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Ferroptosis is one of the programmed modes of cell death that has attracted

widespread attention recently and is capable of influencing the developmental

course and prognosis of many tumors. Glioma is one of the most common

primary tumors of the central nervous system, but effective treatment options

are very limited. Ferroptosis plays a critical role in the glioma progression,

affecting tumor cell proliferation, angiogenesis, tumor necrosis, and shaping

the immune-resistant tumor microenvironment. Inducing ferroptosis has

emerged as an attractive strategy for glioma. In this paper, we review

ferroptosis-related researches on glioma progression and treatment.
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Introduction

Ferroptosis is an iron-dependent form of programmed cell death, is more

immunogenic than apoptosis. During ferroptosis, the level of reactive oxygen species

(ROS) increases and induces lipid peroxidation (LPO) (1, 2). Ferroptosis is widely present

in the development of many cancers, such as liver cancer, gastric cancer, lung cancer,

colorectal cancer, ovarian cancer, breast cancer, glioma, and hematologic tumors (3).

Ferroptosis has attracted increasing attention since its naming in 2012 (4).

The process of ferroptosis involves multiple signaling pathways and regulatory

mechanisms that interact with other cell death modalities in the development of

glioma (3, 5–7). It has been shown that increased ROS during ferroptosis can initiate

LPO by interacting with polyunsaturated fatty acids in lipid membranes, thereby

mediating chemoresistance in gliomas (8). A deeper understanding of the mechanism
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of ferroptosis in glioma progression is of great significance for

the research and improving the existing therapies for glioma.

Taking into account the histopathological manifestations and

alterations in genes, molecules and signaling pathways, in 2021,

WHO proposed the fifth edition of the CNS tumor classification,

which comprehensively introduced the latest classification criteria

for gliomas, using the terms “diffuse” and “restrictive” to define

different types of gliomas, replacing the original Roman numeral

grading method of grade I-IV. The latest published classification

shows that diffuse gliomas occurring mainly in adults and mainly

in children have some molecular differences and should be

classified as adult and pediatric types; moreover, adult diffuse

gliomas that occur as angiodysplasia and necrosis should be

diagnosed as glioblastoma (9).

The damage-associated molecular pattern (DAMP) of

ferroptosis is more specific than the other forms of cell death

(Figure 1, Universal mechanisms of DAMP release) (10). On the

one hand, ferroptosis can recruit and activate numerous immune

cells at the tumor site and drive dendritic cell maturation in vitro

(11, 12), and ferroptosis inducers can function as sensitizers for

anti-tumor immunotherapy (13–15). Studies have shown that

ferroptosis combined with radiotherapy and chemotherapy can

partially overcome drug resistance, limit glioma growth and

prolong survival (14, 16, 17). Alternatively, ferroptosis is a

unique form of autophagy (18), and results in iron

accumulation, which is not only associated with iron uptake and

new blood vessels formation during tumor growth (19), but also

serves as an important factor involved in the construction of an

immunosuppressive glioma microenvironment, such as the

regulation of proliferation of B cells , T cells and

immunophenotypic differentiation of tumor-associated

macrophages (20). In conclusion, ferroptosis is involved in
Frontiers in Oncology 02
multiple aspects of the glioma progression, thus, targeting

ferroptosis may be a potential strategy for glioma therapy.
Molecular mechanism of ferroptosis

In 2012, a new type of iron-dependent programmed cell

death has been described and named ferroptosis by Professor

Stockwell et al. (4). The process of ferroptosis can be briefly

described as the activation of lipoxygenase by free ferrous ions

through the Fenton reaction, leading to peroxidation of

polyunsaturated fatty acids (PUFAs) on cell membranes, and

the increased level of LPO causes loss of cell permeability and

eventually cellular ferroptosis (21). Ferroptosis is regulated by a

combination of iron metabolism, LPO and antioxidant systems,

impairing the homeostasis of any of these processes may trigger

ferroptosis (22). There are diverse cellular defense systems in

response to LPO in cells, including the classical pathway

mediated by GPX4, the non-classical pathway mediated by

FSP1 independently of GPX4, as well as a third pathway in

which dihydroorotate dehydrogenase (DHODH) interacts with

GPX4 to block ferroptosis in the inner mitochondrial membrane

by reducing ubiquinone to form ubiquinol (23). The ferroptosis

related mechanism will be discussed in detail below (Figure 2,

Molecular mechanism of ferroptosis) (24).
The involvement of important molecules
in the process of ferroptosis

Glutathione peroxidase 4(GPX4), is a crucial regulator of

endogenous ferroptosis. GPX4 can convert glutathione (GSH) to
FIGURE 1

Universal mechanisms of DAMP release.
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FIGURE 2

Molecular mechanism of ferroptosis.
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oxidized glutathione and reduce cytotoxic lipid peroxides to the

corresponding alcohols. By inhibiting the formation of lipid

peroxides, GPX4 prevents the production of LPO reaction

products, reduces cell membrane damage, and thus alleviates

cellular ferroptosis (25). Down-regulation of GPX4 expression

can make cells more sensitive to ferroptosis, and knockdown of

GPX4 induces ferroptosis. Whereas studies show that GPX4

expression was significantly increased in human glioma patients

compared to brain tissue of healthy patients (26).

The Xc-system, a heterodimer composed of subunits SLC7A11

and SLC3A2, is an important component of the cellular

antioxidant system and is closely associated with exogenous

ferroptosis processes. It is widely distributed in the phospholipid

bilayer and is involved in intracellular cystine uptake and GSH

synthesis (27). The inhibition activity of the Xc-system will result

in reduced GPX4 activity, ROS accumulation, and lipid oxidative

stress, causing cellular ferroptosis. SLC7A11 was reported to be

expressed at higher levels in GBM patient biopsies or glioma cell

lines than in normal brain tissue (28).

ACSL4, acyl-CoA long-chain synthase 4, expressed in the

endoplasmic reticulum and mitochondrial outer membrane, is

an essential molecule in lipid metabolism. This molecule is

mainly responsible for catalyzing the formation of acetyl

coenzyme A from lipids. It is closely related to the production

of ROS and the process of ferroptosis, and thus has potential to

be an indicator of ferroptosis sensitivity (29). ACSL4 down-

regulates glioma cell proliferation and mediates up-regulation of

ferroptosis levels in gliomas. Studies have shown that ACSL4

expression is down-regulated after glioma occurs (30).

Additionally, it was reported that GPX4 knockdown leads to

ferroptosis, while double knockdown of GPX4 and ACSL4 genes

can reverse GPX4 knockdown-induced ferroptosis (31).

FSP1 (ferroptosis-suppressor-protein1), is a ubiquinone

oxidoreductase, it was initially described as a pro-apoptotic gene

called apoptosis-inducing factor 2(AIFM2) in mitochondria and is

now considered as a glutathione-independent ferroptosis resistance

molecule. FSP1 can act in parallel with the GPX4 pathway, thus

preventing glutathione deficiency-induced ferroptosis (32).

Moreover, FSP1 can use NADPH to catalyze the reduction of

the lipophilic radical scavenger ubiquinone (CoQ10), and the

FSP1-CoQ10-NADPH pathway can synergistically inhibit ROS

elevation with the GPX4 system to prevent ferroptosis caused by

oxidative damage (33).

DHODH, an iron-containing flavin-dependent enzyme, is

an important molecule in nucleotide metabolism, which inhibits

mitochondrial ferroptosis via regulating the production of the

antioxidant ubiquinol(CoQH2) in the inner mitochondrial

membrane (34). It was shown that inhibition of DHODH

promotes ferroptosis as it increases LPO in mitochondria, and

DHODH can act synergistically with GPX4 to inhibit ferroptosis

in the mitochondrial inner membrane (35).

TP53, a widely studied oncogene, can repress the expression of

SLC7A11, a component of the Xc-system, at the transcriptional
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level, in turn targeting the diamine acetyltransferase SAT1 and the

mitochondrial glutaminase GLS2, which are involved in the

regulation of glutamine metabolism, to enhance cellular

ferroptosis (36).

Furthermore, p53 can inhibit ferroptosis by directly

inhibiting dipeptidyl peptidase 4 (DPP4) activity or by

inducing cell cycle protein-dependent kinase inhibitor 1A

(CDKN1A/p21) expression (36). Recent studies have shown

that the regulation of ferroptosis by p53 contributes to its

tumor suppressive function (37). In addition, p53 plays a dual

role in mediating ferroptosis in glioma (38).

Nrf2, a transcription factor that regulates redox metabolism,

contains a basic leucine zipper DNA-binding domain at the C-

terminus and plays a key role in the cellular response to

oxidative stress. Many enzymes and proteins involved in LPO

are target genes of NRF2, such as glutamate-cysteine ligase and

glutathione peroxidase (GPX). Through interactions with p53,

GPX4, Xc-system, etc., Nrf2 affects ferroptosis (39).
The role of ferroptosis in
glioma progression

The relevance of ferroptosis and glioma has been widely

recognized for influencing various vital processes in the

development of glioma. It is not only involved in the

construction of an acidic, hypoxic, immunosuppressive glioma

microenvironment, but is also closely related to glioma cell

proliferation, angiogenesis, tumor necrosis, and invasive growth.

Induced ferroptosis can mediate altered oxidative

metabolism in glioma cells, trigger changes toward of

macrophage polarization in the glioma microenvironment, and

interfere with the proliferation and function of immune cells.
Ferroptosis influence glioma
cell proliferation

Ferroptosis has been proposed to play an important role in

glioma cell proliferation (40, 41). Inhibition of ferroptosis

accelerates glioma proliferation and metastasis and promotes

angiogenesis and malignant transformation of gliomas.

Ferroptosis attenuates the viability of glioma cells, and activation

of ferroptosis inhibits glioma cell proliferation. It was revealed that

reduced ferroptosis in human glioma tissue and glioma cells might

be associated with ACSL4, an important molecule in the

emergence of ferroptosis (30). This study found ACSL4

expression was decreased in glioma cells and reduced expression

of ACSL4 compared to the normal human brain. Furthermore,

their speculates confirmed that ACSL4 plays an essential role in

regulating ferroptosis and proliferation in glioma cells and

knocking down the gene significantly improved the viability of

glioma cells (30). Another investigation on non-coding RNA
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MicroRNA-670-3p again demonstrated that targeting the

inhibition of ACSL4 and thus ferroptosis in human glioblastoma

cells has a pro-tumor effect (42).

It was noted in studies on drugs that dihydrotanshinone I, a

natural antitumor drug commonly used in clinical practice, can

significantly proliferate human glioma cells and promote human

glioma cell death (43). After treatment of human glioma cells with

dihydrotanshinone I, GPX4 expression decreased while ACSL4

expression increased, inducing ferroptosis in human glioma cells.

Then, the inhibitory effect of dihydrotanshinone I on the

proliferation of glioma cells was blocked after the application of

ferroptosis inhibitors (43). It can be concluded that the effect of

dihydrotanshinone I on the proliferation of glioma cells is derived

from ferroptosis. Additionally, elevated expression levels of Nrf2, a

ferroptosis-related molecule, in glioma patient samples exhibited

pro-tumor proliferative utility by regulating the Xc-system-

mediated reduction in ferroptosis (44).
Ferroptosis promotes the progression of
glioma necrosis

Tumor necrosis is a prevalent phenomenon in gliomas,

especially high-grade glioblastomas, which is strongly associated

with the highly aggressive growth of the tumor. Necrosis progresses

alongside tumor progression, causing inflammation and cytokine

storms resulting in multi-organ disorders, poor prognosis and

death; the degree of tumor necrosis is negatively correlated with

survival in glioma patients (45). There is a general consensus that

tumor necrosis is caused by a hypoxic tumor microenvironment

and rapidly proliferating tumor cells that exceed the capacity of the

vascular supply (46). Moreover, it is proposed that necrosis is

caused by iron-dependent oxidative stress and may partially follow

the ferroptosis pattern (47). Glioma tissue that undergoes necrosis

recruits immune cells by releasing its corresponding DAMP.

Findings show that neutrophils extensively infiltrate the tumor

necrosis area and increase with tumor progression, and that the

degree of infiltration of glioma tumor-associated neutrophils

positively correlates with the degree of tumor necrosis (47).

Furthermore, studies suggest that neutrophils are

participating in the process of promoting tumor necrosis and

that process is achieved by triggering ferroptosis in tumor cells.

Besides, elevated glutamate levels in areas of glioma necrosis can

cause increased tumor necrosis by inhibiting the Xc-system in

ferroptosis, thereby inducing ferroptosis (47).
Ferroptosis has an impact on
glioma angiogenesis

Aberrant vascular network formation with high permeability is

another important feature and critical event in the glioma process.

The formation of new blood vessels effectively promotes the
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infiltrative spread of gliomas, highly aggressive growth and leads

to a therapeutic resistance. Augmented microvessels are mostly

observed in areas of tumor infiltration and necrosis, and the density

correlates positively with the malignancy of the glioma. It is believed

that glioblastoma is one of the most vascularized human tumors

(48). Glioma-associatedmacrophages, which play an invaluable role

in iron metabolism and ferroptosis, are the most abundant immune

cells in the glioma microenvironment and are engaged in all phases

of angiogenesis, ranging from angiogenesis early sprouting to late

neovascularization and the stabilization of neovascularization (49).

It was reported that the number of macrophages around

proliferating micro-vessels in glioblastoma was significantly

increased. The release of angiogenic factors was promoted by

stimulation of macrophages, while macrophages in gliomas

promoted neovascularization through cyclooxygenase 2-mediated

secretion of cyclooxygenase 2(COX2) and IL-6. Studies revealed

that ferroptosis recruits glioma-associated macrophages and

indirectly acts on macrophage-mediated neointima formation

(50). The other evidence that ferroptosis influences glioma

angiogenesis has been derived from studies of the transcriptional

activator ATF4. It is an integral molecule in cellular oxidative

metabolism and is highly expressed in gliomas, promoting cell

migration and anchorage-independent cell growth, allowing tumor

cells to adapt to the glioma microenvironment, thus, ATF4 plays a

role in promoting proliferation and angiogenesis in gliomas (19).

Furthermore, ATF4 acts in an Xc-system-dependent manner,

mediated by the SCL7A11 molecule. Findings show that the

ferroptosis inducers erastin and RSL3 reduce ATF4-induced

tumor angiogenesis (19).
Ferroptosis raises immune resistance
to glioma

Resistance to treatment in glioma is mainly due to the

immunosuppressed glioma microenvironment, which is a major

obstacle to glioma treatment. Ferroptosis has dual aspects in the

glioma progression. On the one hand, ferroptosis is the main form

of programmed cell death in the glioma process, causing tumor cell

death; On the other hand, ferroptosis is engaged in shaping the

immunosuppressive glioma microenvironment, contributing to a

decrease in the host’s anti-tumor immunity and promoting tumor

propagation (51). Bioinformatics data analysis revealed that the

expression of ferroptosis-related genes was associated with

immunosuppression in gliomas, and studies showed that the

severity of ferroptosis was significantly associated with the clinical

prognosis of gliomas (41). There is a large number of immune cells

infiltrating the ferroptosis-enriched glioma. However, most of these

immune cells are immunomodulatory cells, such as Treg,

neutrophils, and glioma-associated macrophages. A subset of

glioma-associated macrophages can be divided into two subtypes,

M1 and M2, representing two different forms of effects that inhibit

and promote tumor progression (52, 53). A study of 1750 patients
frontiersin.org
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showed that a higher proportion of tumor-promoting M2-type

macrophages was demonstrated in the immunosuppressed glioma

microenvironment. Furthermore, ferroptosis in gliomas promotes

macrophage infiltration and induces M2-type polarization of

macrophages (46). Being present in the vascular niches in close

contact with brain endothelial cells, glioma stem cells have tumor

initiation properties and self-renewal ability that contribute to the

immunosuppressive microenvironment of glioma. These findings

show that ferroptosis is involved in the stemness regulation of

glioma stem cells. As an example, OTUB1, a deubiquitinating

enzyme overexpressed in gliomas, regulates SLC7A11, a critical

inhibitory molecule in the ferroptosis Xc-system, directly through

the ubiquitinase-proteasome degradation system, forming the

OTUB1/SLC7A11 axis and thus promoting the stemness of

glioma cells (54).
Ferroptosis involvement in
glioma treatment

A standard therapy for glioma treatment is a combination of

surgery, radiotherapy, and chemotherapy, but the effectiveness

of these therapies is limited due to the inherent treatment

resistance of glioma. Being one of the important forms of cell

death, ferroptosis can suppress the development of glioma.

Studies have shown that molecules causing ferroptosis can

play an aggressive role in the treatment of glioma (6, 55), and

as such, ferroptosis can be used as a combination therapy in the

treatment of glioma, improving the sensitivity of radiotherapy

and chemotherapy. In conclusion, targeting ferroptosis-related

genes might have potential value in the treatment of glioma.
Inducing ferroptosis promotes sensitivity
to glioma therapy

Radiotherapy (RT), an important component of standard

therapy for glioma, uses X-rays to destroy tumor tissue and can

directly trigger multiple types of DNA damage, such as base

damage, single-strand breaks (SSB), double-strand breaks

(DSB), thereby inducing cycle arrest, senescence, and multiple

forms of death in highly proliferative tumor cells with some

therapeutic effect. However, due to the heterogeneity of glioma,

radiation therapy’s effect is inadequate (56). Studies suggest that

the combination of ferroptosis inducer sorafenib and

radiotherapy play a collaborative role in killing glioma cells

(17). Alternatively, ferroptosis inducers 2-nitroimidazole,

doranidazole and misonidazole can mediate altered oxidative

stress metabolism in glioma stem cells, such as elevated levels of

metal reductase steap3 and NADH by doranidazole, which can

act as a sensitizer to counteract resistance to radiotherapy and

produce cytotoxicity to limit glioma growth and significantly

prolong survival (13) (more details see Table 1).
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Oral alkylating agent TMZ is the first-line chemotherapeutic

agent in the treatment of glioma. With the advantages of easy

penetration of the blood-brain barrier, stable acidic environment

and no superimposed toxicity with other drugs, it can prolong

the survival time of glioma patients to some extent, but only

partial patients can benefit from TMZ chemotherapy due to drug

resistance (57). Several studies have found that the use of

ferroptosis-inducing agents can increase TMZ sensitivity. The

combined use of the ferroptosis inducer erastin and TMZ was

reported to enhance TMZ sensitivity through multiple pathways

(14); in vitro use of hydroxychloroquine (HCQ) and its

derivative quinacrine(QN), which traverses the blood-brain

barrier and impairs TMZ-induced autophagy, can induce

ferroptosis and thus increase TMZ sensitivity (6) (more details

see Table 1).
Ferroptosis-related drugs in the
treatment of glioma

Many drugs can work in glioma treatment by affecting the

process of ferroptosis. Dihydroartemisinin (DHA) has been

shown to exert anticancer activity by enhancing ferroptosis

through the production of ROS and inhibition of GPX4

initiation (58). Amentoflavone (AF), a polyphenol widely

found in cypress, has anti-inflammatory and anti-tumor

effects. Findings show that AF can trigger glioma ferroptosis in

an autophagy-dependent manner to exert anti-tumor effects

(59). The accumulation of reactive oxygen species and LPO

can be observed in glioma cells treated with the curcumin

analogue ALZ003.In vitro and animal studies have shown that

ALZ003 can inhibit the growth of TMZ-resistant gliomas by

acting on GPX4, a crucial molecule in the ferroptosis pathway,

while having no cytotoxic effect on normal astrocytes (15) (more

details see Table 1).

Furthermore, due to the tight relationship between

ferroptosis and lipid metabolism, many glioma therapeutic

agents can exert therapeutic effects by mediating cellular

ferroptosis through LPO. Brucine, an indole alkaloid extracted

from the seeds of strychnine, promotes LPO, causing ferroptosis

in glioma cells eventually inhibiting glioma cell growth in vitro

and in vivo (60). The non-steroidal anti-inflammatory drug

(NSAID) ibuprofen induces ferroptosis of glioma cells, and its

effects are coupled with an abnormal increase in intracellular

LPO (61).
Ferroptosis-based combination therapy
in glioma

It was shown that NFKB activating protein(NKAP), an

important regulator of mitosis, can positively regulate

SLC7A11, a key molecule of ferroptosis, and knockdown of
frontiersin.org
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NKAP gene can increase the level of LPO and cause oxidative

damage, which in turn induces glioma ferroptosis and

suppresses glioma progression (62). Furthermore, the

knockdown of NKAP gene resulted in glioma cell lines that

were more sensitive to ferroptosis inducers. Based on this, we

think that NKAP knockdown combined with ferroptosis

induction therapy has the potential to be used in the treatment

of glioma.

A homologous protein mouse double minute (MDM2) and

murine double minute X (MDMX) form a complex that

promotes ferroptosis sensitivity in glioma cells (63). The study

revealed this complex inhibits cellular antioxidant defense by

modulating the activity of the major lipid regulator PPARa,
which influences cellular lipid metabolism and promotes
Frontiers in Oncology 07
oxidative damage, leading to LPO-mediated cellular ferroptosis

(63). There is a potential to design combined ferroptosis-

inducing therapy with MDM2 and MDMX agonists for

application in the treatment of glioma.

It is believed that the increase in intracellular iron ions,

which contributes to the increase in the unstable iron pool,

promotes the Fenton reaction and the generation of toxic

phospholipid hydrides can induce glioma ferroptosis. Study

reveals that gallic acid (GA) can effectively reduce Fe3+ to Fe2+

and is able to induce ferroptosis in GBM cells as a substrate for

the sustained Fenton reaction (64, 65). Zhang et al. designed a

GA-based targeted nanomedicine that combines ferroptosis and

photothermal therapy for glioma treatment (65) (more details

see Table 2).
TABLE 1 This table lists compounds currently known to induce or promote ferroptosis as sensitizers in the treatment of glioma.

Classification Compound Mechanism

Class I ferroptosis inducers Erastin Inhibit SLC7A11 activity

PE Inhibit SLC7A11 activity

IKE Inhibit SLC7A11 activity

SAS Inhibit SLC7A11 activity

Sorafenib Inhibit SLC7A11 activity

Glutamate Inhibit SLC7A11 activity

BSO GSH depletion

DPI2 GSH depletion

Cisplatin GSH depletion

Class II ferroptosis inducers 1S,3R-RSL3 Inhibit GPX4 activity

ML162 Inhibit GPX4 activity

ML210 Inhibit GPX4 activity

Altretamine Inhibit GPX4 activity

Withaferin A Inactivate/deplete GPX4

Class III ferroptosis inducers FIN56 Degrade GPX4, activate SQS and deplete CoQ10

Statins
(fluvastatin, simvas-tatin, lovastatin acid)

Inhibit HMG-CoA reductase (inhibit CoQ10 synthesis, reduce GPX4 expression)

Class IV ferroptosis inducers Ferric ammonium citrate/sulfate Iron loading

FeCl2 Iron loading

Hemoglobin Iron loading

Hemin Iron loading

Nonthermal plasma Promote the release of Fe2+ from ferritin

Lapatinib + siramesine Upregulate TfR1 and downregulate FPN1

Salinomycin Inhibit iron translocation and deplete ferritin

Artesunate, DHA Endogenous Fe2+ causes the cleavage of endoperoxide bridge

FINO2 Inhibit GPX4 activity, Oxidize ferrous iron and lipidome

Other ferroptosis inducers
and
promoters

BAY 87–2243 Inhibit mitochondrial complex I

BAY 11–7085 Upregulate HMOX1

Auranofin/Ferroptocide Inhibit thioredoxin

iFSP1 Inhibit FSP1

4-CBA CoQ10 depletion

DAHP Inhibit GCH1

Methotrexate Inhibit DHFR

MF-438/CAY10566 Inhibit SCD1

JQ-1 Promote ferritinophagy
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Conclusion and outlook

Glioma is the most common primary brain tumor in the

central nervous system. The current standard treatment for

glioma improves slightly the survival of patients, and all the

treatments have shown some limitations and drug resistance.

Ferroptosis is a newly defined form of cell death that plays an

important role in the progression of glioma, affecting glioma cell

proliferation, invasion, tumor necrosis, angiogenesis, and

participating in the construction of an immunosuppressive

glioma microenvironment. Moreover, ferroptosis can interfere

with other modes of cell death. Thus, the induction of ferroptosis

in gliomas has the potential to be a new option beyond standard

therapies. Existing clinical reports and drug studies have shown

that ferroptosis inducers used in combination with radiotherapy

or TMZ can improve glioma treatment resistance, many drugs

based on ferroptosis can play an aggressive role in glioma

treatment, and targeting ferroptosis can contribute to the

improvement of glioma treatment outcome. In order to apply

ferroptosis in glioma treatment further, we need to perform a

more in-depth study of the mechanisms involved in ferroptosis,

to identify the population for which ferroptosis therapy is
Frontiers in Oncology 08
suitable; the toxicity of ferroptosis-inducing drugs, and drug

delivery issues, we need to answer how to cross the blood-brain

barrier effectively while avoiding off-target effects.
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