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Sickle cell anemia is one of the best studied inherited diseases, and despite being caused by a single point mutation in the HBB gene,
multiple pleiotropic effects of the abnormal hemoglobin S production range from vaso-occlusive crisis, stroke, and pulmonary
hypertension to osteonecrosis and leg ulcers. Urogenital function is not spared, and although priapism is most frequently
remembered, other related clinical manifestations have been described, such as nocturia, enuresis, increased frequence of lower
urinary tract infections, urinary incontinence, hypogonadism, and testicular infarction. Studies on sickle cell vaso-occlusion and
priapism using both in vitro and in vivo models have shed light on the pathogenesis of some of these events. The authors review
what is known about the deleterious effects of sickling on the genitourinary tract and how the role of cyclic nucleotides signaling
and protein kinases may help understand the pathophysiology underlying these manifestations and develop novel therapies in the
setting of urogenital disorders in sickle cell disease.

1. Introduction

Sickle cell anemia (SCA) has been first described over a
century ago [1] and has become one of the best studied
inherited human diseases. Despite being caused by a single
point mutation in the HBB gene, multiple pleiotropic effects
of the abnormal hemoglobin S production range from
vaso-occlusive crisis, stroke, and pulmonary hypertension to
osteonecrosis and leg ulcers [2–4].

Genitourinary tract function is also affected in SCA, and
although priapism is most frequently remembered, other
related clinical manifestations have been described, such
as nocturia, enuresis, increased frequency of lower urinary
tract infections, urinary incontinence, hypogonadism, and
testicular infarction. Sickle hemoglobin S (HbS) polymerizes
when deoxygenated, resulting in a series of cellular alter-
ations in red cell morphology and function that shorten
the red cell life span and lead to vascular occlusion. Sickle
cell disease (SCD) vaso-occlusion constitutes a complex
multifactorial process characterized by oxidative stress and
recurrent ischemia-reperfusion injury in a vicious circle

contributing to reduced blood flow and results, eventually,
in complete obstruction of the microcirculation and organic
dysfunction [3–6]. The exact pathogenetic mechanisms that
tie genitourinary complications to the fundamental event of
HbS polymerization and hemolytic anemia in SCA have just
about started to be unraveled.

This paper focuses on how previous, sometimes poorly
explained, clinical observations of urogenital disorders in
patients with SCD relate to more recent discoveries on
the role of cyclic nucleotides and protein kinases in the
pathophysiology of sickle vaso-occlusion.

2. Priapism

Priapism is defined as a prolonged and persistent penile
erection, unassociated with sexual interest or stimulation,
and is one of the complications associated with sickle cell
anemia (SCA) since early in 1934 [7]. Priapism reaches a fre-
quency of up to 45% in male patients with SCA, and the rate
of resulting erectile dysfunction (ED) exceeds 30% [8–10].
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Although this complication has been previously reviewed
in depth in this journal [11], the main concepts behind its
pathophysiology will be summarized here for better under-
standing of the mechanisms discussed throughout the paper,
but readers are encouraged to read the previous review.

According to the American Urological Association
Guidelines on the Management of Priapism, priapism can
be subdivided into three categories: ischemic, stuttering, and
nonischemic. Ischemic priapism (veno-occlusive, low flow)
is a persistent erection marked by rigidity of the corpora
cavernosa (CC) and little or no cavernous arterial inflow. In
ischemic priapism, there are time-dependent changes in the
corporal metabolic environment with progressive hypoxia,
hypercarbia, and acidosis that typically generate penile pain.
Penile sinusoids are regions prone to red blood cell sickling
in SCD men because of blood stasis and slow flow rates,
and ischemic priapism is thought to result from prolonged
blockage of venous outflow by the vaso-occlusive process.
Clinically, there is congestion and tenderness in the CC,
sparing the glans and corpus spongiosum, usually with a
prolonged course of over 3 hours, and frequently resulting in
fibrosis and erectile dysfunction. Stuttering priapism (acute,
intermittent, recurrent ischemic priapism) is characterized
by a pattern of recurrence, but an increasing frequency or
duration of stuttering episodes may herald a major ischemic
priapism. Nonischemic priapism (arterial, high flow) is a
persistent erection caused by unregulated cavernous arterial
inflow. Typically, the corpora are tumescent but not rigid, the
penis is not painful and is most frequently associated with
trauma [12–16].

Conventional treatments are largely symptomatic, usu-
ally administered after the episode of priapism has already
occurred, because the etiology and mechanisms involved in
the development of priapism are poorly characterized [17,
18]. Preventive interventions have been proposed but, with-
out a clear idea of the molecular mechanisms involved, they
remain largely impractical to be applied in a regular basis in
the clinic [17]. Due to the difficulty in exploring these mech-
anisms in patients, the use of animal models of priapism has
become of utmost importance to decipher this devastating
clinical challenge [19]. Animal models for priapism
include dogs [20, 21], rabbits [22], rats [23–27], and mice
[28–41].

Molecular biology and genetic engineering have been
widely used in animal models to explore gene function
in both human physiology and in the study of pathology
of human priapism. Four major priapism animal models
have been developed and have yielded greater knowledge
on the intrinsic mechanisms underlying priapism: the intra-
corporal opiorphins gene transfer rat model [42–45], the
endothelial nitric oxide synthase (eNOS) with or without
neuronal NOS (nNOS) knock-out (eNOS−/− ± nNOS−/−)
mouse models [28, 29, 31–33], the adenosine deaminase
knock-out (Ada−/−) mouse model [35, 36, 40, 41] and the
transgenic sickle cell Berkeley mouse model [30, 33, 34, 37–
39]. However, the Berkeley mouse is the only well-accepted
animal model that displays clinical manifestations similar to
those seen in humans with severe forms of SCD, including
priapism [30, 34].

Priapism is essentially a derangement of normal erection.
Penile erection is a hemodynamic event that is regulated by
smooth muscle relaxation/contraction of corpora cavernosa
and associated arterioles during sexual stimulation. The
penile flaccidity (detumescence state) is mainly maintained
by tonic release of norepinephrine through the sympathetic
innervations of vascular and cavernosal smooth muscle
cells [46]. During penile erection (tumescence state), vas-
cular smooth muscle relaxation decreases vascular resis-
tance, thereby increasing blood flow through cavernous and
helicine arteries and filling sinusoids, which are expanded
due to the relaxation of smooth muscle cells in the CC
[47]. This physiological relaxation of penile smooth muscle is
mainly, although not solely, mediated by the neurotransmit-
ter nitric oxide (NO) that is produced by enzymes called NO
synthases (NOS). NOSs are subdivided into three isoforms,
endothelial NOS (eNOS or NOS3), neural NOS (nNOS
or NOS1), and inducible NOS (iNOS or NOS2) [48, 49].
In the penile smooth muscle, NO is released from both
nitrergic nerves and the sinusoidal endothelium [46, 50–
52]. NO stimulates the soluble guanylyl cyclase (sGC) in
the cavernosal smooth muscle, triggering increased synthesis
of cyclic GMP (cGMP) that provides the main signal for
smooth muscle relaxation [53]. cGMP levels in the CC are
regulated by the rate of synthesis determined by sGC and
the rate of cGMP hydrolysis mediated by phosphodiesterase
type 5 (PDE5) [54, 55]. It has been reported that plasma
hemoglobin released by intravascularly hemolysed sickle
erythrocytes consumes NO, reducing its bioavailability in the
erectile tissue, skewing the normal balance of smooth muscle
tone towards vasoconstriction [17, 56, 57]. Champion and
collaborators [33] showed that the penile smooth muscle
of SCD transgenic mice presents with dysregulated PDE5A
expression activity. Moreover, these mice had spontaneous
priapism, amplified CC relaxation response mediated by the
NO-cGMP signaling pathway, and increased intracavernosal
pressure in vivo [37, 38].

Recent evidence has shown that another signaling path-
way that may also contribute to the pathophysiology of
priapism in SCD involves adenosine regulation. Similarly to
NO, adenosine is a potent vasodilator produced by adenine
nucleotide degradation. Adenosine is predominantly gen-
erated by adenosine monophosphate (AMP) dephosphory-
lation catalyzed by intracellular 5′-nucleotidase. Hydrolysis
of s-adenosyl-homocysteine also contributes to intracellular
adenosine formation [58, 59]. Extracellular adenosine may
be generated by both adenine nucleotide degradation and
dephosphorylation by ectonucleotidases [60]. Adenosine is
then catabolized by two enzymes: adenosine kinase (ADK),
which phosphorylates adenosine to AMP and is an important
regulator of intracellular adenosine levels; and adenosine
deaminase (ADA), which catalyzes the irreversible conver-
sion of adenosine to inosine [58].

Several physiological processes may be affected by extra-
cellular adenosine and this is mediated by four different
receptors, referred to as A1, A2A, A2B, and A3. All four
subtypes are members of the G protein-coupled receptor
(GPCR) superfamily. The activation of the A1 and A3

adenosine receptors inhibits adenylyl cyclase activity and
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also results in increased activity of phospholipase C, while
activation of the A2A and A2B subtypes increases adenylyl
cyclase activity [58, 61]. Adenosine-induced vasodilation
is mediated by increasing intracellular cyclic adenosine
monophosphate (cAMP) levels in vascular smooth muscle
cells via A2 receptor signaling [62, 63]. cAMP activates
protein kinase A (PKA) resulting in decreased calcium-
calmodulin-dependent MLC phosphorylation and enhanced
smooth muscle relaxation [64]. Its role in penile erection
has been investigated in studies showing that intracavernous
injection of adenosine resulted in tumescence and penile
erection [36, 61, 65]. In addition, adenosine induces NO syn-
thesis in endothelial cells through A2 receptor signaling, and
adenosine-mediated CC relaxation is partially dependent on
endothelium-derived NO [36, 66–70].

A priapic phenotype in Ada−/− mice was identified and
led to further investigation of the impact of adenosine in the
pathophysiology of priapism [59]. Previous reports showed
that high levels of adenosine caused prolonged corporal
smooth muscle relaxation in vitro. However, this effect was
quickly corrected by intraperitoneal injection of a high dose
of polyethylene glycol-ADA (PEG-ADA), which effectively
reduces adenosine levels systemically [36, 71]. Moreover,
adenosine induced significant increases in cavernosal cAMP
levels via A2B receptor activation. This demonstrated that
A2B receptor signaling is required for adenosine-mediated
stimulation of cAMP production in CC smooth muscle cells
[36, 71]. Mi and collaborators [36] have studied adenosine
levels in the penis of sickle cell mice and have found
a significant increase in adenosine levels, suggesting that
overproduction of adenosine may contribute to priapic
activity in SCD [71, 72]. Sickle cell mice submitted to PEG-
ADA treatment suffered significant reduction of force and
duration of relaxation when compared with untreated mice
[71]. In addition, increased adenosine levels contributed to
the development of penile fibrosis in Ada−/− mice as well
as in transgenic sickle cell mice [72]. These findings suggest
a general contributory role of elevated adenosine in the
pathophysiology of priapism associated with SCD.

Although the penile vascular endothelium and smooth
muscle cells are sources of vasodilation factors such as NO
and adenosine, there are vasoconstriction pathways impor-
tant to the penile hemodynamics, such as the Rho-kinase
(ROCK) pathway. The RhoA/ROCK signal transduction
pathway has been shown to influence erectile function in vivo
through an array of mechanisms, including vasoconstriction
of the penile vasculature via smooth muscle contraction
and regulation of eNOS [73–76]. This pathway is involved
in the regulation of smooth muscle tone by modulating
the sensitivity of contractile proteins to Ca2+ [77]. RhoA
regulates smooth muscle contraction by cycling between a
GDP-bound inactive form (coupled to a guanine dissociation
inhibitor, RhoGDI) and a GTP-bound active form [78–80].
Upstream activation of heterotrimeric G proteins leads to
the exchange of GDP for GTP, an event carried out by the
guanine exchange factors (GEFs) p115RhoGEF [81], PDZ-
RhoGEF [82], and LARG (Leukemia-associated RhoGEF)
[83], which are able to transduce signals from G protein-
coupled receptors to RhoA [84–86]. ROCK is activated

by RhoA and inhibits myosin phosphatase through the
phosphorylation of its myosin-binding subunit, leading to
an increase in Ca2+ sensitivity. The RhoA/ROCK Ca2+ sen-
sitization pathway has been implicated in the regulation of
penile smooth muscle contraction and tone both in humans
and animals [77, 87]. ROCK exerts contractile effects in
the penis by Ca2+-independent promotion of myosin light
chain (MLC) kinase or the attenuation of MLC phosphatase
activity and reduction in endothelial-derived NO production
[88]. RhoA activation, ROCK2 protein expression, as well as
total ROCK activity decline in penile of SCD transgenic mice,
highlighting that the molecular mechanism of priapism in
SCD is associated with decreased vasoconstrictor activity in
the penis [39]. Therefore, should impaired RhoA/ROCK-
mediated vasoconstriction contribute to SCD-associated
priapism, this pathway may become a novel therapeutic
target in the management of this complication.

There has been no definite advance in the management of
sickle cell-associated acute, severe priapism. Penile aspiration
with or without saline intracavernosal injection and eventu-
ally performing surgical shunts remains mainstays of care,
with no evident benefit of more common approaches, such
as intravenous hydration, blood transfusions, and urinary
alkalinization [89, 90]. Pharmacological interventions in
such cases have been limited to intracavernosal use of sym-
pathomimetic drugs, such as epinephrine, norepinephrine,
and etilefrine, but there are anecdotal reports of acute use of
PDE5 inhibitor sildenafil [91].

Nonetheless, most attempts to control SCD priapism
have focused on its recurrent, stuttering form. Small case
series of hormonal manipulation with diethylstilbestrol [92],
gonadotropin-releasing hormone (GnRH) analogues [93],
and finasteride [94] have been reported to successfully
manage recurrent priapism. Increasing smooth muscle tone
with oral α-agonist etilefrine has also yielded only anecdotal
evidence of benefit [95]. Unfortunately, a prospective study
comparing etilefrine and ephedrine failed to demonstrate
superiority or equivalence of both drugs in preventing
recurrent priapism due to poor compliance and low recruit-
ment reducing statistical power, but some evidence was
obtained reassuring safety of the use of such strategies,
and possibly indicating a lower severity of priapism attacks
among compliant patients [96]. This favors off-label use
of pseudoephedrine at bedtime advocated by some experts
[57, 90]. Hydroxyurea has also been effective in preventing
priapism recurrence in SCD in a small number of cases
[97, 98]. Based on current knowledge of NO-dependent
pathways, the use of PDE5 inhibitors has been studied.
One clinical trial testing tadalafil in SCD patients has been
terminated, but no outcome data have yet been published
(ClinicalTrials.gov NCT00538564), and one ongoing trial
aims at the effect of sildenafil in the same setting (Clini-
calTrials.gov NCT00940901). Despite these efforts, scientists
have become less optimistic concerning the tolerability of
this approach, ever since the premature termination of the
sildenafil trial for pulmonary hypertension in SCD patients,
in which subjects on PDE5 inhibitor were more likely to have
severe pain crises requiring hospitalization [99]. Therefore,
novel therapies for preventing and treating priapism in SCD
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are still warranted if the incidence of impotence among these
patients is expected to be reduced in the long term.

3. Infertility

Progress in the therapy of SCD, particularly the use of
hydroxyurea, has considerably improved the prognosis of
patients with SCD [100, 101], with their mean life expectancy
reaching much over 40 years [102–104], rendering infertility
an important issue. Nevertheless, long before hydroxyurea
became a standard of care in SCD, seminal fluid parameters
of SCD males had been reported to fall within the subfertile
range due to decreased sperm concentration, total count,
motility, and altered morphology [105–107], and a more
recent study reported over 90% of patients had at least one
abnormal sperm parameter [108].

Hydroxyurea (HU) has been reported to impair sper-
matogenesis, causing testicular atrophy, reversible decrease
in sperm count, as well as abnormal sperm morphology
and motility [108–114], and its current or previous use
should be among the first probable causes to be considered
in SCD patients complaining of infertility. Moreover, sperm
abnormalities prior to HU have been attributed to variable
effects of hypogonadism induced by SCD itself, and lack of
appropriate testosterone production seems to be exacerbated
by HU use in a mouse SCD model [115].

Considering that male fertility does not rely solely on
the quality of the seminal fluid, other causes that may
also render male patients with SCD prone to suffer from
infertility include sexual problems, such as loss of libido,
premature ejaculation, frequent priapism, and priapism-
related impotence [105–107, 116–121].

Finding a single main cause for male infertility in a
particular SCD patient is highly unlikely and probably will
involve some degree of endocrinological impairment. A
broader understanding of how hypogonadism takes place in
SCD is necessary to explain fertility problems and requires
knowledge of the complexity of sex hormone production
regulation.

4. Hypogonadism

The etiology of hypogonadism in SCD patients is mul-
tifactorial, as several mechanisms have been suggested to
contribute to its occurrence, such as primary gonadal failure
[117, 122, 123], associated with or caused by repeated
testicular infarction [124], zinc deficiency [125, 126], and
partial hypothalamic hypogonadism [127].

Physical and sexual development are affected in both
male and female SCD patients, with onset of puberty
(menarche) and appearance of secondary sexual charac-
teristics (pubic and axillary hair and beard) being usually
delayed. The delay is greater in homozygous SCA and S-β0-
thalassemia than in SC disease and S-β+-thalassemia [128–
130]. Moreover, studies in male patients with SCD reported
reduction of ejaculate volume, spermatozoa count, motility,
and abnormal sperm morphology [106, 116].

Biochemical analyses have demonstrated low levels of
testosterone and dihydrotestosterone and variable levels of
follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) in patients with SCD [105–107, 118, 119,
121, 131]. The comparison between patients and controls
matched according to stage of development of secondary
sexual characteristics showed higher levels of LH in sickle
cell disease, favoring some role for hypergonadotropic
hypogonadism.

Leydig cells of the testes and other steroidogenic tissues
produce hormones by a multienzymatic process, in which
free cholesterol from intracellular stores is transferred to the
outer and then to the inner mitochondrial membrane. Leydig
cells produce androgens under the control of LH or its pla-
cental counterpart human chorionic gonadotropin (hCG), as
well as in response to numerous intratesticular factors [114,
132]. LH/hCG receptors belong to the sGC-coupled seven-
transmembrane-domain receptor family, whose activation
leads to stimulation of adenylyl cyclase [133]. The resulting
accumulation of intracellular cyclic adenosine monophos-
phate (cAMP) levels and the concomitant activation of the
cAMP-dependent protein kinase (PKA) lead to the phospho-
rylation of numerous proteins, including the steroidogenic
acute regulatory (StAR) protein [134, 135]. StAR localizes
predominantly to steroid hormone-producing tissues and
consists of a 37 kDa precursor containing an NH2-terminal
mitochondrial targeting sequence and several isoelectric 30
kDa mature protein forms [136–138]. Steroid production in
gonadal and adrenal cells requires both de novo synthesis and
PKA-dependent phosphorylation of StAR-37 protein [139].
The newly synthesized StAR is functional and plays a critical
role in the transfer of cholesterol from the outer to the inner
mitochondrial membrane, whereas mitochondrial import
and processing to 30 kDa StAR protein terminate this action
[140–142].

HbS polymerization is mediated by upstream activation
of adenosine receptor A2BR by hypoxia, and hemolysis
of irreversibly sickled red blood cells increases adenosine
bioavailability through conversion of ATP by ectonucleoti-
dases CD39 and CD73, thus predisposing patients with SCD
to sustained high levels of cAMP [143, 144]. From this point
of view, steroidogenesis could be expected to be increased in
these patients.

Although Leydig cell steroidogenesis is predominantly
regulated by cAMP/PKA, other pathways also influence
this process [145], including the NO-cGMP signaling path-
way [146]. NO promotes a biphasic modulation in the
androgen production, stimulatory at low concentrations,
and inhibitory at high concentrations [49, 147, 148]. SCA
causes NO depletion, and in low levels, NO stimulates
Leydig cell steroidogenesis by activating sGC [48, 49, 149]
and promotes the formation of low levels of cGMP, albeit
enough to activate the cGMP-dependent protein kinase
(PKG) and phosphorylate StAR [49, 150]. This signaling is
controlled by phosphodiesterases (PDEs) [151] and active
transport systems that export cyclic nucleotides (multidrug-
resistance proteins) from the cell [152]. In zona glomerulosa
cells, activation of PKG II by cGMP regulates basal levels
of aldosterone production and phosphorylation of StAR
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Figure 1: Schematic pathophysiology of hypogonadism and testicular infarction in sickle cell disease. The dashed arrow represents the
blocking effect of gonadal failure over cyclic nucleotide-stimulated androgen production.

protein [150], but whether there is a role for cGMP in the
zona reticularis, where adrenal androgenesis takes place, is
unknown.

Hypogonadism observed in patients with SCD with
lower circulating testosterone and higher LH levels suggests
that, at least in this setting, despite the reduced cGMP- and
elevated cAMP-mediated stimuli on androgen production,
gonadal failure with Leydig cell impairment predominates
in sex hormone production dysfunction (Figure 1). This
further highlights that primary hypogonadism is possibly
largely underdiagnosed and elicits more studies on the
pathogenesis of testicular infarction.

5. Testicular Infarction

Segmental testicular infarction is an infrequent cause of acute
scrotum and is rarely reported, with fewer than 40 cases
published at the time of this paper. Its etiology is not always
well defined, and it may be, at first, clinically mistaken for a
testicular tumour [153, 154]. Common causes for testicular
infarction are torsion of the spermatic cord, incarcerated
hernia, infection, trauma, and vasculitis [131]. The usual
presentation is a painful testicular mass unresponsive to
antibiotics [155]. This testicular disorder has been asso-
ciated with epididymitis, hypersensitivity angiitis, intimal
fibroplasia of the spermatic cord arteries, polycythemia,
anticoagulant use, benign testicular tumors and, in the
interest of this review, sickle cell trait and sickle cell disease
[124, 131, 155–158].

Testicular infarction related to sickling has been very
rarely reported with only five individual cases found ret-
rospectively, three associated with sickle cell disease and
two with sickle cell trait [124, 155–157, 159]. Holmes and
Kane reported the first testicular infarction in a patient with

SCD who presented with testicular swelling unresponsive to
antibiotics. Physical examination revealed that a lesion sus-
picious for malignancy and ultrasonography demonstrated a
hyperechoic mass with an anechoid rim and normal blood
flow in the surrounding parenchyma. Radical orchiectomy
revealed hemorrhagic infarction with sickle blood red cells.
In another case report, SCA patient presented with acute
scrotum and history of acute chest syndrome, splenic infarc-
tion, osteomyelitis, and hemolysis. Physical examination
demonstrated an erythematous, tender, swollen testicle and
ultrasound once again revealed normal echotexture and
blood flow. Surgical exploration and pathological examina-
tion diagnosed segmental testicular infarction with vascular
congestion and sickled red blood cells [124]. In the last tes-
ticular infarction case report in a patient with SCD presented
with increased testicular volume, scrotal ultrasonography
showed both echogenic and hypoechogenic regions and
Doppler ultrasonography revealed vascular changes compat-
ible with testicular infarction. Radical orchiectomy was per-
formed 10 days after the initial presentation and microscopic
evaluation showed necrotic seminiferous tubules devoid of
nuclear debris, congestion, or acute inflammatory infiltrate,
consistent with coagulative necrosis of ischemic origin
[131].

Testicular blood flow is dependent on the internal
spermatic, cremasteric, and deferential arteries. Obstruction
of venous outflow may create venous thrombosis, testicular
engorgement, and subsequent hemorrhagic infarction. In
SCD, low oxygen tensions in erythrocytes lead to sickling
cells that lose pliability in the microcirculation. Conse-
quently, capillary flow becomes obstructed, worsening local
tissue hypoxia, perpetuating the cycle of sickling, and
promoting testicular infarction [124, 131, 157].

The cyclic nucleotides and protein kinases may play an
important role in the pathophysiology of testicular infarction
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in SCD. Enhanced hemolysis and oxidative stress contribute
to a reduction in nitric oxide (NO) bioavailability due to
NO scavenging by free hemoglobin and reactive oxygen
species (ROS) generation [160, 161]. As mentioned before,
testicular NO signaling pathway is involved in the regulation
of Leydig cell steroidogenesis [48, 49, 147–149, 162–164] but
may also influence testicular circulation. We suggest that the
reduction of NO bioavailability and consequent reduction
of GMPc levels and of activity of PKG may decrease the
vasodilation process in the testes. Moreover, reduced NO
levels in patients with sickle cell disease contribute to
the development of thrombus formation in the vascular
system and could further enhance local ischemia [165, 166].
Furthermore, the cGMP-dependent protein kinase signaling
pathway would normally inhibit RhoA-induced Ca2+ sensiti-
zation, RhoA/ROCK signaling, and protein kinase C (PKC)
activity that mediate contraction in vascular smooth muscle
[167–171]. Thus, reduced NO levels may decrease cGMP-
dependent protein kinase activity and promote increasing
RhoA-induced Ca2+ sensitization and PKC activity, favoring
vasoconstriction in the testes. Therefore, tissue hypoxia,
sickling of red blood cells, reduced levels of NO, pos-
sible thrombus formation, increased RhoA-induced Ca2+

sensitization, and PKC activity may all lead to capillary
and venous flow obstruction promoting testicular infarction
(Figure 1).

Although testicular infarction in SCD has been very
rarely reported, it has been speculated that silent testic-
ular infarctions are much more common but generally
overlooked clinically. Testicular biopsy in patients is rarely
performed and additional studies are necessary to establish
the true incidence of testicular infarction in patients with
SCD or even sickle cell trait.

6. Urinary Bladder Dysfunction

The urinary bladder has two important functions: urine
storage and emptying. Urine storage occurs at low pressure,
implying that the bladder relaxes during the filling phase.
Disturbances of the storage function may result in lower
urinary tract symptoms (LUTSs), such as urgency, increased
frequency, and urge incontinence, the components of the
hypoactive or overactive bladder syndromes [172, 173].
The passive phase of bladder filling allows an increase in
volume at a low intravesical pressure. The bladder neck
and urethra remain in a tonic state to prevent leakage,
thus maintaining urinary continence. Bladder emptying is
accompanied by a reversal of function in which detrusor
smooth muscle (DSM) contraction predominates in the
bladder body that is accompanied by a concomitant reduc-
tion in outlet resistance of the bladder neck and urethra
[174–176]. The bladder filling and emptying are regulated
by interactions of norepinephrine (sympathetic component
released by hypogastric nerve stimulation), acetylcholine and
ATP (parasympathetic components released by pelvic nerve
stimulation) with activation of adrenergic, muscarinic, and
purinergic receptors, respectively [175].

Urinary bladder dysfunction is rarely spontaneously
reported by SCD patients to their caregivers. With increasing
survival of these patients, physicians may expect that urinary
complaints increase in association with classical urological
disorders associated with advanced age, such as urinary stress
incontinence in multiparous women and benign prostatic
hyperplasia in men. Nonetheless, clinical observations of
medical complaints involving the urinary bladder start
as early as childhood, with enuresis, and continue onto
adulthood with nocturia and urinary tract infections, to
name a few, although frequently neglected.

Nocturia has long been attributed to constant increased
urinary volumes in SCD. As part of the renal complications
of sickling, renal medullary infarcts lead to decreased ability
to concentrate urine, yielding higher daily urinary volumes
[177], compensatory polydipsia, and eventually, the need for
nocturnal bladder voiding.

For comparison, the effects of polyuria on bladder
function have been better characterized in diabetic bladder
dysfunction (DBD). Both SCD and diabetes mellitus cause
increased urinary volume and, to some extent, the two
diseases involve cellular damage by oxidative stress media-
tors; so data from previous studies on DBD may help shed
some light on preliminary data on bladder function in SCD
animal models by understanding a known model of bladder
dysfunction.

It has been suggested that DBD comprehends so-called
early and late phases of the disease, owing to cumulative
effects of initial polyuria secondary to hyperglycemia, com-
plicated by oxidative stress influence on the urothelium and
nervous damage in the long term of the natural history of
diabetes mellitus. In the early phase of DBD, the bladder is
hyperactive, leading to LUTS comprised mainly by nocturia
and urge incontinence. Later in the course of the disease,
the detrusor smooth muscle becomes atonic, abnormally
distended, and incontinence is mainly by overflow associated
with a poor control of urethral sphincters, and voiding
problems take over [178].

DSM physiology also involves cyclic nucleotides and
activation of protein kinases. DSM contractions are a conse-
quence of cholinergic-mediated contractions and decreased
β-adrenoceptor-mediated relaxations [179]. DSM contains a
heterogeneous population of muscarinic receptor subtypes
[180, 181], with a predominance of the M2 subtype and
a smaller population of M3 receptors. However, functional
studies showed that M3 receptors are responsible for pro-
motion of contraction in the DSM of several animal models
[182–185] and in humans [186, 187]. Activation of M3
muscarinic receptors in the DSM promotes stimulation of
phospholipase C, activates PKC, and increases formation
of inositol trisphosphate (IP3) and diacylglycerol (DAG) to
release calcium from intracellular stores, leading to DSM
contraction [87]. Moreover, activation of M2 receptors also
induces a DSM contraction indirectly by inhibiting the
production of cAMP, reducing PKA activity, and reversing
the relaxation induced by β-adrenoceptors [179]. Hence,
both mechanisms promote urinary bladder emptying.

There is evidence that the Ca2+-independent RhoA/
ROCK pathway is involved in the regulation of smooth
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muscle tone by altering the sensitivity of contractile proteins
to Ca2+ [77]. This pathway has been shown to influence
erectile function in vivo through an array of mechanisms,
including phosphorylation of the myosin-binding subunit
of MLC phosphatase, resulting in increased myosin phos-
phorylation. RhoA, a member of the Ras (Rat Sarcoma)
low molecular weight of GTP-binding proteins, mediates
agonist-induced activation of ROCK. The exchange of GDP
for GTP on RhoA and translocation of RhoA from the
cytosol to the membrane are markers of its activation and
enable the downstream stimulation of various effectors such
as ROCK, protein kinase N, phosphatidylinositol 3-kinase,
and tyrosine phosphorylation [77]. The RhoA/ROCK Ca2+

sensitization pathway has been implicated in the regulation
of bladder smooth muscle contraction and tone in humans
and animals [77, 188–191]. Thus, alterations in the contrac-
tion or relaxation mechanisms of DSM during the filling
and emptying phases may contribute to urinary bladder
dysfunction. Patients with SCD have not been evaluated for
bladder dysfunction in a systematic manner, but preliminary
data have shown that Berkeley mice (homozygous SS) exhibit
hypocontractile DSM ex vivo, due to a significant decrease
of contractile responses to muscarinic agonist carbachol and
electrical field stimulation [192]. This bladder dysfunction
may contribute to the increased risk of urinary tract
infections observed in SCD patients.

In an epidemiological study of 321 children with SCD,
7% had a documented urinary tract infection (UTI), one-
third had recurrent infections, and two-thirds had had a
febrile UTI [193]. As in normal children, there was a strong
predominance of females, and gram-negative organisms,
particularly Escherichia coli, were usually cultured. Most
episodes of gram-negative septicemia in SCD are secondary
to UTI [194]. Moreover, UTIs are more frequent during
pregnancy in women with SCA or sickle cell trait [195–
197]. The prevalence of UTI in women with SCA is nearly
twofold that of unaffected black American women. This
association appears to be directly related to HbS levels, since
patients with sickle trait have an increased prevalence of
bacteriuria, but to a lesser degree than those with SCA. More
recently, a study detected that a group of SCD children and
adolescents had more symptoms of overactive bladder than
a control group [198]. This could be a first documentation
of a clinically evident of an early phase of sickle cell
bladder dysfunction, but whether there is a late, hypotonic
bladder phase in older sickle cell adults remains to be
demonstrated.

The presence of increased intracavernosal pressure asso-
ciated with the amplified corpus cavernosum relaxation
response (priapism) mediated by NO-cGMP signaling path-
way, the lack of RhoA/ROCK-mediated vasoconstriction in
sickle cell transgenic Berkeley mice, and the association of
priapism with genitourinary infections and urinary retention
further suggest the possibility that changes in the DSM
reactivity may contribute to urogenital complications in SCD
[36, 38–40, 192]. Despite advances in the understanding
of urogenital disorders in the SCD, further studies should
clarify the pathophysiological mechanisms that underlie
genitourinary manifestations of SCD.

7. Conclusions

Urogenital disorders in SCD are the result of pleotropic
effects of the production of the abnormal sickling hemoglo-
bin S. While priapism still stands out as the most frequently
encountered, current knowledge of the effects of cyclic
nucleotide production and activation of protein kinases
allows to suspect underdiagnosis of bladder dysfunction
and hypogonadism secondary to testicular failure. Moreover,
despite our growing understanding of these complications,
adequate, efficacious, and well-tolerated treatments are still
unavailable, and male patients continue to suffer from
infertility and erectile dysfunction. Further work in, both
clinical assessments and experimental studies in this field are
promising and should help increase physicians’ awareness of
the importance of more accurate diagnoses, design improved
therapeutic strategies, and eventually, achieve better quality
of life for SCD patients.
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