisition and analysis was carried out at different time points.

Chromatin immunoprecipitation (ChIP). Cells (70–80% confluence) from two 10-
cm plates were washed with PBS then cross-linked with 1% formaldehyde for 10
min at room temperature. Fixation was stopped by 200 mM glycine for 5 min. Cells
were washed twice with PBS and harvested in lysis buffer (20 mM Tris-HCl, pH
8.0, 150 mM NaCl, 10 mM EDTA, 1% SDS) containing proteinase inhibitors, 1 mM
DTT and 1mM PMSF. Lysates were sonicated on ice to yield 300–1000 bp genomic
DNA fragments and then centrifuged at maximal speed, 4 °C for 10 min. And the
samples were diluted tenfold in dilution buffer and immunoprecipitated by anti-
histone H3 antibody (2 μg) with 30 μl protein G beads over night at 4 °C. IgG as
negative control was also used. The beads were collected and washed extensively.
The immuno-complex was eluted with freshly prepared elution buffer (1% SDS,
100 mM NaCHO3) for 30 min at room temperature. Crosslinks were reversed with
an incubation of the samples with 300 mM NaCl and proteinase K at 65 °C for 4 h.
Immunoprecipitated DNA was purified using the QIAquick PCR Purification Kit.
Two microliters of the DNA sample was subjected into the q-PCR reactions. The
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corresponding primers are listed in Supplementary Table 3. The results were
normalized for the signal of the input and were expressed as a percentage of the
signal with the antibody.

Live-cell imaging by laser micro-irradiation. GFP-tagged constructs were
transfected into the indicated cells which were plated on 35-mm glass bottom
dishes. Cellular DNA damages were generated in the nuclei of cultured cells by
micro-irradiation with a pulsed nitrogen laser (Spectra-Physics; 365 nm, 10 Hz
pulse). The laser system was directly coupled to the epifluorescence path of the
microscope for time-lapse imaging and focused through a Plan-Apochromat ×63/
NA 1.40 oil immersion objective. The output of the laser power was set at 50–70%
of the maximum as indicated. The green fluorescence strips were recorded at
indicated time points and then analyzed with Image J software. All results represent
images of 20 cells from three independent experiments.

HR and NHEJ assays. To measure the repair frequency, DR-GFP U2OS or EJ5-
GFP U2OS cells were plated into six-well plates and transfected the next day with
the indicated siRNAs and pCBASceI vector using Lipofectamine 2000 (Invitrogen)
60. Forty-eight hours later, cells were harvested and washed with PBS, and the GFP
positive cells were recorded by flow cytometry on a FACSCalibur.

Neutral comet assay. For evaluating DNA double-strand breaks, the neutral
version of comet assay was performed. Briefly, cells were exposed to 5 Gy and
recovered at different time points. Then the cells were collected and mixed with
0.8% low melting agarose and layered onto agarose-coated slides. Slides were then
submerged into cold lysis buffer for 3 h. After lysis, slides were incubated for 1 h in
electrophoresis buffer. After electrophoresis, slides were neutralized, placed into
100% ethanol and then air-dried. Slides were subsequently stained with 5 μg/ml
propidium iodide and images were taken using a fluorescent microscope (Olym-
pus). Average Olive Tail Moment (OTM) was analyzed (50 cells/slide) by using
Comet Assay Software Project Casp-1.2.2 (University of Wroclaw, Poland). All
experiments were repeated three times.

Statistical analysis. Data are represented as mean ± s.d. as indicated from three
independent experiments. Significance of differences was evaluated by Student’s t-
test. NS: non significant; *statistically significant (p < 0.05). **statistically significant
(p < 0.01). ***statistically significant (p < 0.001).

Data availability. All uncropped blots and gels are shown in Supplementary
Figure 11 and all data are available from the corresponding author upon reasonable
request.
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