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Abstract

Background: As the use of electronic health records (EHRs) becomes more widespread, so does the need to
search and provide effective information discovery within them. Querying by keyword has emerged as one of the
most effective paradigms for searching. Most work in this area is based on traditional Information Retrieval (IR)
techniques, where each document is compared individually against the query. We compare the effectiveness of
two fundamentally different techniques for keyword search of EHRs.

Methods: We built two ranking systems. The traditional BM25 system exploits the EHRs’ content without regard to
association among entities within. The Clinical ObjectRank (CO) system exploits the entities’ associations in EHRs
using an authority-flow algorithm to discover the most relevant entities. BM25 and CO were deployed on an EHR
dataset of the cardiovascular division of Miami Children’s Hospital. Using sequences of keywords as queries,
sensitivity and specificity were measured by two physicians for a set of 11 queries related to congenital cardiac
disease.

Results: Our pilot evaluation showed that CO outperforms BM25 in terms of sensitivity (65% vs. 38%) by 71% on
average, while maintaining the specificity (64% vs. 61%). The evaluation was done by two physicians.

Conclusions: Authority-flow techniques can greatly improve the detection of relevant information in EHRs and
hence deserve further study.

Background
Improving the quality and safety of care often requires
identification of medical records that meet specified cri-
teria. Although the availability of electronic administra-
tive and clinical data has facilitated many types of
automated searches, the searching often requires techni-
cal expertise, slow batch processes, and tolerance for
low sensitivity of results. The Nationwide Health Infor-
mation Network and its data-sharing building blocks,
Regional Health Information Organizations in the Uni-
ted States, are encouraging the widespread adoption of
electronic health records (EHRs) for all hospitals by
2014. As the use of EHRs becomes more widespread, so
does the need to search and provide effective informa-
tion discovery within them. Querying by keyword has
emerged as one of the most effective paradigms for

searching. Most work in this area is based on traditional
Information Retrieval (IR) techniques, where each docu-
ment is compared individually against the query. More
sensitive, complete, systematic methods to discover
information in EHRs may enable practitioners, research-
ers, safety officers, and other healthcare stakeholders to
improve care.
The key focus of information retrieval (IR) is deter-

mining how to rank the documents of a collection
according to their “goodness” with respect to a query.
EHRs are typically complex structured documents con-
taining several associated clinical entities (e.g., physi-
cians, medications, patients, and events). The common
query is usually expressed as a list of keywords, similarly
to the case of Web search. Other types of queries are
possible, but the work described herein relies on queries
defined as sequences of keywords. The goodness of a
result depends on factors like relevance to the query,
specificity, and importance. The relevance is a subjective
judgment and may include being about the intended
subject, being timely (recent information), being
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authoritative (from a trusted source) and satisfying the
users’ goals and their intended uses of the information
(information need) [1]. The simplest notion of relevance
could be defined as a query string that appears verbatim
in a document. In a slightly less strict notion, the words
in the query appear frequently in the document, in any
order ("bag of words”). The importance of a result is
determined by its authoritativeness (should be from a
trusted source). The specificity of a result is determined
by its relevance (being on the proper subject and satisfy-
ing user goals) and conciseness. The ranking factors in
IR are generally combined using a ranking function to
assign a score to each document. The documents or
links to them are then output in decreasing order of
their IR score.
Traditional IR ranking methods, like Okapi BM25 [2],

ignore the associations among entities and instead view
each entity as an individual, disconnected document. To
improve the quality of search, techniques recently cre-
ated for searching the hyperlinked Web exploit associa-
tions among entities (e.g., hyperlinks between Web
pages). We refer to these techniques as authority flow
ranking techniques, since the authority (importance)
“flows” along associated entities.
We sought to compare the effectiveness of two funda-

mentally different techniques for keyword search on
EHRs: the traditional BM25 technique and a newly pro-
posed authority flow ranking technique, Clinical Objec-
tRank (CO). CO exploits associations among clinical
entities, to compute top-k results for keyword queries.
Our hypothesis is that the effective use of the associa-
tions among clinical entities (patient, hospitalization,
clinical test, and so on) in EHRs can improve the quality
of search in EHRs. Before describing our methods, we
provide additional background details about searching.

Methods
Modern Information Retrieval
IR is the science of searching for relevant information in
a collection of documents. An IR process begins with a
user submitting a query to the IR system, which com-
pares the query to the documents and returns a ranked
list of relevant documents. Most common factors used
in IR to rank the documents are term frequency (tf),
inverse document frequency (idf), and document length
(dl) [3]. In tf, words that occur multiple times in a docu-
ment are considered salient. In idf, words that appear in
many documents are considered “common denomina-
tors” and do not especially indicate document content.
In dl, when collections have documents of varying
lengths, longer documents tend to score higher since
they contain more words and word repetitions. Normal-
izing for document lengths in the term weighting
method usually compensates this effect.

Most IR formulas combine tf, idf, and dl, to assign a
unique score to each document given a query. Okapi
weighting [4] and pivoted normalization weighting [5]
are widely used weighting methods. Many IR researchers
currently use a variant of these two weightings. Many
studies use the phrase tf-idf weighting to refer to any
term weighting method that uses tf and idf.
For example, consider a query “pericardial effusion“

over the clinical dataset shown in Figure 1. Assume that
the ranking function is the product of tf and idf, i.e.,
tf·idf. In most proposed formulas, the two factors are
typically combined by product for better results. By
multiplying the two factors, the effect of term frequency
is adjusted according to its importance in judging rele-
vance (measured by inverse document frequency (idf)).
For example, the word “old“ which appears quite fre-
quently would have a high term frequency but a very
low inverse document frequency and hence is not a
good term for judging document relevance. Hence it
would given a low tf·idf score. For example, assuming a
collection of 100 medical entities (only a subset of
which is shown in the figure) in which the term “peri-
cardial“ appears in 10 entities, we get idf(pericardial) =
log(100/10) = 1.0. Assuming “effusion“ appears in 5
documents, we get idf(effusion) = log(100/5) = 1.30.
Since the two terms co-occur, their term frequencies are
the same: tf(pericardial) = tf(effusion) = 3. This is
because “pericardial effusion” typically occurs as a
phrase. But the term frequency in general is per term
frequency, which, in this case, is the same for both
terms “pericardial” and “effusion”. The final tf·idf weight
of document v1 in Figure 1 is then tf(pericardial)·idf
(pericardial) + tf(effusion)·idf(effusion) = (3)·(1.0) +
(3)·(1.30) = 6.90.
Okapi BM25 [2] is a state-of-the-art retrieval function

used in document retrieval, which is a bag-of-words
retrieval function that ranks a set of documents based
on the query terms appearing in each document, regard-
less of the relationship between the query terms within
a document (e.g., their relative proximity). BM25 is not
a single function but is a family of scoring functions,
with various components and parameters. One of the
most prominent instantiations of the function is as fol-
lows. Given a query Q containing keywords q1,...,qn, the
BM25 score of a document D is:
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where tf(qi) is qi’s term frequency in the document D,
dl is the length of the document D in words, and avdl is
the average document length in the text collection from
which documents are drawn. k1 and b are free
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parameters, usually chosen as k1 = 2.0 and b = 0.75. idf
(qi) is the idf weight of the query term qi. It is usually

computed as: idf(qi) = log
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where N

is the total number of documents in the collection, and
n(qi) is the number of documents containing qi.

Authority Flow Ranking in Web Search
IR techniques view each document as an independent
entity to discover relevant pages and ignore the link
structure of the document collection. Quality of results
could be improved by also considering link structure to
discover relevant pages [6]. We refer to these link-based
approaches as authority flow ranking which gained popu-
larity with PageRank [7], where a global score is assigned
to each Web page. PageRank was the key novelty behind
the first Google Web search engine. Intuitively, a page is
important (high PageRank) if it is pointed via hyperlinks
from other important pages. This recursive definition
leads to an iterative formula, as shown in Equation 2
below. Let G(V, E) be a graph, with a set of nodes (pages)
V = {v1, ..., vn} and a set of edges (hyperlinks) E. A surfer
starts from a random node vi of V. At each step, the sur-
fer follows a hyperlink with probability d or concludes
that relevance is low and so randomly jumps to another
node with probability 1 - d. The PageRank value of vi is
the probability r(vi) that at a given time, the surfer is at
vi. If there are n pages, and we denote by r the vector [r
(v1), ..., r(vi), ..., r(vn)]

T then we have

r A= +d r e
(1 - d)

|V|
. (2)

where A is a n × n matrix with Aij =
1

OutDeg v j( ) if

there is an edge vj®vi in E and 0 otherwise, where OutDeg
(vj) is the outgoing degree of node vj. Furthermore, e = [1,

..., 1]T. Notice that the vector e acts as a rank source, the
set of nodes where the surfer jumps when concluding that
relevance is low. In the original PageRank [7], all pages in
the web graph act as rank sources. Note that PageRank
measures the global importance of the pages independent
of a keyword query. It has been found that 0.85 is a good
value for d [7]. The CO ranking algorithm is an extension
of PageRank to account for the various entity types and
also create a query-specific and not global ranking of the
entities. Note that an entity can be defined in many ways,
e.g., a whole patient EHR can be viewed as a single entity,
or individual components of the EHR like physicians, hos-
pitalizations, medications, can be viewed as entities. The
success of authority-flow algorithms depends on the
choice of the entities’ definition. In our experiments, we
roughly create an entity for each tuple of the relational
database, e.g., patient, hospitalization, and so on. In the
case of XML, we could create an entity for each top-level
XML element.
Haveliwala [8] proposes a topic-sensitive PageRank,

where the topic-specific PageRanks for each page are
pre-computed and the PageRank value of the most rele-
vant topic is used for each query. Brinkmeier [9] models
pagerank as a power series (in contrast to the usual
Markov Chain modeling) and presents some results con-
cerning the convergence of the standard iteration used
for PageRank. Lin [10] discusses the application of
PageRank like algorithms to related document networks
comprised of automatically-generated content-similarity
links (instead of manually-created hyperlinks) to prove
the applicability of link analysis algorithms to different
environments. Shepelyansky et. al [11] discusses an
approximation of PageRank that is more efficient, by
creating directed networks constructed by Ulam method
with characteristics being rather similar to those of the
World Wide Web. All of the above described works
apply to the Web and do not address the unique charac-
teristics of structured databases. In particular, the web

Figure 1 A subset of Electronic Health Record Dataset. A subset of the relational-anonymized experimental EHR dataset of the Cardiac
Division of Miami Children’s Hospital, which contains clinical entities like hospitalization, patient, employee, medication, diagnosis, diagnostics,
cardiac, events, and labs.
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graph has only one entity type (the web page) and one
relationship type (the hyperlink between related web
pages). In contrast, a structured database could have a
variety of entity types and relationships [12] (e.g., in the
EHR dataset of the cardiovascular division of Miami
Children’s Hospital there are relationships like patient-
to-hospitalization, hospitalization-to-exam, and so on).

Keyword Search in Databases and ObjectRank
While PageRank applies authority flow ranking on
World Wide Web (WWW) which is largely unstruc-
tured, EHRs are typically semi-structured (XML format)
or completely structured (relational format). A tiny frac-
tion of the Web uses the semi-structured XML format
(HTML tags are mostly for presentation purposes, and
hence do not generally define semantic entities). Note
that this work cannot be applied to unstructured EHRs,
e.g., a collection of narrative medical reports, where no
links exists between data entities. Health standards orga-
nizations like Health Level 7 have been designing XML-
based formats to represent EHRs. Such XML formats
have been adopted by pioneering health institutes like
Regenstrief [13], and variations of these formats are
expected to be adopted by many more institutes in the
near future. XRANK [14] applies authority flow ranking
over XML document collections. We use ObjectRank
[12,15], which applies keyword query based authority
flow ranking techniques on structured relational data-
bases, as our experimental dataset is a relational anon-
ymized EHR database. In contrast to PageRank,
ObjectRank can find relevant pages that do not contain
the keyword, but are directly linked from pages that do.
Other works [16,17] perform non-authority-based key-
word search on databases, where the focus is on finding
connections between the query keywords and non on
finding the most relevant entities.
We next give an overview of ObjectRank [12,15],

which is the base of our CO system. In contrast to
PageRank, instead of using the whole set of nodes V as
rank sources (called base set S in ObjectRank), i.e., the
set of nodes where the surfer jumps when concluding
that relevance is low, ObjectRank uses an arbitrary sub-
set S of nodes, thereby increasing the authority asso-
ciated with the nodes of S and the ones most closely
associated with them. The base set is set to contain the
nodes that contain at least one of the query keywords.
In particular, they define a base vector s = [s0, ..., si, ...,
sn]

T where si is 1 if vi Î S and 0 otherwise. The Objec-
tRank equation is then given as follows:

r A= + ⋅d r s
(1 - d)

|S|
(3)

Regardless of whether one uses Equation 2 or Equa-
tion 3, the PageRank algorithm solves this recursive
equation using a simple iterative method, where the
values of the (k+1)-th execution are calculated as fol-
lows:

r A( )k 1 (1 - d)
|S|

+ = + ⋅d r sk (4)

The algorithm terminates when r converges, which is
guaranteed to happen under common conditions [18].
In particular, the authority flow graph needs to be irre-
ducible (i.e., (V, E) be strongly connected) and aperiodic.
The former is true due to the damping factor d, while
the latter happens in practice. In addition to using a
query-specific base set, the second innovation of Objec-
tRank is the weighing of the various associations types,
e.g., patient to hospitalization vs. hospitalization to
medication.
ObjectRank Example: Consider the damping factor d =

0.85 and query Q = [”pericardial effusion“], on the clini-
cal data subset shown in Figure 1. Note that in Objec-
tRank, the base set S = {v1, v4, v5} has all objects that
contain “pericardial effusion“. In this example,
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The computed ObjectRank scores vector r =
[0.05,0.00,0.00,0.05,0.05,0.063,0.117]T after one iteration.
These scores indicate the importance and relevance of
the entities in the clinical dataset in Figure 1 for query
“pericardial effusion”. The higher the score, the more
relevant and important the entity is for the query. tf*idf
scores rank entities by considering them individually,
while ObjectRank scores enhance these rankings by also
considering the relationships between them.
ObjectRank can be applied to clinical data provided

the data is semi-structured (XML format) or structured
(relational format) with some minor adaptations. The
choice of entities is critical, given that it determines the
authority flow and the ranking. Also, CO parameters
must be calibrated to fit the application needs.
In our past work on authority flow we have proposed

the ObjectRank ranking paradigm for bibliographic data
[12,15]. In this paper we apply for the first time this
paradigm on health data. For that, we created new rank-
ing variants, as described below, to better suit this
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domain. Our recent book [1] on information discovery
on EHRs briefly discusses the possibility of applying
authority flow techniques on EHRs, but without specific
algorithms or experiments.

Data Modelling
The fundamental difference between the two search
methods studied here, BM25 and CO, stems from their
different modelling of the collection of EHRs: in
BM25, every document is modelled as a bag of key-
words. CO models the corpus as a graph of intercon-
nected entities. In particular, the dataset is viewed as a
graph where each entity is modelled as a node and
edges denote associations among various entities, such
as a link from patient to hospitalization or from hospi-
talization to medication. This data model can abstract
for both XML and relational data. Health standards
organizations like Health Level 7 have been designing
XML-based formats to represent EHRs. The Clinical
Document Architecture [19] is such a format. An
XML document can be represented as a hierarchical
tree of nodes under a unique root element. In this
model every XML element is represented as a node,
and the parent-child relationships between elements
are captured as edges called containment edges. The
use of ID/IDREF attributes in XML [14] creates an
additional edge–the ID/IDREF edge–between elements
that are not directly connected by a parent-child rela-
tionship. This introduces cycles and hence transforms
the tree into a graph. Figure 2 shows a medical record
in HL7 CDA format. In this example, there is an ele-
ment in the document with an ID-type attribute: <con-
tent ID="m1">Theophylline</content> and elsewhere,
there is another element that refers to it: <medication
IDREF="m1"> ...</medication>.
Likewise, relational data can also be modelled as a

graph where relational entities are viewed as nodes, and
primary-foreign key relationships (e.g., hospitalization to
patient or medication to hospitalization) between the
entities are represented as edges in the graph.
A data graph D(V, E) is a labelled directed graph

where every node v has a label l(v) and a set of key-
words. For example, the node v1 of Figure 1 has label
“Events Plan“ and the set of keywords {’’residual, ‘’peri-
cardial effusion’’, ‘’2004-11-03“}. Each node represents
an object of the database and contains excerpts which
are attribute values of the object in the source relational
database. CO assumes that each node has a set of attri-
bute name-value pairs. For example, the “Hospitaliza-
tion“ nodes of Figure 1 have TimeStampCreated, history,
and allergies attributes. The keywords appearing in the
attribute values comprise the set of keywords associated
with the node. Each node v has a role l(v). For instance,
node v3 in Figure 1 has role “Medication“. Each edge e

from u to v is labelled with its role l(e) and represents a
relationship between u and v. For example, every “medi-
cation“ to “employee“ edge of Figure 1 has the label
“prescribed_by“. We manually pick edge role names.
However, the names of the edge roles are not important
in the algorithms execution. Figure 1 presents a subset
of our clinical data graph D(V,E).
The schema graph G(VG,EG) (Figure 3) is a directed

graph that describes the structure of a data graph D(V,
E). Every node has an associated label. Each edge is
labelled with a role, which may be omitted. For instance,
the associated_events-to-employee edge in Figure 3 has
role “created_by“.

Clinical Data Mining and Medical Ontologies
Data mining differs from searching, since data mining
techniques look for interesting patterns or trends in the
data, whereas search algorithms look for relevant dis-
crete pieces of data in a collection, given a query. Since
data mining is not the focus of this work, we give some
further pointers to readers who might be more inter-
ested in this area. Works on data mining in the clinical
domain include [20-25]. Further, there has been recent
work on the use of medical ontologies to improve the
search quality, where the ontology is generally used to
perform query expansion [26-28]. However, the use of
ontologies is orthogonal to the use of authority flow,
that is, authority flow can be used to rank the entities of
the dataset and their association to the ontology or tra-
ditional IR can be used to rank the entities of the data-
set and their association to the ontology.

Clinical ObjectRank (CO) Variants
As mentioned before, in the original PageRank paper
[18], the damping factor d was set to 0.85. The damping
factor d determines the portion of ObjectRank that an
object transfers to its neighbors as opposed to keeping
itself. Changing the damping factor d offers another
calibration opportunity. In particular, larger values of d
favor nodes pointed by high-authority nodes through
single-edge or multi-edge paths, while smaller values of
d favor nodes containing the actual keywords–nodes in
the base set–or their immediate neighbors. In other
words, smaller d leads to more focused results. Before
conducting a user survey, we tested several values of the
damping factor in the range [1] and found that two
values - 0.3 and 0.85 - gave reasonable results. Also, we
wanted to test a smaller and a higher damping factor
for reasons mentioned before. In particular, we consid-
ered the following variants of CO:
CO085: CO with d = 0.85. This is the default CO var-

iant. Given that d is high, a result may not contain the
query keywords, if many entities that contain the key-
words link to the result.
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CO030: CO with d = 0.30. As mentioned above, small
d favours focused results that contain the actual query
keywords.
CO085BM25: CO with d = 0.85 is combined with

BM25. The top-k results were produced by multiplying
CO scores with BM25 scores.

Experimental Evaluation
The experimental dataset is a subset of the relational
anonymized EHR database of the Cardiac Division of
Miami Children’s Hospital, which contains clinical enti-
ties like hospitalization, patient, employee, medication,
diagnosis, diagnostics, cardiac, events, and labs. The
dataset has been anonymized by replacing the names by

sequential string ids (Patient1, Patient2, and so on), the
dates by a relative count of seconds from the first time-
stamp, and also by manually removing all personal refer-
ences in the text of the EHRs. To maximize
performance in our testing environment, the survey uses
only a subset of the EHR dataset with timestamps
between June 2005 and December 2005. The dataset
contains a mix of inpatient and outpatient events and is
modeled as a clinical web with entities interconnected
with one another based on their relationships. The hos-
pitalization objects are inpatient events. A batch of SQL
queries was executed on the source relational database
to extract this experimental subset of the EHR dataset
with timestamps between June 2005 and December
2005. The dataset contains a total of 15,092 clinical enti-
ties (nodes), of which 850 were hospitalization objects,
and 31,492 were relationships (edges). Notice that the
rest of the 14,242 entities are non-hospitalization ones
comprising of patient, employee, medication, diagnosis,
diagnostics, cardiac, events, and lab records.

Pilot User Study
A pilot user study was conducted to compare the effec-
tiveness, by evaluating the quality of results produced by
two different techniques for keyword search in EHRs:
traditional BM25 technique and CO – a newly proposed
authority flow ranking technique. In particular, to evalu-
ate the quality of the results of each approach, we com-
puted the mean sensitivity and specificity of the results

Figure 2 An example HL7 CDA XML medical document. An example HL7 CDA XML medical document that shows the use of ID/IDREF
attributes in XML.

Figure 3 Schema of the EHR dataset. The schema graph of the
EHR dataset is a directed graph that describes the structure of the
EHR dataset in Figure 1.
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produced by them. In our experiments, we use a rela-
tional anonymized EHR database provided by the Car-
diac Division of Miami Children’s Hospital. As we see in
Figure 3, the schema links through primary-to-foreign
keys entities like patients, hospitalizations of patients,
employees, medications and associated events. The latter
may be various clinical tests of patients or any other
action.
During an initial version of the User Survey that we

conducted, we found that the raters are mostly interested
in Hospitalization entities as they provide very specific
details of an inpatient event. The rest of the entity types
(the non-hospitalization ones) - patient, employee, medi-
cation, diagnosis, diagnostics, cardiac, events, and labs,
assist in the ranking of the hospitalization entities.
Hence, we computed the score of each entity for each
query and then filtered all non-hospitalization entities,
since the purpose of our survey is to retrieve and rank
only hospitalization objects. This makes the comparison
between CO and BM25 fairer. Notice that the filtering
step is very trivial as it simply involves removing non-
hospitalization entities from the result list and is not part
of the search method since it is just a post-processing
step conducted after the results are ranked.
We performed a user study to compare the BM25 and

CO methods for ranking the results of queries on a col-
lection of EHRs. The users were asked to select the top
5 results that were both relevant and important for each
query. These relevance/non-relevance ratings of users
for the results of various ranking algorithms were used
to compute specificity and sensitivity scores. Further, we
propose a method for “explaining“ the query results to
the users, that is, speculate about why certain results
were ranked higher than others.
To gain preliminary insights about CO vs. BM25, we

worked with a convenience sample of two primary-care
physicians (MW and PB), who were blinded to the auto-
mated rankings. Note that the users have been trained
before since we also conducted an initial version of the
User Survey for the users to get used to the way the sur-
vey was built. In addition to this, we also allowed users to
play with a demonstration website that permitted them
the key in any set of keywords and see the full description
of results along with the corresponding explaining sub
graph of the result. For each keyword query, the top 5
results from each algorithm (BM25, CO085, CO030, and
CO085BM25) were computed and merged to a single list
of results for that query. The information about results
and the corresponding algorithms was hidden from the
users. Then, for each keyword query, the user was asked
to select the top 5 results that were both relevant and
important for each query. To help the users evaluate the
results, next to each result we displayed the links “Full
Description“ and “Adjacent Entities“, to show the details

of the entity, as well as the relationship of this entity to
query keywords and the rest of the clinical web, respec-
tively. Figure 4 shows a sample user survey page for
query “respiratory distress“. Figure 5 shows a sample
“Full Description“ page of a hospitalization object for
query “respiratory distress“.
We briefly describe what happens when the user clicks

the “Adjacent Entities“ link, which “explains” the result.
We believe that when complex ranking methods like
BM25 and CO are employed, the users need informa-
tion about why certain results are ranked high. Varadar-
ajan et al. [29] described a novel technique to explain
the results of authority-flow based techniques. For both
CO and BM25 methods, we provide an “adjacent enti-
ties” link that pictorially explains each result. In the case
of CO, an explaining graph is displayed using the princi-
ples described in [29]. For BM25, a similar explaining
graph is displayed by including all entities that neighbor
the target entity and also contain the query keywords.
Figure 6 shows the explaining graphs, as shown in our
user interface for CO. It might be easy to just view the
Figure as a sub graph where the result entity is the cen-
tral part surrounded by the neighbouring entities which
can either contain the query keywords, thus making
them relevant, or, could just act as intermediate entities
helping connect the keyword entities with the result
entity. For better clarity, we use colour coding to differ-
entiate the entities, as can be seen in Figure 6.
A set of keyword queries was supplied by a group of

physicians, as shown in Additional file 1: Table s1. We
also show the containment statistics for these query
terms.

Evaluation Measures
To evaluate the results of each approach, we computed
the sensitivity and specificity of each method, for each
query. The physician users defined the truth or gold
standard.

Results
Additional file 1: Table s1 presents the sensitivity and
specificity for each query and algorithm variant. All CO
variants outperform BM25 in terms of sensitivity, while
achieving similar specificity. Additional file 2: Table s2
presents the sensitivity and specificity of individual
raters for each query and algorithm variant. The differ-
ent raters seem to agree on the relevance/usefulness of
CO085BM25 and CO030 results as the amount of dis-
agreement was trivial (the 2 raters had almost same sen-
sitivity/specificity values for these 2 variants) but largely
disagreed on the usefulness of CO085 and BM25 results
(the 2 raters had significant differences in their sensitiv-
ity/specificity values for these 2 variants). A reason for
the variance among users is that users can choose to see
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or not see the explaining graph for each result, which
may bias their relevance judgment. Despite the differ-
ences in ratings, this pilot study shows that ObjectRank
results are more valued (i.e., selected) by the raters than
BM25 results.

Discussion
For many types of automated searching of EHRs, main-
taining a high sensitivity is important. For example, iden-
tifying patients who may meet criteria for a certain
treatment or preventive measure first requires identifying

Figure 4 Sample User Survey Page for query “respiratory distress“. Figure 4 shows a sample user survey page for query “respiratory distress“.
It starts with a brief explanation about the survey and then query results are displayed. Each result displays a brief description of the clinical
entity in tabular format along with links to the complete description and adjacent entities.

Figure 5 Sample “Full Description” of HospitalizationID 2406 for query “respiratory distress“. Figure 5 shows the Full Description of
HospitalizationID_2406 for query “respiratory distress“ in tabular format with each row displaying an attribute-value. Each occurrence of the query
phrase is highlighted.
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all potentially eligible patients and only then can lead to
applying exclusion criteria. In this study, in a limited
sample of test cases, CO provided, on average, a 71%
improvement over BM25. This difference was observed
without a compromise in specificity. The CO030 variant
performed best, in terms of both sensitivity and specifi-
city. Thus, authority-flow techniques have potential to
improve information discovery in structured EHRs. Note
that CO030 has damping factor d = 0.3, which is different
from the standard d = 0.85 used in Web search. The rea-
son may be that the purpose of PageRank on the Web is
to create a global ranking, whereas in CO we create a
query-specific ranking, and hence the authority should
not flow far from the entities that contain the actual
query terms. Recall that smaller d leads to shorter flow of
authority in the data graph.
We considered possible explanations as to why CO’s

sensitivity varied among the queries. In simplest terms,
the sequence of keywords that define a query might be
contained in an result record, neighboring records, or
both result and neighboring records. Users are more
likely to give a higher rank to results containing the
query phrase compared to results where only neighbour-
ing linked records contain the query phrase. For example,

this appeared to be true for query #3 (data not shown). In
contrast, the presence of the query phrase in multiple
neighboring records could lead to a higher CO ranking
than a query phrase found only in a result record. This
appeared true in query #11 (data not shown), for which
CO had high sensitivity. This difference between human
and CO approaches likely led to the variable sensitivity.
We would infer in many such cases that the human gold
standard may have actually been faulty in failing to detect
certain relevant cases. Indeed, our own reviews and dis-
cussions about the findings suggested this.
In testing and discussions, we found that some queries

may be so vague as to generate unhelpful results. For
example, a query of “Tetralogy of Fallot” is medically
specific, whereas a query of “edema” can assume so
many meanings–such as peripheral edema, pulmonary
edema, and cerebral edema–that identifying all records
containing the word “edema” may be, in retrospect,
unwanted. Thus, when it comes to crafting a useful pro-
duct for IR, even a sensitive one can unlikely compen-
sate for a poorly formulated query.
We also analyzed how much agreement occurred

between raters and what might account for differences
between raters. Overall, the cases of differences are ones

Figure 6 Sample explaining sub graph of an ObjectRank2 result - HospitalizationID 2406 for query “respiratory distress“. Figure 6
displays an explaining sub graph for HospitalizationID 2406 for query “respiratory distress“. The figure gives a better picture of why this entity was
ranked higher for query “respiratory distress“ and its relationship with other entities that contain the query keywords. Detail descriptions of each
entity are displayed as tool tip texts when the user points at them.
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where the query phrase is often absent from the core
description but may be represented in various combina-
tions of nodes. Many of the differences in ratings seem
to reflect somewhat subtle variations in how the raters
subjectively assess the importance of the nodes. An
opportunity for the future might then be “tuning” or
appending to the algorithm, to reflect individual users’
weights or priorities in how the ranking is done (e.g.,
relative importance of query phrase vs. other terms,
core description vs. nodes). Despite differences in rat-
ings, many of the additional results found with Objec-
tRank but not BM25 are valued (i.e., selected) by the
raters.

Limitations
This study has limitations. The performance was evalu-
ated with only two end users. This was done by design
so that we could gain preliminary insights into perfor-
mance and discuss possible explanations about differ-
ences between the methods. A larger sample would
clearly be needed to make more definitive conclusions.
The dataset reflects pediatric cases, so we cannot be cer-
tain that the results would be the same in other data-
sets, populations, or institutions. Nevertheless, we did
not identify any particular qualities in the dataset that
would suggest such a strong limitation.
Applying the CO ranking paradigm to other domains

or datasets has several challenges. First, the appropriate
entities must be identified. For instance, should a
patient be in the same entity as her hospitalization?
The choice of entities is critical, given that it deter-
mines the authority flow graph and the ranking. Sec-
ond, the CO parameters must be calibrated. In
particular, the damping factor d and the authority
transfer rates must be calibrated. Our recent work [29]
proposes a technique for the system to learn the
authority transfer by exploiting the user relevance
feedback, that is, the user’s “click-through” pathway.
Via customization, various CO profiles can be created
to suit the diverse information needs of various kinds
of users, such as researchers, pharmacists, physicians,
and nurses. For example, for a pharmacist, the medica-
tions are typically most important; for a researcher, the
patient and employee information may not be as rele-
vant as other information. We can achieve customiza-
tion by weighing relationships differently for various
profiles.

Conclusions
In comparison of two fundamentally different techniques
for keyword search in an EHR system–the traditional
Information Retrieval BM25 technique and an authority
flow ranking technique, CO–all CO variants outperform
BM25 in terms of sensitivity, while achieving similar

specificity. Future investigation should use larger sample
sizes to confirm CO’s advantages.

Additional material

Additional file 1: Table s1 - Average Sensitivity and Specificity of
Algorithm Variants. Table 1 displays the sensitivity and specificity of
each survey query for different algorithm variants along with some
statistics about the queries. The average sensitivity and selectivity values
of each algorithm variant are presented at the end.

Additional file 2: Table s2 - Sensitivity and Specificity of algorithms
with respect to individual raters. Table 1 displays the individual
sensitivity and specificity values of the two raters for all survey queries
for different algorithm variants.
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