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Abstract

Human decisions often deviate from economic rationality and are influenced by cognitive biases. One such bias is the
memory bias according to which people prefer choice options they have a better memory of—even when the options’
utilities are comparatively low. Although this phenomenon is well supported empirically, its cognitive foundation remains
elusive. Here we test two conceivable computational accounts of the memory bias against each other. On the one hand, a
single-process account explains the memory bias by assuming a single biased evidence-accumulation process in favor of
remembered options. On the contrary, a dual-process account posits that some decisions are driven by a purely memory-
driven process and others by a utility-maximizing one. We show that both accounts are indistinguishable based on choices
alone as they make similar predictions with respect to the memory bias. However, they make qualitatively different
predictions about response times. We tested the qualitative and quantitative predictions of both accounts on behavioral data
from a memory-based decision-making task. Our results show that a single-process account provides a better account of the
data, both qualitatively and quantitatively. In addition to deepening our understanding of memory-based decision-making,
our study provides an example of how to rigorously compare single- versus dual-process models using empirical data and
hierarchical Bayesian parameter estimation methods.

Keywords Judgment - Decision making

Introduction Gluth et al. (2015) showed one of such violations
in a decision-making task in which the subjective value
(utility) of the options had to be recalled from memory. In
this paradigm, individuals first learn to associate different
snacks with specific locations. Afterward, they choose
between two locations and therefore need to remember to
which snacks the two locations were associated with (see
Fig. 1). The authors reported that participants tended to
prefer remembered snacks over forgotten snacks, even when
playing a role in the evaluation process, can contribute the subjective vz.:llue of the former was lower than ave:rage
to violations of standard economic theories of decision- (and thus more likely to be lower than the forgotten option’s
making (Weber & Johnson, 2006). subjective value). The authors referred to this effect as the
memory bias. Using functional magnetic resonance imaging

59 Peter M. Kracmer (fMRI), Gluth et al. (2015) further showed that this tendency
peter.kraemer @unibas.ch was mediated by an increased effective connectivity from
the hippocampus to the ventromedial prefrontal cortex.
Since these areas are typically associated with memory

Many decisions in our daily lives, such as where to go
on holiday or what to buy in a grocery store, rely on
information from memory. Although the role of memory
processes in judgements and decision-making has been
neglected for a long time, researchers have recently put
more emphasis on the relation of these two domains
(Shadlen & Shohamy, 2016; Weilbacher & Gluth, 2017).
For example, recent studies focused on how memory, by
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Fig. 1 Experiment on memory-based decision-making. During task 1, participants rated their subjective value for all snacks. Task 2 was the
remember-and-decide task which comprised four phases: encoding, distraction, decision and recall. Here, we show one example trial per phase.
During encoding, participants associated snacks with individual locations. The distraction phase contained a 2-back task with integers. In the
decision phase, they retrieved snack-location associations from memory and made preferential choices between snacks. During recall, participants
indicated which snack they associated with each location. Note that this is a simplified depiction of the experiment. For a full overview, see

Mechera-Ostrovsky and Gluth (2018)

strength on utility (Mechera-Ostrovsky & Gluth, 2018), and
that it exhibited typical characteristics of decisions under
uncertainty (Weilbécher et al., in press).

Gluth et al. (2015) proposed a computational model that
assumes people to choose between a remembered and a
forgotten option by comparing the remembered option’s
value against a reference value. If this reference value is
below the average snack value, the model predicts that
people are more likely to choose remembered options,
leading to the memory bias. Critically, this account assumes
that all decisions between a remembered and a forgotten
option result from the very same comparison-against-
reference-value process. Therefore, it is a single-process
account of the memory bias. Gluth et al. (2015)’s account
of the memory bias is thus in stark contrast to dual-process
theories (Kahneman & Frederick, 2002; Evans, 2008).
Dual-process models assume that decisions are driven by
two independent processes (so-called “type 1~ and “type 2”
processes) (Evans & Stanovich, 2013). Type 1 processes are

described as intuitive processes that lead to relatively fast,
automatic, and uncontrollable choices. Type 2 processes, on
the other hand, are controlled, deliberate processes that lead
to slower responses that are closer to normative predictions.
Type 2 processes are thus viewed as rational processes (but
see Oaksford & Hall, 2016). Such a dual-process account
explains the memory bias as follows: In some cases, people
make a decision based on a type 1 process which leads
them to choose the option they remember better—intuitively
and independently of its subjective value. In other cases,
they make a decision based on a type 2 process. The
type 2 process implements an unbiased choice, based on
a cognitively demanding decision process that takes the
subjective value of the remembered option into account in a
rational (i.e., utility-maximizing) way.

As we will show, both single- and dual-process accounts
can produce the memory bias on choice. Thus, we face a
model-selection problem: Two models can account for the
same behavioral phenomenon, but the assumed underlying
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cognitive processes are fundamentally different. To find
out which model is more suitable to explain the memory
bias, we consider an additional data dimension, namely
response times (RTs). The consideration of RTs has a
rich tradition in psychological research, since they contain
information about the underlying cognitive processes (Luce,
1986). Additionally, RTs can aid model selection (Ballard &
McClure, 2019; Gluth & Meiran, 2019; Wilson & Collins,
2019). Critically, we will show that although the single-
and dual-process accounts can make similar predictions on
choice behavior, they differ with respect to RTs. Therefore,
considering both dimensions, choices and RTs, aids to
resolve the present model-selection problem.

Joint modeling of choices and RTs is often done
in the framework of sequential-sampling (or evidence-
accumulation) models (Bogacz et al., 2006). A popular
sequential-sampling model is the diffusion decision model
(DDM) (Ratcliff, 1978; Ratcliff & Rouder, 1998). In a
nutshell, the DDM describes a decision between two options
as an accumulation of noisy, relative evidence over time
(see also Fig. 2). Evidence, in the current task, represents
the information regarding an option’s subjective value that
is recalled from memory. The accumulation process ends
when the relative evidence for one or the other option
surpasses a certain threshold. At that point, the decision is
made. The accumulation process can also be biased towards
one of the two options already at the beginning of a trial.
The rate of evidence accumulation is referred to as the drift
rate of the decision process. The higher the drift rate towards
a specific option, the more often that option is chosen and
the faster the decision. On the other side, the threshold
controls how cautiously decisions are made. The higher the
threshold, the slower and more consistent the decisions are.

Over the years, the DDM has been applied successfully to
processes of memory retrieval and perceptual decision-making
(Ratcliff et al., 2016), but researchers also adapted it to value-
based decisions (for recent overviews see Busemeyer et al.,
(2019) and Clithero, 2018). Importantly, Gluth et al. (2015)

a
7 Remembered
Vsppm ! 4
a T f}")\"‘» N;'
et W
— Forgotten
Te T

time

Fig. 2 Diffusion decision models. a Diffusion process of the single-
process account. Evidence for an option accumulates over time with
a rate of vgppy until the threshold (boundary) for one choice
option (remembered or forgotten) is reached. The boundary separation
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used the DDM as the basis of their single-process account
of memory-based decisions. Within their model,the memory
bias results from abiased reference value for forgotten
options, which influences the drift rate of the decision
process. In recent years, novel evidence-accumulation
models were developed to reflect ideas from dual-process
theories of decision-making (Diederich & Trueblood, 2018;
Albés-Ferrer, 2018). In particular, the dual-process diffusion
model by Alés-Ferrer provided a suitable account of a range
of phenomena from judgment and decision-making tasks.
The model assumes two independent decision processes:
a type l-like heuristic process and a type 2-like utility-
maximizing process. Since both the single- and dual-process
accounts operate within the same framework (i.e., the
DDM), it is possible to rigorously evaluate which of the two
accounts better explains the memory bias.

In the present study, we first derived choice and RT predic-
tions of a single- and a dual-process DDM in the context of
memory-based decisions. Next, we compared the differ-
ent qualitative predictions of these models with the actual
RT data from a comparatively large sample of participants
who performed the remember-and-decide task (Mechera-
Ostrovsky & Gluth, 2018). Finally, we conducted a quan-
titative model comparison within a hierarchical Bayesian
parameter estimation framework. Both our qualitative and
quantitative comparisons lend consistent support for the
single-process account, thus strengthening our knowledge
of the computational cognitive basis of value-based deci-
sions from memory.

Methods
Participants

We analyzed data from a previously published study
(Mechera-Ostrovsky & Gluth, 2018). In total, 96 partici-
pants (67 female, mean age = 23.5, age range: [19, 35]) took
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depends on the parameter a, and T,, depicts the non-decision time. b
The dual-process account assumes two diffusion processes with differ-
ent drift rates (Vyyiriry and Vyeuristic). A Bernoulli trial based on the
parameter A selects either the utility or the heuristic diffusion process



Psychon Bull Rev (2021) 28:304-323

307

part in that study. Due to early termination and age restric-
tions, the data from six participants were not analyzed. The
participants were students who took part in the study for
course credits. The procedure was approved by the ethics
committee of the University of Basel and all participants
gave written informed consent.

Procedures

The full experimental procedure is described in Mechera-
Ostrovsky and Gluth (2018). Here, we summarize the
procedures relevant to the present research question.
Participants were required to fast for four hours before the
experiment started. They familiarized themselves with a set
of 48 snacks. For each snack, they learned intuitive three-
letter abbreviations (e.g., “sni” for “Snickers”) until they
reached 100% accuracy. Participants’ subjective valuation
of each snack was assessed on a continuous rating scale
(Fig. 1). This evaluation was incentivized by selecting two
snacks randomly at the end of the experiment and giving the
higher-rated snack to the participant to eat.

After eliciting subjective valuations, participants faced the
remember-and-decide task which consisted of the four
periods encoding, distraction, decision, and recall (in that
order). During encoding, participants saw empty squares
at six different locations on the screen. One after another,
each location was highlighted, and a snack image appeared
in the respective square. Participants had to associate and
remember which snack was located in which square. During
the distraction period, participants performed a 2-back
working memory task that prevented them from rehearsing
the information obtained in the encoding phase. During the
decision period, the six squares were presented again and, in
each trial, two squares were highlighted. Participants picked
one of the two snacks hidden behind the empty squares.
Since the snack identity was not visually accessible, they
had to retrieve it from memory to make an informed choice.
During recall, the snack-location associations were probed
to assess memory strength for each snack location.

Data preprocessing

First, we excluded trials that were unlikely to originate
from a deliberate process: In particular, we excluded trials
in which no choice was made (2.0%) and in which RTs
were lower than 200 ms (1.4%). We then excluded trials
that do not help to discriminate between single- and dual-
process accounts: In particular, both accounts make the
same predictions for behavior in trials in which both options
are remembered or both options are forgotten. Therefore,
we restricted our analyses to trials where one snack was
remembered and the other was forgotten. This resulted in a
total of 8031 trials (on average 89.2 trials per participant,

SD = 15.80, range: [39, 118]). See Appendix Al for more
information on the trial types and Appendix B3 for analyses
including all trial types.

Cognitive models
The diffusion decision model

In its original form, the DDM predicts choices and
RTs using four parameters (Ratcliff, 1978). First, the
boundary separation a determines the (relative) amount
of evidence required to terminate the deliberation process.
This parameter is responsible for speed—accuracy tradeoffs.
Second, the starting-point bias z determines the amount
of relative evidence at the beginning of the deliberation
process. This parameter reflects prior information or a
bias in favor of one of the options. Third, the drift
rate v determines the speed of evidence accumulation.
In value-based decision-making, the drift rate is often
directly proportional to the value difference between the
two available options (e.g., Krajbich et al., 2010). The
stronger the value difference, the higher the drift rate,
making choices both faster and more frequently in favor
of the option the drift rate is directed to. Analogously,
small differences of values imply a low drift rate and thus
higher RTs and less frequent choices in the direction of the
drift rate. Finally, the non-decision time 7, absorbs every
process that is not part of the deliberation process, such as
the time it takes to execute the button press or to visually
encode the stimuli.

Single-process account

According to Gluth et al. (2015)’s model of the memory
bias, participants compare the subjective value of the
remembered snack with a reference value. Thus, the drift
rate depends on a comparison process such that

vsppoM = Viem — 7, (D

where vsppyy is the drift rate, V., is the subjective value of
the remembered option and y is the reference value. Here,
a single evaluation process gives rise to the memory bias in
every trial. This is why we refer to the model as a single-
process diffusion model (SPDM). An example of a diffusion
process is depicted in Fig. 2a.

Importantly, Gluth et al. (2015) argued that—assuming that
memory strength is independent of value—this reference
value should be unbiased (i.e., equal to the mean of all
options) in order to maximize utility. When estimating it as
a free parameter, however, the reference value was found
to be biased such that remembered options appeared to be
more valuable, even if they were comparatively unattractive.
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Dual-process account

To model the dual-process account, we adopted the
dual-process diffusion model (DPDM) by Alés-Ferrer
(2018). The DPDM assumes that people vary between
two types of choice strategies across trials (see Fig. 2b).
In some trials, people use a utility process which
captures ‘“‘computational-normative aspects of decision-
making” (p. 203). In other trials, a heuristic process favors
“intuitive-affective attributes” (ibid) of a choice option
with a relatively high drift rate, leading to fast and more
consistent responses. The selection of a process in a given
trial is supposedly governed by the central executive. It
selects the utility process with the probability A and the
heuristic process with 1 — A. The drift rate of the DPDM in
a given trial is given by

VpPDM = Putility: ?fk =1 ()

VHeuristics i1k =0

where k is the outcome of a Bernoulli trial B(A).

In the context of memory-based decisions in the
remember-and-decide task, we propose that v,y reflects
the utility-maximizing process in which V., is compared
to the (unbiased) average snack value of all possible snacks
Vavg. Thus, the cognitively demanding utility process tends
to select the option with the higher subjective utility without
a bias towards the remembered option. If individuals do not
follow the utility-maximizing process, they rely on a simple
decision rule to make a choice. In the context of memory-
based decisions, they can use recognition as a cue for value,
much in line with the recognition heuristic in judgment tasks
(Goldstein & Gigerenzer, 2002) (see also Discussion). In
the diffusion-model framework, vgeuristic reflects the drift
rate of the heuristic process that favors the choice of a snack,
because it can be recalled correctly. Importantly, vy eyristic
is independent of the snack’s subjective value.

Qualitative predictions

The SPDM and DPDM can make very similar predictions
regarding choices, but they differ significantly with respect
to their predictions of RTs.

Previous research (e.g., Bogacz et al., 2006) showed
that, in a simplified version of the DDM (i.e., without the
starting-point bias and without across-trial variability in any
of the parameters), choices of option A over B are related to
the DDM parameters as

1 3
T’
14+ eo?
where v is the drift rate, a is the boundary separation, and o
is the noise of the drift process. If v — oo, participants are
more likely to select option A and, conversely, if v — —o0,

P(choose Alv,a,0) =1 —
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participants are more likely to choose option B. If v = 0,
participants are indifferent between A and B.
The expected RTs under the DDM are given by

RT =T, + DT,
a va

DT (v,a,o0) = —tanh (—2), 4@
v o

where T, is the non-decision time and DT is the mean
decision time as a function of the diffusion parameters
(Bogacz et al., 2006). The DDM typically predicts an
inverted U-shaped curve of the average RTs as a function
of the drift: The expected RTs are slow when the speed of
evidence accumulation is low (v = 0) and fast when the
speed of evidence accumulation is high (v — £00).

In the SPDM, the drift rate depends on V., and on
the reference value y (see Eq. 1), such that v = 0 when
Viem = y. Accordingly, the SPDM assumes participants
to be indifferent between choice options whenever V,..,,, =
y. This is reflected in a sigmoidal choice-probability
curve with its indifference point at a negative V., value
(Fig. 3b, green, continuous line). Such a curve was shown
to reflect the memory bias (Gluth et al., 2015) and
was found in the choice data used in the present study
(see Mechera-Ostrovsky & Gluth, 2018). Furthermore, the
SPDM assumes that the RTs follow an inverted U-shape
with its peak at a negative V,., value (Fig. 3d, green,
continuous line).

The DPDM assumes two drift rates of two independent
diffusion processes, only one of which is selected in a given
trial. On utility trials, individuals use a utility-maximizing
strategy so that vyyiiry = Viem — Vavg, leading to vyyiziry =
0 when Viem = Vayg. This is illustrated in Fig. 3a (blue,
dashed line), where the sigmoidal choice curve of the utility
process has its indifference point at a V.., = 0, which
corresponds to the average value of all snacks. Accordingly,
the RT curve follows an inverted U-shape with its maximum
at Viem = Vgaug (Fig. 3c, blue, dashed line). In heuristic
trials, the heuristic process accumulates evidence in favor of
the remembered option, independently of its actual value.
Since Vyeyuristic 1s independent of V,..,,,, the choices and RTs
are also independent of V., (Fig. 3a/c, red, dotted lines).
The full predictions of the DPDM (Fig. 3b/d, purple, dash-
dotted lines) will be a mixture of the predictions of its two
sub-processes, depending on the mixture parameter A.

Crucially, the DPDM is virtually indistinguishable from
the SPDM on the level of choices alone: The choice curves
are shifted to the left, such that its indifference point is at a
negative V., value. However, since the expected RT curve
of the heuristic process is independent of V,..,,, the peak of
the RT curve across all trials only depends on the utility
process. Therefore, the RT curve of the DPDM follows an
inverted U-shape with its peak expected RT at Ve = Vg
(for a mathematical proof, see Appendix A2). In sum, while
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Fig.3 Qualitative predictions. a Expected choice curves of the utility process (blue, dashed) and the heuristic process (red, dotted) as a function
of the value of the remembered snack V... b The weighted average of the two curves in A results in the expected choice curve of the DPDM
(purple, dashed-dotted), which is depicted along with the expected curve for the SPDM (cyan, solid). ¢ Expected RT curves for the utility and

heuristic process. d Expected RT curves for the SPDM and DPDM

the SPDM and the DPDM cannot be distinguished based on
the choice patterns, they can be distinguished based on their
different predictions of RTs.

Testing qualitative predictions

As outlined in the previous section, single- and dual-process
accounts predict different RTs patterns. More specifically,
the DPDM assumes that the RT curve peaks at Ve = Viug,
whereas the SPDM peaks at Ve, = y, where y < V.
To test which of these assumptions is supported by the data,
we fitted a quadratic function to the RT data:

RT (Vrem) = Bo + B1 X (Vrem + B2)? ®)

This regression model describes a quadratic function with
intercept o and slope Bi. The term (Vi + B2)? shifts the
maximum RT along the x-axis. If B, equals zero, the curve is
symmetrical around V,,,; which matches the RT predictions

of the DPDM. If B, is larger than 0, the RT curve is shifted
to the left, in line with the SPDM.

To estimate the B, parameter, we fitted a hierarchical
Bayesian regression model to the log-transformed and z-
standardized RTs. RTs of every trial were predicted using
Viem,» individual B parameters, and Gaussian noise. The
individual-level  parameters (denoted by subscript s) were
drawn from group-level normal distributions:

Bo.s ~ N (g, opy)
Brs ~ N(up, . 0p,),
BZ,S ~ N(MBQ’ GBZ) (6)

At the group-level, all prior distributions were standard
normal (for the p parameters) and standard half-normal (for
the o parameters) distributions.

We leveraged the fact that, in case of the qualitative RT
model, the DPDM’s prediction is nested within the SPDM’s
prediction with the restriction ug, = 0. We applied a
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Gaussian kernel density estimation (with a bandwidth of
.1) to the posterior samples of g, and obtained a Bayes
factor using the Savage-Dickey density ratio test (e.g., Lee
& Wagenmakers, 2013).

Importantly, the SPDM does not only predict a shift to
the left in both the choice and the RT curves (see Fig. 3b and
d), but it also assumes that these shifts arise from the same
process. Therefore, these two shifts of choice and RT curves
should be related to each other. To test this relationship,
we quantified the memory bias on choice as the intercept
parameter of a hierarchical logistic regression model. When
this parameter is larger than O, the choice curve shifts in
favor of the remembered option. Analogously, we interpret
the B, parameter as memory bias on response times. To
assess whether participants who exhibit a larger memory
bias on choices also show a larger memory bias on RTs, we
performed a Bayesian correlation analysis on the individual-
level posterior medians of the intercept and B, parameters.

Quantitative model comparison via hierarchical
Bayesian modeling

In addition to comparing their qualitative predictions,
we performed a quantitative model comparison using a
hierarchical Bayesian approach. This comparison offers a
more precise evaluation of the validity of the assumed
cognitive processes. To the best of our knowledge, the
DPDM (Alés-Ferrer, 2018) has only been used to derive
qualitative predictions so far. Therefore, we consider our
model comparison as providing a principled way of gauging
the DPDM’s quantitative adequacy.

SPDM

In the SPDM, choice and RT data come from a diffusion
process that results in a Wiener distribution:

y ~ Wiener(a, z, Ty, v). 7

In the hierarchical model, the subject-specific parameters
(denoted by subscript s) are drawn from normal group-
level distributions with respective group-level parameters w
and o (hyper priors are listed in Appendix B1). Boundary
separation ag, starting point bias z; and non-decision time
T, were estimated as
ag ~ &N (Ha00)
zs ~ PN (g, 07)),
T, ~ N WTerTer), ®)

where ® denotes the cumulative distribution function of the
standard normal. The drift rate parameter v varies from trial
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to trial (subscript ¢) as follows:

vs,r = dsppm[Remyigns,, X (Vright,, — vs) — Remyefs,
X(Vleftx_, — vl
dsppm, ~ eN(MdSPDM’UdSPDM),

Vs '\’N(Mys oy), )

where Remyign,, (Remjer,, ) are dummy variables, indi-
cating whether the right (left) snack was remembered, and
Vyights, (Vieft,,) indicating the subjective value of the right
(left) snack. dsppu, is a free parameter which scales value
differences to the speed of evidence accumulation. y was
the parameter which acts as reference value, indicating the
biased value comparison in the SPDM.

DPDM

The DPDM is a mixture model, where the choices and RT's
come from two different diffusion processes:

y ~ A x Wiener(a, z, Ter, vuiitity) + (1 — A)

xWiener(a, z, Tor, VHeuristic),

Ay ~ PN (pa, on)). (10
The mixing parameter A indicates the proportion of trials in
which the response was generated by the utility process.

While both processes share the same parameters a, z and
T.,, they differ with respect to their drift rates vy, and

VHeuristic- VUrility 18 the same as in the SPDM but compares
Viem to the average snack value (Vg ) instead of .

- Vavgx)
_Remleftw X (Vleftw - Vllng)]ﬂ
N (Wayyiiny Odyiiry) (11)

VUtilitys; = Autility[ReMyright,, X (Vright,,

dutility, ~ €
The drift rate of the heuristic process is a free parameter:

VHeuristics; = dHeuristicS [Remrights., - Remlefts,,]’

dHeurisZics ~ eN(’u'dHeurist[c’GdHeuristir . (12)

Note that the exponential transformation enforces a positive
drift rate in the direction of the remembered option.

Model fitting and model comparison

We estimated the parameters of both hierarchical models
with Stan (Stan-Development-Team, 2018) using a No-U-
Turn sampler (Hoffman & Gelman, 2014). Each model was
estimated with four chains of 10,000 iterations each (50%
of which were warm-up iterations that were discarded). To
ensure model convergence using the R statistic (Gelman
& Rubin, 1992), we checked that R <= 1.01 for all
parameters. We compared the penalized-for-complexity fit
of both models using the widely applicable information
criterion (WAIC; Watanabe, 2013).
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As all model comparison procedures are relative mea-
sures of fit (i.e., they can only assess the model performance
relative to other models), we generated posterior predictive
distributions for choice rates and RTs as a function of V,,,,
to evaluate absolute model performance (i.e., the degree to
which they are able to capture quantitative and qualitative
patterns in the empirical data). To do so, we simulated 500
experiments using virtual agents who behaved according to
the model equations. Note that in the DPDM simulations,
each trial was either a heuristic or utility trial, determined
by the outcome of a Bernoulli trial with probability Aj.
Each agent’s parameter vector was drawn randomly from
the posterior distribution obtained during model fitting. We
aggregated the choices and RT's across trials and participants
into 8 bins and calculated the respective 95% highest-
density interval (HDI; Kruschke, 2015). Using parameter-
and model-recovery analyses we confirmed that both mod-
els were able to recover data-generating parameters and
that the models make different predictions with respect to
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behavior such that a data-generating model can be correctly
identified (see Appendix B2 for details).

Results
Qualitative results

Our first approach to compare a single- and a dual-process
account of memory-based decisions making was to evaluate
the qualitative predictions of the respective approaches by
fitting a regression model (5) to the RT data. As outlined
in the Method section, the single-process account predicts
that the RT curve follows an inverted U-shape (as a function
of value difference) with its peak at a negative value of
Viem- This shift is quantified by the parameter ug, (see
Eq. 5). In line with this prediction, the posterior distribution
of up, was positive and the 95% HDI excluded zero (M =
.62, 95% HDI: [.30,.98]). The individual-level means were
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Fig. 4 Qualitative results. a Average RTs depending on V,.,, in black. Error bars depict the empirical 95% Cls. The orange curve yields the
predicted RT curves from the RT Model, using the posterior mean. The dotted curves indicate the predicted RTs of a 95% highest density interval
of the posterior distributions. b Prior (grey) and posterior (orange) parameter distributions of 1. ¢ Empirical choices (black) and the estimated
choice curve (orange). d Correlation of the individual estimates of memory bias on choice, and the memory bias on RT

@ Springer



312

Psychon Bull Rev (2021) 28:304-323

distributed around the posterior upg, with a op, (M =
49, 95% HDI: [.17,.86]). The RT model predicted the
empirical RT data very well (Fig. 4a). To directly compare
the predictions of the SPDM and the DPDM, we obtained
a Bayes factor using the Savage—Dickey density ratio that
tested whether ug, is different from 0. We obtained very
strong evidence in favor of the alternative hypothesis that
up, is not 0, with a Bayes factor of 128.9, providing further
support for the SPDM model.

Because the single-process account predicts that the mem-
ory bias on RT and the memory bias on choice arise from
the same underlying process, we also fitted a hierarchical
logistic regression model to the individual choice data. The
group-level intercept indicated a shift of the choice curve in
line with the memory bias on choice (M = .35, 95% HDI:
[.25,.46]) and reproduces the non-Bayesian results reported
by Mechera-Ostrovsky and Gluth (2018). Figure 4c depicts
the predicted choice curve as a function of V...

We correlated the medians of the participant level
intercept parameter distributions (which reflect the memory
bias on choice of each participant) with the s parameters
of the RT-model (which reflect the memory bias on RT).
As predicted, the individual intercepts from the regression
model correlated positively with the B estimates from the
RT-Model (r = .315, 95% HDI: [.12,.49], Fig. 4d). Thus,

Table 1 Group-level parameter estimates for the single- and dual-
process diffusion models.

Model Parameter M 95% HDI

SPDM Ha 1.77 [1.68, 1.88]
oy 1.30 [1.25, 1.35]
T, 0.29 [0.27,0.32]
OT,, 1.46 [1.38,1.57]
Wy 0.52 [0.51,0.52]
o; 1.05 [1.03, 1.08]
Hdsppy 0.36 [0.31,0.41]
Odsppm 1.70 [1.51, 1.93]
My —-0.54 [-0.70, —0.39]
Oy 1.82 [1.58, 2.10]

DPDM Ka 1.82 [1.73,1.93)
oy 1.31 [1.26, 1.36]
T, 0.29 [0.26,0.31]
OT,, 1.48 [1.38,1.57]
Wy 0.52 [0.51,0.52]
o; 1.06 [1.04, 1.09]
Hdyqitiry 0.70 [0.55, 0.85]
Odyiitity 1.54 [1.30, 1.86]
Hdigeurisiic 0.29 [0.17,0.48]
Odbeuristic 3.03 [2.03, 4.62]
UA 0.55 [0.44, 0.66]
oA 1.84 [1.49,2.32]

Note. M represents the posterior mean. The 95%-HDI depicts the
boundaries of the 95% highest-density interval. Note that these values
are transformed with respective transformation functions (see main
text)
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the shift in the RT curve is associated with the shift in the
choice curve, suggesting a common underlying mechanism.

Quantitative results

In addition to the qualitative analysis, we compared the
SPDM and the DPDM on a quantitative level by a model
comparison within a hierarchical Bayesian framework.
Summary statistics of the posterior distributions of all
group-level parameters are provided in Table 1.

We relied on the WAIC for model comparison. The SPDM
had alower WAIC than the DPDM (17,394 vs. 17,468), with

1.00 1 |
SPDM

DPDM

0.75 1

N . ——

0.50 {--

0.25 1

Mean P(choose remembered)

0.00 — T

O ]

1.44

=
w
L

[any
N
L

=
=
L

=
o
L

Mean response times [s]
o
©

o
o
.

0.7

-2 -1 0 1 2
Viem [s.d.]

Fig. 5 Posterior predictives. a shows the 95% HDI of the means

of simulated data sets, based on the estimated posterior parameter

distributions of the SPDM (cyan) and DPDM (purple). The black dots
indicate the empirical means. b shows the same for response times
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a difference in WAICs of 74.34 (SE = 24.74), resulting in
a strong standardized effect size of % = 3.01.

We performed posterior predictive checks to assess absolute
model performance. Both models are capable to produce a
shift in the choice curve (see Fig. 5a). However, whereas the
SPDM predicts most data points well (i.e., within the 95%
HDI), the empirical data often lie outside the 95% HDI of
the DPDM, particularly when V,..,, is low. With respect to
RTs, this difference is even stronger (Fig. 5b). Specifically,
when V,..,, was below average, the DPDM underestimated
the RTs. When it was above average, it overestimated them.
This result is in line with the notion that the DPDM is
unable to account for a shifted U-shaped RT curve, as it is
forced to predict a curve that is symmetrical around zero.
In contrast, the SPDM provides an accurate account of the
empirical RT curve. Taken together, both the relative and the
absolute model comparisons confirm the qualitative results
and provide additional support for a single- and against a
dual-process account of memory-based decisions.

Discussion

The present study compared a single- with a dual-process
account of memory-based decisions. The single-process
account assumes that memory affects the valuation of
options, such that better-remembered options are perceived
as more valuable. In contrast, the dual-process account
assumes that each decision is made by one of two processes,
where a rational process competes with a heuristic-based
process which ignores value and uses memory-strength
information only. While the single-process account was
already tested before (Gluth et al., 2015), the dual-process
account, implemented on the basis of the DPDM as
proposed by Alds-Ferrer (2018), has never been tested in the
current context. This study thus provides a first empirical
test of these opposing theories on memory-based decisions.
We found that both models can make similar predictions
with respect to choices but differ regarding their predictions
of RTs. Using previously published data from a memory-
based choice task (Mechera-Ostrovsky & Gluth, 2018), we
found consistent support for the single-process account in
both qualitative and quantitative analyses.

Our results bear strong analogies to a debate on the use of
the recognition heuristic in inference tasks. The recognition
heuristic states that people judge recognized items as being
more important / frequent / larger than unrecognized items
(Goldstein & Gigerenzer, 2002). Originally, the heuristic
was not conceptualized in the framework of dual-process
accounts. However, to account for the fact that people do
not always go with the recognized cue, it has been argued

that the heuristic is applied in some but not all trials (Pachur,
2011). Yet, this proposal was refuted by a recent study
that—similar to our approach-relied on RT data to dissociate
between the recognition heuristic and competing theories of
inferential judgements (Heck & Erdfelder, 2017).

Despite being very popular in judgment and decision-
making and other psychological disciplines (Evans, 2008),
dual-process theories often became a target of fundamental
criticism for conceptual issues but also for the lack of empir-
ical support (Keren & Schul, 2009; Kruglanski & Gigeren-
zer, 2011; Melnikoff & Bargh, 2018). One shortcoming
of many dual-process theories is their poor formalization
which impedes quantitative model comparison (Diederich
& Trueblood, 2018). This is especially true, when between-
trial dynamics which account for choice and RT differences
are ignored (Krajbich et al., 2015). In this study, we outlined
a principled way to test a dual-process against a single-
process account by means of quantitative and qualitative
model comparison. Our approach is based on a recently
developed formal model of a dual-process account (Alds-
Ferrer, 2018) with suitable assumptions for testing our
particular hypothesis. Apart from model comparison, esti-
mation of the model also offers a deeper understanding of
the underlying processes, such as the relative proportion of
the two presumed processes (e.g., A), or their within-trial
dynamics (e.g., drift rates). We believe the field of judg-
ment and decision-making is well advised to formalize the
proposed dual-process models and to test their empirical
content. This approach has the potential to move the debate
on dual-process models forward by adhering to empirical
findings and methodological rigor.

Within the dual-process framework, there are two types
of conceptualization which specify how the two processes
can be implemented (Evans, 2008). According to the
parallel-competitive structure, type 1 and type 2 processes
run in parallel and a potential conflict between them has
to be resolved to determine which process is applied
in a given decision. The DPDM of Alés-Ferrer (2018)
can be assigned to this group of models. The second
influential dual-process architecture comprises the default-
interventionist models. These models assume that a type
1 process is activated to generate an intuitive default
response but may be overcome by the reflective type 2
process. From a diffusion model perspective, such a process
could be reflected in a starting point bias in favor of the
intuitive option (e.g., Chen and Krajbich, 2018). Hence,
we also tested whether the assumption of a starting point
bias towards the remembered option could account for the
present data, but found that it cannot (see Appendix C1).
An alternative implementation of a default-interventionist
model was proposed by Diederich and Trueblood (2018),
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who investigated risky choices, drawing on prospect theory
(Kahneman & Tversky, 1979) and expected utility theory (
Neumann & Morgenstern, 1953). In our study, however, we
were interested in value-based decisions, which are directly
covered by the DPDM of Alés-Ferrer (2018) but not by
Diederich and Trueblood (2018).

The scientific process of model selection is based on
the principle of parsimony (Occam’s razor). According
to this principle, we should prefer hypotheses that can
account for a complex phenomenon drawing on a few
(rather than many) assumptions. In this study, we found
empirical support that a single decision process provides a
more parsimonious explanation of memory-based choices
compared to a dual-process account. This parsimony is
supported both by the Bayes factors and information criteria
analyses, established methods to compare models in terms
of fit and parsimony (Vandekerckhove et al., 2015). On a
more conceptual level, the single-process account could be
said to draw on fewer assumptions than the dual-process
account. On the one hand, the single-process account can
account for the data assuming a single comparison process,
between remembered option and a biased reference value.
On the other hand, the dual-process account assumes a
computationally demanding utility maximizing process, a
heuristic process depending on recognition of an item, and
a central executive which selects among these processes.

In sum, our results clearly indicate that a single decision
process in which the evaluation process is biased by
memory describes the memory bias better than a dual-
process account that assumed two independent processes
(i.e., a memory-heuristic and a utility process). We fit both
models in a hierarchical Bayesian modeling framework and
outlined a rigorous procedure to empirically test single- and
dual-process accounts of decision-making.
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Appendix
A1 Trial types

In the remember-and-decide task, there are three types of
trials, based on the number of snacks remembered (i.e.,
both remembered; both forgotten; one remembered, one
forgotten). For this study, only the last trial type was of
interest, as the memory bias (i.e., the tendency to prefer
remembered over forgotten options) can only be tested with
these kinds of trials. Table 2 summarizes the trial numbers
for each trial type.

A2 Analytical derivation of expected mean response
times

In the main text, we illustrate the RT predictions of the
DPDM (and the SPDM) using simulations. Predictions for
the expected RT (and for the symmetry of the predicted RT
curve around 0; see Fig. 1) can also be derived analytically.
Here, we report these derivations.

The DPDM describes the expected RTs (eRT) as the
weighted sum of mean RTs of the heuristic and the utility
process. It can be described as

eRTAy = p(H) X p(R|H) x eRT(R|H) + p(H)
x[1— p(R|H)] X eRT(F|H) + [1 — p(H)]
xp(R|U, AV, y) x eRT(R|U, AV, y)
+[1 = p(H)] x [1 = p(R|U, AV, y)]
xeRT(F|U, AV, y) (13)

where eRTy is the expected RT for the value difference
AV, p(H) is the probability of the heuristic process,
p(R) [p(F)] is the probability of remembering [forgetting]
a snack, and eRT(R) [eRT(F)] is the mean RT for

Table 2 Numbers of different trial types

Trial type Total M SD Range
Both forgotten 5651 62.8 329 13-163
One remembered, one forgotten ~ 8031  89.2  15.8  39-118
Both remembered 5468 60.8 30.0 7-142

Note. Total: Number of trials in the data set; M: mean trial number
per participant; SD: standard deviation; Range: range of trials between
participants
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Table 3 Prior distributions for group parameters.

Group parameter SPDM DPDM
a N(0,3) N(0,3)
Oa HN (0, 3) HN (0, 3)
1ty NQ©, 1) N©, 1)
o HN(©, 1) HN(©, 1)
MT,, NE11 N(=1,1)
o, HN(0,3) HN(0,3)
Kdsppm N, 3) _

Odsppm HN(0, 3) —

My N@©, 1) -

oy HN(0, 3) —

Rdyqitiy - N, 3)
Tdyiitiry - HN (0, 2)
Rdyeurisiic - N(0,3)
Odyeuristic - HN (0, 2)
“a - N(©,3)
oa - HN (0, 3)

remembered [forgotten] snacks. The probability of a utility
process is 1 — p(H), the probability and mean RT of
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Ily — -.01(.02) -.01(.01) -.00(.01) .01(.02)  .00(.02)  .00(.01)

UV — .00(.02) .01(.02) -.00(.01) -.00(.01) -.00(.02) .00(.01)

Ma O3 M1, OT, Mz

Oz

remembered and forgotten choices in utility trials depend on
AV and the reference value y which is equal to V,, in the
DPDM.

Since we assume that the RTs come from a diffusion
process, such that eRT (chooseR) = eRT (chooseF),
Eq. 13 can be simplified to

eRTay = p(H) x eRT(R|H) +[1 — p(H)]
xeRT(R|U, AV, y). (14)

Because the utility process is the only one that depends on
Vrem and assumes the lowest drift rate when V.., = Vg,
the predicted peak of the RT is at Vyy,.

The same logic and equation can be applied to the SPDM
by setting p(H) to 0 and allowing the reference value y
to be a free parameter. Then, the predicted peak RT in the
single-process account is at y .

B1 Prior distributions of group parameters
In our hierarchical models, the individual model parameters

were all drawn from normal distributions at the group level.
Thus, for each model parameter, we estimated a group mean

0.8
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Fig. 6 Correlations of group parameter posterior samples of the SPDM. Each cell shows the mean correlation coefficients (using Fisher’s

transformation) with the corresponding standard deviation in brackets
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and a group standard deviation, on top of the individual
parameters themselves. All group means were given a
weakly-informative normal prior, and all group standard
deviations were given a weakly-informative half-normal
prior. The prior distributions for the group-level parameters
are listed in Table 3.

B2 Parameter and model recovery analyses
Parameter recovery

We performed a parameter-recovery analysis for both
models. For each model, we chose the ten group-level
parameter estimates from the respective models’ posteriors
that had the highest log-likelihood. From these group-
level distributions, we drew 90 independent samples that
determined individual-level behavior of the artificial agents.
As inputs for the agents, we used the same inputs that
we used for model fitting. For the DPDM, each trial
was simulated to be either a heuristic or utility trial,
based on independent Bernoulli trials B(A;). We re-
fitted each of these generated datasets with the respective

Ha
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models to assess the degree to which parameters could be
recovered.

Following an analysis approach implemented in
Fontanesi et al. (2019), we addressed three questions in
this analysis: 1) Do parameter values trade off during the
estimation procedure (i.e., to which degree do models suf-
fer from sloppiness)? 2) Are the models able to correctly
identify the group-level parameters? 3) Are the models able
to correctly identify the individual-level parameters?

To address question 1, we calculated Pearson correlation
coefficients between the posterior samples of all group
parameters of each of the ten fitted artificial data sets.
Subsequently, the ten correlation coefficients were Fisher-
transformed and subsequently averaged and their standard
distribution was calculated. Note that group parameters
were drawn independently from each other. Therefore,
there should be no correlation between the posterior
samples. Figure 6 shows the mean correlations between the
parameters. Overall, we only observed weak correlations
between pgsppy and ogsppm, and pgsppy and p,.
The DPDM suffered from stronger sloppiness, especially

between MdUlility’ ldeHeuristic and Ha (Flg 7)
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Fig. 7 Correlations of group parameter posterior samples of the DPDM. Each cell shows the mean correlation coefficients (using Fisher’s

transformation) with the corresponding standard deviation in brackets
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Fig. 8 Identifiability of the SPDM group parameters. Horizontal black lines indicate the generating parameter values for the ten simulations.
Vertical lines indicate the 95% HDI of the estimated parameter distributions

To address question 2, we calculated the 95% HDIs
of the posterior group-level parameter distributions. If the
parameters are identifiable, the 95% HDI of should include
the true data-generating parameter value (see also Spektor
and Kellen, 2018). We observed good identifiability of the
group-level parameters for both models (Figs. 8, 9, 10 and
11).

To address question 3, we correlated the true data-
generating parameters on the individual level with the
estimated means of the posterior distributions. For this
analysis, the means were transformed back to the space of
the group-level parameters. For both models, we observed
very good recovery of the a and T, parameters. The
recoverability of z was lower but still fair which may be
due to the low explanatory power of this parameter. The
parameters which specified the drift rate were recovered
well for the SPDM, and fairly well for the DPDM. Overall,
we judge the recoverability to be good for the SPDM
and relatively good for the DPDM, and sufficient for both
models.

Model recovery

We performed a model-recovery analysis to assess whether
both models could in principle be identified as the winning
model, given that the data are generating by the respective
model. From the parameter recovery analysis, we used
the 20 simulated set of data of which ten were generated
by each of the models. We fitted both models to each
set of data separately and calculated the WAICs of the
fits. The critical test for the model recovery was whether
a model from which the data was generated wins the
comparison against the competing model on that data. In
other words, given the data were generated with the SPDM,
the WAIC of the SPDM should be lower than the WAIC
of the DPDM (and vice versa for the DPDM). The SPDM
outperformed the DPDM on data which was generated
under the SPDM (Fig. 12). The DPDM, on the other hand,
won the model comparison against the SPDM in all sets
of data that came from the DPDM, showing good model
recovery.
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Fig. 9 Identifiability of the DPDM group parameters. Horizontal black lines indicate the generating parameter values for the ten simulations.
Vertical lines indicate the 95% HDI of the estimated parameter distributions

B3 Analyses on all trial types

The main text focused on trials in which participants
remembered one option but forgot the other one. These are
the only trials in which the memory bias has an influence
on participants’ behavior. In trials in which both options
are remembered, the SPDM assumes a purely utility-driven
choice process (see Eq. 9) because the bias parameter y;
is cancelled out from the drift rate vy ;. When both options
are remembered, the DPDM would also solely rely on the
utility process, since the assumed recognition heuristic is
not applicable. In trials in which both options are forgotten,
the drift rate of both the SPDM and the DPDM equals zero
(again, the DPDM'’s heuristic process is not applicable). In
sum, both models make the same predictions for trials in
which no option and both options are remembered.
Nonetheless, we fitted both models to data from all
three trial types to check whether our results would still
hold. Apart from including all trials, we followed the same
procedures as in the main text. The posterior parameter
distributions are summarized in Table 4. For the SPDM,
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the parameters were similar to those reported in the main
text. On the other hand, the parameters affecting the
drift rate in the DPDM differed when fitting the model
to all trial types. mugy,,;,,, Was estimated to be lower,
MUdy e Was estimated to be higher, and A increased
substantially, indicating a higher proportion of utility
trials.

As in the main text, quantitative model comparison
favored the SPDM (WAIC = 44,465) over the DPDM
(WAIC = 44,645) with a difference in WAICs of 179.98 and
a standardized effect size of % =5.97.

The posterior predictives yielded very similar predictions
for both models (see Fig. 13a—c). Notably, while both
models accounted relatively well for the “one remembered,
one forgotten” and “both remembered” trial types, they
made inaccurate predictions for the “both forgotten™ trials.
This results from the drift rate being zero in the “both
forgotten” trials, which implies the prediction of slow RTs
and random choices. In contrast to these predictions, the
observed choices yielded a slight tendency to choose the
right option (explained by a starting point bias p; > .5) and
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the RTs were not slower than those of the other trial types.
We would argue that participants may have simply guessed,
when they knew that they could not remember either of the
two options.

In sum, both models can be fitted and account all trial
types apart from the “both forgotten” trials. In line with
the results reported in the main text, the SPDM provides a
better account of the data than the DPDM. Moreover, the
parameter estimates of the SPDM remain stable, whereas
those of the DPDM change substantially, reflecting the
robustness of the SPDM, and the rather low robustness of
the DPDM.

C1 Does a default-interventionist process explain
the memory bias?

Apart from the parallel-competitive dual-process account
of Alds-Ferrer (2018), it is conceivable that a default-
interventionist account could explain the memory bias. Such
an approach assumes that during each decision, rapid pre-
conscious processes either approve of the type 1 decision,
or intervene by initiating the rational type 2 process (Evans,
2008). From a diffusion model perspective, a default-
interventionist account resembles a biased starting point
z (Chen & Krajbich, 2018). More specifically, assuming
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that the default response would be implemented as a
starting-point bias, the diffusion process would be biased
so that the intuitive option would be selected quicker
and more often than the non-intuitive one. Technically,
this would still be a single-process account because the
default option cannot finalize the decision process (there is
some deliberation necessary), but its predictions resemble a
default-interventionist dual-process model (e.g., fast errors).

With respect to the remember-and-decide task, this
means that the starting point bias should favor the
remembered option. If a biased starting point provided a
better explanation for the memory bias, the memory bias
parameter should be affected when a model is estimated
with a free starting point which can favor the remembered
option.

@ Springer

To evaluate this, we fitted another diffusion model to
the data. We refer to this model as “memory-bias-as-
starting-point-bias model”. In order to fit the starting-
point bias parameter, we reparameterized the DDM so that
the upper boundary would represent choices in favor of
the remembered option, and the lower boundary would
represent choices against it. Other than that, the model was
parameterized similarly to the SPDM (see Eq. 8)

Vst = ds(VremS,, — ¥s),

ds ~ eN(“dSPDM’”dSPDw,

Vs ~ N(Mya ay), (15)

where Viem,, is the value of the remembered option, d; is
the scale parameter and y; the memory bias parameter.
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Table 4 Group-level parameter estimates for the single- and dual-process diffusion models, considering all trial types

Model Parameter M 95% HDI

SPDM Ka 1.80 [1.70, 1.90]
7} 1.28 [1.25, 1.34]
KT, 0.26 [0.24,0.29]
oT,, 1.51 [1.42, 1.62]
ez .52 [.51,.52]
o 1.05 [1.03, 1.06]
Hdgppm 0.31 [0.27,0.35]
Odsppm 1.70 [1.52,1.92]
My —0.62 [—0.79, —0.44]
oy 1.97 [1.70, 2.34]

DPDM Ha 1.80 [1.72, 1.90]
7} 1.28 [1.25, 1.34]
UT,, 0.26 [0.24, 0.28]
oT,, 1.51 [1.40, 1.60]
Mz 52 [.51,.52]
o 1.05 [1.04, 1.07]
Hedyqitiry 0.32 [0.27, 0.36]
Tdyiitiry 1.75 [1.57, 1.99]
Hdyeuristic 1.00 [0.84, 1.16]
Odpeuristic 1.21 [1.00, 1.42]
79N 93 [.84, .97]
oA 3.60 [2.41,5.70]

Note. M = posterior mean. HDI = highest-density interval. Note that these values are reported after applying their respective transformations (see

main text)
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Fig. 13 Posterior simulations for all trial types. The black dots indi-
cate the empirical means for choices (upper panels) and response times
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of simulated data sets based on the estimated posterior parameter dis-
tributions of the SPDM (cyan) and DPDM (purple). a, b, and c indicate

<

the posterior simulations for “both forgotten”, “one remembered, one

Note that the starting point bias f(z) is scaled between
zero and one. A value of .5 yields that there is no starting
point bias. A value > .5 indicates that there was a bias in
favor of the remembered option, a value < .5 indicates that
the starting point bias was favoring the forgotten option.

After fitting the model, the posterior distributions
revealed that the starting point bias parameter f(u,) did

Table 5 Group parameter estimates of the memory-bias-as-starting-
point-bias model

Parameter M 95%-HDI
Ha 1.77 [1.68, 1.88]
04 1.30 [1.25, 1.35]
UT,, 0.29 [0.27,0.31]
or,, 1.46 [1.38, 1.57]
e 0.49 [0.48, 0.50]
o, 1.05 [1.00, 1.08]
Mdsppy 0.36 [0.31,0.41]
Odsppm 1.70 [1.51, 1.93]
My —0.62 [—0.78, —0.45]
oy 1.82 [1.58,2.10]

Note. M represents the posterior mean. The 95%-HDI depicts the
boundaries of the 95% highest-density interval. Note that these values
are transformed with respective transformation functions (see main
text)
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forgotten”, and “both remembered” trials, respectively. Note that these
simulations depend on the value differences between the right and
the left snack items, and the choices indicate the mean proportions of
choices that favored the right option. d shows the posterior simula-
tions for “one remembered, one forgotten” trials as a function of V.,
analogously to Fig. 5

not bias decisions in favor of the remembered option (see
Table 5). From the posterior estimates it is evident that, if
anything, there was a small starting point bias in favor of the
forgotten option.

The model yielded a WAIC of 17,425 which was higher
than the WAIC of the SPDM.
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