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Abstract Because cerebrospinal fluid (CSF) is the biofluid
which interacts most closely with the central nervous sys-
tem, it holds promise as a reporter of neurological disease,
for example multiple sclerosis (MScl). To characterize the
metabolomics profile of neuroinflammatory aspects of this
disease we studied an animal model of MScl—experimental
autoimmune/allergic encephalomyelitis (EAE). Because
CSF also exchanges metabolites with blood via the blood—
brain barrier, malfunctions occurring in the CNS may be
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reflected in the biochemical composition of blood plasma.
The combination of blood plasma and CSF provides more
complete information about the disease. Both biofluids can
be studied by use of NMR spectroscopy. It is then necessary
to perform combined analysis of the two different datasets.
Mid-level data fusion was therefore applied to blood plasma
and CSF datasets. First, relevant information was extracted
from each biofluid dataset by use of linear support vector
machine recursive feature elimination. The selected varia-
bles from each dataset were concatenated for joint analysis
by partial least squares discriminant analysis (PLS-DA). The
combined metabolomics information from plasma and CSF
enables more efficient and reliable discrimination of the
onset of EAE. Second, we introduced hierarchical models
fusion, in which previously developed PLS-DA models are
hierarchically combined. We show that this approach ena-
bles neuroinflamed rats (even on the day of onset) to be
distinguished from either healthy or peripherally inflamed
rats. Moreover, progression of EAE can be investigated
because the model separates the onset and peak of the
disease.

Keywords EAE - Multiple sclerosis - Metabolomics - Data
fusion - Classification - Variable selection

Introduction

Multiple sclerosis (MScl) is an inflammatory, presumably
autoimmune, disease of the central nervous system (CNS) in
which the fatty myelin sheaths which surround the axons of
the brain and spinal cord are damaged, leading to demyeli-
zation [1]. MScl is one of the most common neurological
diseases affecting young adults and has enormous effect on

@ Springer


http://dx.doi.org/10.1007/s00216-012-5871-4

948

A. Smolinska et al.

the health system and economy of many countries.
Although the cause of MScl is still elusive, it is believed
to be a combination of genetic and environmental factors
with a possible infectious origin. Signs of MScl can be
observed not only in CNS but also in the peripheral nervous
system (PNS) [2].

Diagnosis of MScl is still challenging, especially in its
early stage. Currently, diagnosis of MScl is mostly based on
clinical evidence complemented with laboratory investiga-
tions, for example presence of lesions in the brain and/or
spinal cord (visualized by magnetic resonance imaging,
MRI). However, lesions have been found in other neurolog-
ical diseases, for example Guillain—Barré syndrome [3], and
in non-neurological diseases, for example systematic vascu-
litis [4] or sarcoidosis [5]. Furthermore, brain lesions have
been found in healthy individuals [6]. Therefore, brain
lesions are not sufficiently specific for proper, early diagno-
sis. To improve diagnosis of MScl it is necessary to combine
information from cerebrospinal fluid analysis, MRI results,
and all clinical symptoms.

To fingerprint MScl at the molecular level, biological
samples must be analyzed. Because CSF is the biofluid in
direct contact with the brain and spinal cord, it is the most
suitable choice for fingerprinting MScl. Investigation of the
biochemical composition of CSF may reveal abnormal sta-
tus of the brain. CSF is absorbed into the blood via a semi-
permeable membrane, the blood—brain barrier (BBB).
Therefore, effects of CNS diseases can potentially also be
seen in the biochemical composition of blood plasma.
Obviously, cross-over effects from the plasma to the CSF
may also cause changes in the biochemical composition of
the CSF. In MScl, the BBB is often damaged, causing
“leakage” [7]. This suggests that plasma may contain pre-
dictive information about the disease. Therefore we propose
to study the metabolic profiles of both CSF and plasma.
These types of sample are relatively difficult to obtain from
humans and interesting information is very often obscured
by other factors, for example genetic, environmental, and
dietetic background. Thus we opt for the possibility of using
samples from designed and controlled experiments in
rodents.

The animal model of MScl, the experimental autoim-
mune/allergic encephalomyelitis (EAE) model has become
an important tool in studies of neuroinflammatory aspects of
MScl [8, 9]. EAE is a cell-mediated experimental autoim-
mune disorder of the CNS and shares its clinical expression
and pathological picture with that of MScl. EAE is used as a
pre-clinical model of a single episode of MScl. Similar to
MScl, in EAE a strong increase in infiltration of the BBB
occurs, which leads to increased exchange between CSF and
plasma.

In this study we extracted CSF and plasma samples at
two time points during progression of the disease, namely at
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the onset and the peak; these samples were obtained from
healthy, immune booster (a group of animals injected with
complete Freund adjuvant emulsion, CFA), and EAE
(resembling MScl) Lewis rats. The metabolic profile of the
CSF and plasma was measured using the untargeted and
unbiased technique of high-field 1D proton nuclear magnetic
resonance (‘"H NMR). This method enables analysis of both
biofluids with a very similar measurement procedure. The 'H
NMR data of each biofluid can be analyzed separately or the
two complementary NMR data sets can be combined (fused)
in the analysis. In this work, CSF and blood plasma NMR
spectra were used in a mid-level data fusion. The metabolite
information extracted for each biofluid can be directly con-
verted into relative concentrations for each biofluid and
compared.

To obtain such information from the individual or com-
bined data sets several analytical challenges must be solved.
First, the disease must be distinguished from the healthy
condition but also from other diseases, for example periph-
eral inflammation. This means we must construct a multi-
class classifier. Second, even if well controlled the experi-
ment still carries additional variances unrelated to the study,
i.e. biological and experimental variations. Third, the num-
ber of variables recorded by NMR is much larger than the
number of samples, which implies specific statistical prob-
lems. Moreover most of these variables are probably unre-
lated to the studied problem or are redundant. To solve these
problems we propose the following architecture for the data
analysis. Linear support vector machine recursive feature
elimination (SVM-RFE) is used as variable-selection tech-
nique for both data sets. The selected variables are fused and
analyzed using either one multi-class partial least-squares
discriminant analysis (PLS2-DA) model or multiple two
classes PLS-DA models, the latter using a novel approach
in which a hierarchical structure enables introduction of
prior knowledge. We introduce this method as hierarchical
models fusion (HMF). We show that by using HMF, EAE-
affected rats can be distinguished from either healthy or
peripherally inflamed rats on the day of onset (when no
physical symptoms of neuroinflammation are present) with
100% correct classification. In addition, the progression of
EAE can be described. In summary, HMF enables simulta-
neous characterization of all the groups studied without
applying multiclass classifier.

Materials and methods
Experimental design of EAE models
Experimental autoimmune/allergic encephalomyelitis

(EAE) is the animal model commonly used for studying
neuroinflammatory aspects of the autoimmune disease
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multiple sclerosis (MScl). The experimental arrangement
was as previously described by Smolinska et al. and/or
Hendricks [10, 11]. Here, we briefly summarize the main
points. Three sets of male Lewis rats (Harlan Laboratories,
the Netherlands) were inoculated on Day 0. First, a set of 30
animals was injected with guinea pig myelin basic protein
(MBP), complete Freund adjuvant H37 RA (CFA, Difco
Laboratories, Detroit, MI, USA) and Mycobacterium tuber-
culosis type H37RA (Difco). Another group of 30 animals
was injected with CFA only. Next to these MBP and CFA
challenged rats, referred to as the EAE and peripherally
inflamed groups, respectively, a healthy group undergoing
anaesthesia only (healthy control) was included. In each
group, half of the animals were sacrificed to collect both
CSF and plasma on Day 10 (onset of disease in the EAE
group) and the other half on Day 14 (peak of disease in the
EAE group). Typical progression of the disease is shown in
Fig. S1 in the Electronic Supplementary Material, and
details of the design of the EAE experiment are summarized
in Table 1.

CSF and plasma sampling, sample preparation, and data
acquisition

On Days 10 and 14, animals were euthanized with CO,/O,,
and blood and CSF were collected. Sampling, sample prep-
aration, and acquisition of CSF NMR spectral data were as
described elsewhere [11]. Blood was sampled intravenously
by use of a heparin-treated syringe. Next, every blood
sample was centrifuged for 10 min at 4 °C with a relative
centrifugal force of 2,000g to separate the plasma. After
centrifugation, samples of the supernatant were stored at
—80 °C for further analysis.

Table 1 Experimental design of EAE model

Group Inflammation type Day 10  Day 14
Healthy None C10 Cl4
n=15 n=15
p=14 p=14
CFA Peripheral P10 P14
n=15 n=15
p=14 p=15
CFA+MBP  Peripheral & neuroinflammation ~ N10 N14
n=15"  n=15°
p=14 p=11

“n” indicates the number of rats; “p” indicates the number of common
samples between CSF and plasma

#One CSF sample was discarded because of blood contamination and
one from blood plasma because of sampling

° Three CSF samples were discarded because of blood contamination
and two from blood plasma because of sampling and preparation

For the NMR measurements, stored frozen plasma
(50 uL) was left at room temperature to thaw. Next, the
plasma sample was diluted with 200 uL water and the
proteins were then removed by centrifugation for 30 min
at 2,000g (filter 10 kDa Centrisart I 13239-E; Sigma-—
Aldrich, St Louis, MO, USA) [12]. After protein removal,
the supernatant was lyophilized. Before NMR measure-
ments the lyophilized plasma samples were re-dissolved in
50 uL of water, after which 550 puL buffer solution was
added to furnish a volume sufficient for NMR measurement.
The buffer solution consisted of 2.85 mmol L™ TSP-d,
(sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4) (99 atom%
D), 6.92 mmol L™ sodium azide (NaN3), 42.08 mmol L'
dibasic sodium phosphate dehydrate (Na,HPO,4.2H,0), and
7.30 mmol L™! HCl solvated in a H,O—-D,0 (99.96 atom% D)
mixture (7.93:1). The final TSP concentration in each plasma
sample was 2.61 mmol L.

"H NMR spectra of 86 plasma samples were acquired on
an Avance III (Bruker BioSpin, Bruker, Billerica, MA,
USA) 500-MHz system equipped 5-mm cryoprobes,
CPTCI (1H-13C/15N/2H + Z-gradients) (Bruker BioSpin).
Water suppression was achieved by pre-saturation. For each
1D "H NMR spectrum 256 scans were accumulated with a
spectral width of 10,273 Hz resulting in a total of 18 K
points. The acquisition time for each scan was 3.2 s.
Between scans, a 4-s relaxation delay was used. Before
spectral analysis, all acquired free induction decays (FIDs)
were zero-filled to 32 K data points, multiplied with a
0.3 Hz line-broadening function, Fourier transformed, man-
ually phased, and the TSP internal reference peak was set to
0 ppm by use of ACD/SpecManager software version 12.0
[13]. All 86 rat CSF spectra were acquired and preprocessed
as described elsewhere [11]. However, because of high line
broadening of the internal standard (TSP) four spectra from
CSF and plasma were not included in the spectral analysis.
Ultimately, 82 CSF spectra and 86 plasma spectra were
transferred to Matlab (version 7.9; Mathworks, Natick,
MA, USA) for further analysis. Overlap between both CSF
and plasma spectra was observed for 82 of these samples
(Table 1).

Preprocessing of CSF and plasma NMR spectra

The "H NMR spectral data was preprocessed in Matlab; this
typically involved baseline correction, alignment, binning,
normalization, and scaling. For four samples (out of the 86)
only plasma '"H NMR spectra were available. Therefore
these four spectra were not used in the pre-processing and
analysis process. Baseline correction of NMR spectra was
performed by applying the asymmetric least-squares method
[14]. Fluctuations in chemical shift were removed by
applying improved parametric time warping (I-PTW)
[15]. Each CSF and plasma spectrum was normalized
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to a total area-under-curve (AUC) of 1, to correct for potential
differences in sample concentration. To reduce the high
dimensionality of the data, binning was performed by means
of adaptive intelligent binning [16]. This procedure led to 409
bins for CSF and 478 for plasma, which can be regarded as
relative metabolites concentrations. Absolute quantification of
metabolites in CSF and plasma samples was not performed
and used. Data analysis was performed on binned data, i.e. on
relative metabolite concentrations. The final step of prepro-
cessing consisted of autoscaling.

Data analysis

Explorative analysis by means of robust principal-component
analysis (R-PCA) was first used to control the presence of
outliers in both datasets [17]. The strategy for supervised data
analysis consisted of data division into a training set (75% of
samples per class) and an independent test set (25% of samples
per class) by using the Duplex algorithm [18], variable selec-
tion by support vector machine recursive feature elimination
(SVM-RFE) for linear kernels [19] performed on each dataset
(CSF and plasma) separately, and discriminant analysis by
PLS-DA [20] performed on both individual and fused data-
sets. For data fusion, so-called mid-level data fusion architec-
ture was used [21]. In this approach the two data sources are
first pre-processed and analyzed separately to extract relevant
information; next they are fused and analyzed as a unique
dataset. We used this method because it was shown to
eliminate redundancy of variables. Particular steps of
this type of data fusion are described in the sections
“SVM-RFE” and “Classification of individual and fused
plasma and CSF datasets”. In this fusion approach every
data source is treated separately for pre-processing, scal-
ing, and variable selection. Next, the optimum set of
variables is combined into a single set and analyzed by
PLS-DA. In the last step of data analysis the approach for
cumulative fusion by means of hierarchical models fusion
(HMF) was carried out. This method, proposed for the first
time in this paper, is described in detail in the section
“Hierarchical models fusion”. The results of this method are
compared with those from PLS2-DA, a variation of PLS-DA
which enables more than two groups to be analyzed simulta-
neously (see the section “Hierarchical models fusion™).

SVM-RFE

SVM-RFE was originally proposed by Guyon et al. [19] and
applied to a microarray dataset in a cancer study. The
method is based on the binary classification method SVM.
This technique first maps objects into a feature space by use
of kernel transformation and then tries to find a hyperplane
which separates the data into two classes [22]. From all the
separating hyperplanes, SVM looks for the one that gives
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the biggest separation between the borderline training sam-
ples of the two classes. The borderline training samples are
called support vectors. All support vectors have an alpha
value, indicating how supporting this object is for the posi-
tion of the hyperplane. Non-supporting objects have an
alpha value equal to 0 whereas alpha equal to 1 indicates
the highest support. RFE is a backward-elimination algo-
rithm which ranks features on the basis of the weights of
linear SVM. The algorithm starts with a full training set to
train a linear SVM. Next, the variables are ranked by sort-
ing, in descending order, the square of the SVM’s weights

(wi}:

sz = (Z[:Lpaiyix,-j)z (1)

where ¢ contains the indexes of support vectors, «; are alpha
values and y, are the class labels. A variable with smallest
weight wj is then removed. Indeed, the smaller the weight of a
variable, the less it contributes to the size of the margin
between classes. The remaining variables are used to train
another linear SVM and the entire process is repeated
until all variables have been eliminated. In the work
described in this paper, one variable was removed in
each iteration.

We used a leave-one-out (LOO) cross-validation (CV)
approach to select the optimum set of variables per data set.
In this procedure one sample from the training set is left out
and a variables ranking is obtained on the basis of the remain-
ing objects. The procedure is repeated until every object is left
once. The final ranking was obtained by sorting the variables
on the basis of the number of times it was selected in the
LOOCYV procedure. The variables selected median + 1 times
made up the optimum set. The complete scheme for LOOCV
can be found in the Electronic supplementary material.

Classification of individual and fused plasma and CSF
datasets

After selecting the optimum set of variables, the features of
both data sets were concatenated and autoscaled.
Subsequently, the variables of the fused sets were ranked
by SVM-RFE. Classification of fused sets was performed by
PLS-DA, a well-known method used in many omics fields
[20, 23]. PLS-DA uses group information to maximize the
separation between groups of observations. It is currently
widely used in metabolomics because of its ability to cope
with high correlations between variables. In PLS-DA a
linear model is constructed in accordance with Eq. (2):

y=Xb+r (2)

where X is a dataset matrix, y a vector of group member-
ships, b a vector of regression coefficients (i.e. weights of
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individual variable), and r a vector of model residuals. The
regression coefficients reflect the relative importance of the
variables in the PLS-DA model. PLS2-DA is a variation of
PLS-DA, where the response “y” is not a vector but a
matrix, which enables more than two groups to be analyzed
simultaneously.

The optimum complexity (i.e. number of latent variables,
LV) for all individual and fused models was determined by
LOOCY performed on training sets. The optimum number of
LV was selected on the basis of the minimum error of the root-
mean-square error of cross-validation (RMSECV). For all
individual and fused models the optimum model complexity
was determined to be 1LV. All PLS-DA models were validat-
ed with an independent test set. A PLS-DA model is consid-
ered statistically valid if it has good prediction ability. After
validation, a final model is then reconstructed using all avail-
able samples. The model can be visualized in a score plot. The
importance of all variables on the predictive model can be
investigated by means of the regression coefficients [24].

After the individual two-class (binary) models have been
are optimized they can be used for HMF.

Hierarchical models fusion

In this paper, we propose a new approach, hierarchical
models fusion (HMF), which uses hierarchically multiple
simple two-class classification models to represent individ-
ually specific parts of the inter-class variation. This ap-
proach uses, as any supervised method, a-priori knowledge
of the classes (for instance, type of inflammation) and estab-
lishes commonalities between them.

Data

The use of simple two-class models makes the results
easier to interpret. The objective of the method proposed
here is to describe the relevant differences gradually instead
of explaining all variation from all classes at once. This
gradual process becomes possible by applying statistically
optimized binary models to the data at each step and then
combining the outcomes. Because it fuses the outcome of all
earlier optimized models it describes and shows all the
relevant differences in the data. By using this approach it
is possible to visualize separation between studied classes
and the relationship between objects without applying mul-
ticlass classification models (for example PLS2-DA or lin-
ear discriminant analysis, LDA).

To demonstrate the HMF approach, let us consider a
dataset with three classes: non-effect (i.e. healthy), effect 1
(e.g. peripheral inflammation), and effect 2 (e.g. neuroin-
flammation). First, individual binary PLS-DA models of
interest have to be optimized (i.e. models 1 and 2 from
Fig. 1). A graphical representation of HMF is shown in
Fig. 1. These models can then be hierarchically applied to
the data in accordance with a-priori knowledge (here exper-
imental design). For example having data containing three
classes, i.e. effect 1, effect 2, and non-effect, it is possible to
use HMF to separate all three classes. In the first step, model
1 (effect 1 versus non-effect) is used to obtain a new score
for all samples in data matrix X. This new score (here called
Xscore) separates non-effect objects from objects belonging
to group effect 1 and group effect 2. In the next step, another
model (model 2: effect 1 versus effect 2) can be applied to
matrix X to assess and distinguish these two effects. In that
way a second score is obtained for all samples in data matrix

Effect 1 Effect 2

Fig. 1 A graphical representation of hierarchical models fusion

A Effect2
A°a
Model 1 (effect 1 A TA
vs. non-effect) Xscore A AA A A
A
Al AA A Non-effect
ACAA as
A "aa """
Combining Xscore [—— 5 28 a 28
and Yscore o] [ ]
g o s "
Non-effect (effect 1 vs. effect 2) —> Yscore o ‘ 0
e o o
o0 o
o o0
o_ 0
® &frect]

Xscore
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X (here called Yscore). At each step, a new score is obtained
by multiplying data matrix X with PLS-DA weights. These
two new scores (Xscore and Yscore) can then be combined
and used to visualize the relationship between studied
groups. When the new scores are orthogonal they can be
represented as usual (i.e. with perpendicular axis).

Because HMF is based on a hierarchical structure, the
complexity of the studied problem is reduced by describing
every difference on a different level (i.e. step). It decom-
poses the difficulty of multi-class separation into simpler,
solvable two-class problems. Indeed, the representation of
HMF as a decision tree (Fig. 1) is similar to the classifica-
tion and regression trees (CART) [25]. However, in HMF at
each step (node) not a single variable but a PLS-DA model
is used to separate objects. To represent the usefulness of
HMF for analyzing multiple classes, simulated data were
created. The results are shown in the Electronic supplementary
material.

Obviously, the presented method can be used not just for
visualization of relationships between samples but also for
prediction of new samples (e.g. from an extra experiment).
Moreover, information about variables significant for dis-
crimination is associated with PLS-DA weights. Therefore
biological interpretation is feasible also.

Any results obtained by predictive methods must be
validated before drawing any conclusions. In HMF the
validation is twofold. First, all the individual PLS-DA mod-
els are validated using independent test sets. Second, the
complete HMF structure is also validated. Moreover to

0.0025

0.0020

utamine
0.0015 s

glutamine

0.0010

citrate

Narmalized Intensity

0.0005

26 25 2.4 23 22 2.1
Chemical Shift (ppm)

glutamate
(plasma)

reduce the possibility of random classification we performed
a permutation test for HMF.

Metabolite identification

Metabolite identification of the most relevant set of varia-
bles was carried out by using the 800 MHz library (for CSF)
and the 500 MHz library (for plasma) of metabolite NMR
spectra from the Chenomx NMR Suite 7.0 (Chenomx,
Edmonton (AD), Canada). The libraries of metabolite spec-
tra were obtained on the basis of a database of pure com-
pound spectra acquired by use of a particular pulse sequence
and acquisition conditions, namely, the NOESY-
presaturation pulse sequence with 4 s acquisition time and
1 s recycle delay [26]. The Chenomx NMR Suite software
fits the spectral signatures (singlets, doublets, triplets etc), i.
e. the peak shapes, of a compound from an internal database
of reference spectra to the experimental NMR spectrum.

Results

Explorative analysis of the CSF and plasma datasets

The 82 sets of NMR data of plasma and the 82 sets of NMR
data of CSF were each pre-processed as described in the
“Materials and methods” section. Examples of plasma and

CSF spectra are shown in Fig. 2. It is apparent the intensities
of many metabolites (normalized to the TSP signal, for

lactate
acetate

alanine

arginine

20 1.9 1.8 1.7 1.6 1.5 14 1.3

Fig. 2 Section of the 800 MHz "H NMR spectrum of CSF (blue) and the "H 500 MHz NMR spectrum of plasma (red)
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visualization purposes only), for example alanine and argi-
nine, are higher in the plasma spectrum than in that from the
CSF. Most metabolites present in CSF can be observed in
plasma. A few volatile metabolites are not visible in plasma,
because of lyophilisation. Some metabolites, for example
glutamate and phenylalanine, are detected in plasma only.
This is mostly because of the low concentration of these
metabolites in CSF. The NMR spectra of CSF were divided
into 409 bins, which contain resonances of 33 identified
metabolites and some unidentified signals. For plasma, the
NMR spectra were divided into 478 bins, which correspond
to resonances of 50 identified metabolites and some uniden-
tified signals.

After pre-processing, explorative analysis was performed
by means of R-PCA and PCA. Initially, R-PCA was applied
to the autoscaled spectra of 82 rat CSF and plasma samples,
to check for outliers. No outliers were detected. Figure 3a
and b show the PCA score plots of the plasma and CSF
NMR spectra, respectively. These figures show that samples
belonging to group “N14” are clearly separated from the
other samples along PC2 for plasma data and along PC4 for
CSF data. In both situations PC1, which is the main source
of variance, does not show any group information. This
indicates that a large source of the variance in the data does
not correspond to the available groups. No clear grouping is
present because most of the groups overlap. It is important
to mention that further PCs did not show groupings either.

Supervised analysis

The most straightforward approach for separating the six groups
present in CSF and plasma data simultaneously is to apply a
multi-class method, for example PLS2-DA. The two datasets
can be analyzed separately by PLS2-DA. Alternatively, the CSF

a
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e C10 "
¢ C14 .
10 w p1o . g
v P14 o= .
+ N10 + o ° + .
501 K N14 + e - vYvy Y 8
- v + LTR SN "
] v + _i: v
= + +o e M v
> 0 ] L] . + o Ve 7
~ + LS * ’0
~ L4 v v
SR e o ¢ v -
*
*
10 " %gé% % 4
* *
15 * * 8
% .

25 20 -15 -10 -5 0 5 10 15
PC1-->11.5%

Fig. 3 PCA score plot of: a plasma NMR spectra; b CSF NMR spectra

and plasma data can be fused and PLS2-DA can be applied to
the fused data. However, PLS2-DA has to describe all group-
related variations at the same time. This might lead, on the one
hand, to worse results in comparison with multiple binary PLS-
DA models and on the other hand, to difficulties in biological
interpretation. One can apply binary PLS-DA models to handle
individual biological samples (CSF and plasma) and the (mid-
level) fused data sets. This implies that for a full description
many binary PLS-DA models have to be constructed and opti-
mized. Therefore, we propose and present a new approach,
namely HMF. In HMF, a limited number of multiple binary
PLS-DA models are used to still fully describe the fused CSF
and plasma data. The fusion was achieved by using the approach
described in the “Materials and methods” section (subsections
“SVM-RFE” and “Classification of individual and fused plasma
and CSF datasets™). Binary PLS-DA models were applied to the
fused datasets to extract information about the metabolic effects
of the different group treatments shown in Table 1 and
to establish the significance of the variables. All opti-
mum binary PLS-DA models were constructed using
1LV only. Next these optimized binary PLS-DA models
are used in HMF. Below, we first present the results of
PLS2-DA, then the binary PLS-DA models, and finally
those of HMF. The outcomes of HMF are compared
with PLS2-DA of the fused datasets.

PLS2-DA—complete EAE model for plasma data, CSF data
and fused sets

We applied PLS2-DA to separate simultaneously all six
groups of the CSF dataset and of the plasma dataset. The
variables included in the PLS2-DA model are selected by
linear SVM-RFE. The number of LVs in the PLS2-DA model
was optimized by cross-validation. Correct classification for
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an independent test set was 57.1% for the plasma data and
56% for the CSF (correct classification per class is included in
Table S1 in the Electronic Supplementary Material). It is
interesting to note that better results are obtained for the binary
PLS-DA models (at least for the binary PLS-DA models
considered) than for PLS2-DA. However, it is important to
mention that PLS2-DA has a more difficult problem to solve
(i.e. separate six classes at once) than PLS-DA.

A similar situation is encountered for fused datasets.
Correct classification for an independent test set is 65%
for PLS2-DA (correct classification per class can be found
in the Electronic Supplementary Material, Table S1). This
result is much worse than for multiple PLS-DA models.
PLS2-DA performance (64% classification) is in turn still
much better than a random classifier (correct classification
17%) but still insufficient for proper diagnosis. However,
one should notice that some groups are classified completely
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Fig. 4 Density distribution of PLS-DA scores of: a “P10” vs. “N10”
for CSF data; the amount of y variance for 1LV is equal to 77.5%; b “P10”
vs. “N10” for plasma data; the amount of y variance for 1LV is equal to
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correctly (100%, e.g. “C10”), whereas others are totally
misclassified.

PLS-DA models for plasma data, CSF data, and for mid-level
fused sets: the onset of neuroinflammation

We present the results of PLS-DA obtained for the group
“P10” versus “N10”, because this represents the interesting
case of early onset of neuroinflammation. Binary PLS-DA
models were derived for the separate CSF and plasma data
sets and for mid-level fused data sets. The predictive models
for the problem “P10” vs. “N10” are displayed as PLS-DA
score plots in Fig. 4a, b, and c. These 1LV score plots are
presented as the density distribution of the entire group. The
PLS-DA model of CSF is constructed on the basis of 87
variables. The PLS-DA model of CSF alone has no predic-
tion ability, as follows from the 50% correct classification
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63.5%; ¢ “P10” vs. “N10” for fused data; the amount of y variance for
1LV is equal to 61.3%; d Regression coefficients for fused PLS-DA
model
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for an independent test set. Accordingly the groups “P10”
and “N10” (for CSF) are not separated in Fig. 4a. For
plasma, the PLS-DA model separates the classes somewhat
better, as follows from the classification for independent test
sets of 75%. However, there is still quite some overlap and
the groups of points are still mixed, as can be seen on the
horizontal axis of Fig. 4b.

Because the individual analysis did not furnish satisfac-
tory results, we decided to fuse the selected variables from
plasma and CSF data. The SVM-RFE conducted on the
fused sets, led to 11 variables (of the 112 initially selected
variables). The resulting PLS-DA model of fused datasets is
shown in Fig. 4c. Correct classification for the independent
test set is 100%, demonstrating the statistical adequacy of
this model. As can be seen from Fig. 4c, there is clear
separation. Figure 4d shows the regression coefficients of
this PLS-DA model. Interestingly, the fusion model
consists of six CSF and five plasma variables. This
suggests that both biofluids contribute significantly to
the group separation.

Table 2 summarizes the results of the PLS-DA models for
“P10” versus “N10”, and for two other pairs of groups,
namely “C10” vs. “P10”, and “N10” vs. “N14”. These
models were used in the HMF. Table 2 lists, with the degree
of correct classification for independent test sets, the number
of variables selected by RFE-SVM used in PLS-DA models
for the fused data. We find that the binary PLS-DA model
for “P10 vs. N10” (early onset of neuroinflammation)
results in 100% correct classification. The same is true for
“N10” vs. “N14” (progression of neuroinflammation),
whereas for “C10” vs. “P10” 93% correct classification is
achieved. The score plots and regression coefficients of mod-
els “C10” vs. “P10” and “N10” vs. “N14” are shown in
Figs. S5a—S5d in the Electronic Supplementary Material.

In Table 2 only a few of many possible pairs of groups for
PLS-DA have been presented. Nevertheless, in Table S2 in
the Electronic Supplementary Material correct classification
for the independent test set obtained for individual analysis
of plasma data, CSF data, and fused datasets by PLS-DA for
different pairs of groups can be found. To achieve full or
nearly full description of the fused data set, without having
to use all pairs of groups, we apply hierarchical data models
fusion, HMF, in the next section.

Hierarchical models fusion

The predictive power of the individual PLS-DA models is,
by itself, already satisfactory (as is apparent from Table 2
and Table S2 in the Electronic Supplementary Material). At
this point one could stop the analysis and start biological
interpretation of the results. However each PLS-DA model
only looks at two groups at a time and is, therefore, not able
to predict the results for a completely unknown sample.
Thus, it is necessary to combine the different models. The
idea of HMF is to join them in a meaningful order. To
perform HMF on the CSF and plasma datasets, we used
the PLS-DA models of “C10” vs. “P10”, “P10” vs. “N10”,
and “N10” vs. “N14” (Table 2). These characterize, respec-
tively, the effect of peripheral inflammation, neuroinflam-
mation, and progress of neuroinflammation. They are,
therefore, consistent with the experimental design shown
in Table 1. The HMF approach used in this paper is repre-
sented in Fig. 5. Note that we present here HMF on the
fusion of two datasets but the same principle could be
applied to a single dataset. As explained in the “Materials
and methods section”, HMF is validated in two ways. First,
all individual PLS-DA models were statistically validated
with independent test sets. Second, the complete scheme of
HMF was validated with a set including all test sets used in
the binary PLS-DA models from Table 2 and, additionally,
some samples belonging to classes “C14” (four samples in
test set and ten in training set) and “P14” (five samples in
test set and ten in training set). The graphical representation
of HMF for training and test set samples is shown in the
Electronic Supplementary Material in Fig. S5. It is apparent
all test samples are predicted correctly. The permutation test
was also performed for all six classes, as an extra check. The
p-value for 40,000 permutations was equal to 0.0006.

We started with the PLS-DA model of peripheral inflam-
mation, i.e. “C10” vs. “P10” (shown in Fig. 5 as step 1).
This enables one to separate healthy objects, i.e. those
without any type of inflammation (Table 1) from all those
with peripheral inflammation. The latter also includes
groups which have undergone neuroinflammation, because,
in accordance with the experimental design shown in
Table 1, these groups were injected with CFA. This step
enables creation of a first new score (i.e. Xscore) for all

Table 2 Correct classification
for an independent test set
obtained for fused datasets,

PLS-DA model

Correct classification

No. of variables in PLS-DA model No. of samples

number of variables from plasma Plasma CSF Training Test
and CSF used in a PLS-DA
model, and number of samples C10 vs. P10 93% 4 13 20
in training set and test set P10 vs. N10 100% 5 6 20
N10 vs. N14 100% 8 3 18

@ Springer



956

A. Smolinska et al.

Fig. 5 Representation of
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samples in the data. In other words, this model separates the
healthy groups from those with any form of inflammation
(neuro or peripheral).

In a second step, we used a PLS-DA model of “P10” vs.
“N10”, shown in Fig. 4d. This model distinguishes periph-
eral inflammation from neuroinflammation at the onset of
EAE. Therefore, by using this model we are able to separate
neuroinflamed animals from animals that were only periph-
erally inflamed (i.e. “P10” and “P14”; shown in Fig. 5 as
step 2). Similar to step 1, a second score is generated, the
Yscore. At this level, we have separated samples belonging
to groups with peripheral inflammation (i.e. “P10” and
“P14”) from the neuroinflamed groups (“N10” and “N14”).

The last step (number 3) considers the separation of the
onset of the disease from the peak of EAE. To achieve this
separation, we applied the PLS-DA model of “N10” vs.
“N14”, i.e. the model describing the severity of neuroin-
flammation. At this level, a third new score is created, the
Zscore. After iterative application of these simple 1LV mod-
els to fused plasma and CSF datasets, we can integrate the
three new scores, i.e. Xscore, Yscore, and Zscore. They are
then used to visualize the outcome. They represent the
relationship between the groups and their separation. The
corresponding graph is shown in Fig. 6. As can be observed,
full separation of the different groups is achieved. It is worth
mentioning that samples belonging to healthy groups “C10”
and “C14” mostly overlap. However, a small shift along the
x-axis is observable, probably because of sampling time
(Day 10 vs. Day 14). As can be noticed, samples belonging
to group “P14” overlap with healthy groups, which is in
agreement with our previous finding that peripheral inflam-
mation has vanished by day 14 [11].
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Discussion

By using a mid-level fusion architecture we were able to
identify a set of metabolites that revealed significant
changes in the plasma and CSF of neuroinflamed animals.
Based on the regression coefficients of the PLS-DA model
of fused datasets (for example Fig. 4d and Electronic
supplementary material) the importance of the individual
metabolites in each PLS-DA model and a direction of
elevation/reduction of concentration can be evaluated.
On the basis of this information, biological interpreta-
tion of these metabolites and their connection to EAE,
neural inflammation, and/or MScl can be performed.
Therefore, the first aspect to be discussed is the nature
of the selected metabolites. It should be mentioned that
the main objective of this paper is not to provide a
biological explanation, but to present the methodology
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Fig. 6 Graphical representation of HMF applied to fused data from
plasma and CSF
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for fusion and analysis of '"H NMR metabolomics data-
sets. Therefore biological conclusions are not stressed.

One can notice that many (mostly neutral) amino acids
were found to be discriminatory for EAE groups and, there-
fore, we focus on these. Transport of neutral amino acids
through the BBB is significant for overall regulation of
cerebral metabolism and neurotransmitter production [27].
BBB amino acid transport is important in regulation of
several pathways of brain amino acid metabolism. It is
known that EAE affects the BBB. It causes disruption of
the BBB and affects the saturable transport system of sub-
stances involved in the disease process [28]. Injection of
CFA can itself lead to increased BBB permeability to small
molecules and even specific serum proteins [29].

We found that tyrosine concentration is reduced in plas-
ma of groups “P10”, “N10”, and “N14”. It has been reported
previously that tyrosine has a role in BBB permeability [30].
In accordance with our results Monaco et al. detected a
reduced level of plasma tyrosine in MScl [31]. Another
neutral amino acid related to EAE groups is alanine. This
metabolite was found as a relevant metabolite in both plas-
ma and CSF. Its concentration is reduced in the CSF and
plasma of EAE groups in comparison with healthy controls
and peripheral inflamed group “P10”. Alanine is associated
with energy metabolism and is known to be used as a source
for pyruvate for energy metabolism and for macromolecules
within neural and immune cells [11]. Similarly, lysine con-
centration was elevated in CSF and plasma from neuroin-
flamed groups “N10” and “N14”. Qureshi and co-workers
in a study on the role of neurotransmitter amino acids in
CSF of MScl patients reported increased levels of lysine in
CSF and plasma of MScl patients [32].

We found the combination of glutamate and proline
signals in plasma decreased in the EAE groups compared
with the other groups. In a previous study a change of
glutamate concentration in CSF was reported in a clinical
study of MScl [33]. Glutamate is a very important neuro-
transmitter and the most abundant free amino acid in the
brain. A metabolite closely interconnected with glutamate is
glutamine. This metabolite was found in plasma as discrim-
inatory for groups injected with immune booster (i.e., “P10”
and “N10”) when compared with the healthy groups, and its
concentration was elevated in these groups. It was also
found as discriminatory when comparing “P10” and
“N10” groups. In CSF, its level was found to be down
regulated in group “P10” in comparison with healthy con-
trols. This metabolite is involved in energy metabolism. It
has been shown that glutamine is a necessary nutrient for
cell proliferation, serving as a specific fuel for inflammatory
cells and enterocytes and, when present in appropriate con-
centrations, enhancing cell function [34]. The last amino
acid that is discussed here is phenylalanine. This metabolite,
which was diminished in EAE groups, is the precursor to

tyrosine and is needed for function of the catecholamine
neurotransmitters epinephrine, norepinephrine, dopamine,
and tyramine. In a previous study by Monoco et al. a
reduced level of phenylalanine was found in MScl [31].

One aspect which has not been emphasized is the impor-
tance of a proper preprocessing. Here the use of Al binning
ensures that one bin corresponds to one peak, thus prevent-
ing signals from different metabolites being mixed within
one bin. Normalization is the second important preprocess-
ing aspect. We compared the effect of classical total area
normalization with that of probabilistic quantum normaliza-
tion. No strong differences were observed (data not shown)
therefore we decided to use the simplest approach. However
one should be aware that total area normalization could be
suboptimum, because of the large effect of highly abundant
multiplets (e.g. glucose).

The third aspect to be discussed is connected with the
data analysis strategy used in this manuscript, i.e. mid-level
data fusion and HMF. First, the approach of mid-level data
fusion performed here enabled individual variable selection
and thus discard of irrelevant information. Second, the HMF
method, shown in this paper, is a novel, simple strategy for
multi-class analysis. Each PLS-DA model only looks at two
groups at a time and, therefore, a single model cannot
predict a completely unknown sample. This is a minor
advantage of HMF over multiple PLS-DA models. One
should keep in mind that the outputs of this method are
statistically accurate, because they are based on validated
binary predictive models. Moreover, the complete scheme
of HMF was also validated. The output of HMF (i.e. new
scores) can be used for visualization or prediction of new
samples. However, it is good practice to check if these new
scores are orthogonal.

When comparing HMF and PLS2-DA, it is important to
mention that it is possible that if some groups do not behave
in accordance with the experimental design, the optimum
solution for class separation can be flipped. In other words,
if one or more groups cannot be distinguished, PLS2-DA
still tries to separate them, which may affect the solution for
the whole PLS2-DA model. In the case of EAE datasets,
there are two groups (i.e. “N10” and “P14”) that are char-
acterized by behaviour different than was assumed by ex-
perimental design. For the “N10” group we have previously
shown that animals are heterogeneous regarding disease
response [11]. Further, the second group “P14” was not (or
no longer) peripherally inflamed on day 14. This causes the
results obtained by PLS2-DA to be sub-optimum for groups
“N10”, “C14”, and “P14”. In the method proposed here,
HMEF, the situation described for PLS2-DA cannot happen.
HMF leads to the optimum solution, because it includes
relevant sources of variance between groups individually
rather than all at the same time. This suggests that if two
groups are not separable this can be easily detected during
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the HMF and does not affect the separation between other
groups.

In our study the HMF was shown for fused plasma
and CSF NMR datasets. However this approach can be
also used for one type of sample (as shown in the Electronic
supplementary material). Obviously, the individual PLS-DA
models can be developed for any type of sample and then
HMF can be applied.

Conclusions

In this study we have demonstrated the feasibility of fusion
of metabolomics 'H NMR datasets from different biofluids.
From the perspective of data analysis multiple challenges
had to be addressed. One was concerned with the biological
variation usually encountered in omics experiments.
Another issue was linked to the number of variables
recorded by NMR, which is, first, much greater than to the
number of samples and, second, most are probably unrelated
to the studied problem or redundant. We successfully solved
these problems using a new architecture for data fusion in
which SVM-RFE is used as variable selection method and
PLS-DA to focus on the information of interest through a
training procedure.

We analyzed CSF and plasma metabolomics data of the
EAE model for MScl using mid-level data fusion. The proce-
dure was represented by constructing a predictive model for
neuroinflamed group “N10”, i.e. before physical symptoms
have appeared, versus a peripherally inflamed group “P10”.
Prediction models based on either CSF or plasma metabolo-
mics data alone could not separate the immune booster and
EAE groups at day 10, whereas the predictive model using a
fused set of variables from CSF and plasma managed to
separate the two groups with 100% correct classification for
the independent test set. One should be aware that these results
do not imply that all new samples will be always correctly
classified. However validation with the independent test set
and the permutation test set indicates the results are meaning-
ful. This shows that by using bio-molecular information
(metabolomic data), a diagnosis can be made before physical
symptoms arise. Our results also demonstrate that plasma can
be of significant importance in the diagnosis of neuroinflam-
mation. Therefore, we believe that plasma should be consid-
ered when investigating neuroinflammation.

Finally, we have introduced a new multi-class method,
HMF, which describes relevant sources of variance
connected with groups’ description by fusing individual
binary models. We have shown that by using HMF we are
able to separate groups in our data by using simple, easily
interpretable, one-component predictive models.

From a biological perspective, the selected metabolites
seem to be relevant, because the metabolites described in
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this study were previously found to be related to EAE and/or
MScl. Therefore, they provide biological validation for the
fusion of data from two different biofluids.

Further research will focus on deeper interpretation and
absolute quantification of newly detected metabolites in
plasma and CSF and their relationship to BBB. These two
steps are time-consuming but would give more insight into
the mechanism of the disease. The pattern and concentra-
tions defined by these variables could also be studied by
themselves and put into a systems biology context. Absolute
quantification would be crucial for obtaining advanced bio-
logical conclusions and conformation using a completely
different analytical method (e.g. mass spectrometry).
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