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The COVID-19 pandemic, which began in December 2019, progressed in a complicated

manner and thus caused problems worldwide. Seeking clues to the reasons for the

complicated progression is necessary but challenging in the fight against the pandemic.

We sought clues by investigating the relationship between reactions on social media and

the COVID-19 epidemic in Japan. Twitter was selected as the social media platform for

study because it has a large user base in Japan and because it quickly propagates short

topic-focused messages (“tweets”). Analysis using Japanese Twitter data suggested that

reactions on social media and the progression of the COVID-19 epidemic may have

a close relationship. Analysis of the data for the past waves of COVID-19 in Japan

revealed that the relevant reactions on Twitter and COVID-19 progression are related

repetitive phenomena. We propose using observations of the reaction trend represented

by tweet counts and the trend of COVID-19 epidemic progression in Japan and a

deep neural network model to capture the relationship between social reactions and

COVID-19 progression and to predict the future trend of COVID-19 progression. This

trend prediction would then be used to set up a susceptible-exposed-infected-recovered

model for simulating potential future COVID-19 cases. Experiments to evaluate the

potential of using tweets to support the prediction of how an epidemic will progress

demonstrated the value of using epidemic-related social media data. Our findings provide

insights into the relationship between user reactions on social media, particularly Twitter,

and epidemic progression, which can be used to fight pandemics.

Keywords: COVID-19, SEIR model, simulation, SNS, Twitter, emotion, emoji

1. INTRODUCTION

We investigated the potential of using data from social media to enhance the prediction and
simulation of an epidemic’s progression. A case study was carried out using Twitter data related
to the COVID-19 epidemic in Japan. The COVID-19 pandemic has been causing global problems
that have affected everyone for a lengthy period, and the end is not in sight. During the pandemic,
people tend to seek information or clues for use in deciding their next actions through a variety
of channels: newspapers, TV, and especially social media (1, 2). Neely et al. (1) showed that in a
questionnaire survey of 1003 US-based adults, 76% of the respondents relied on social media at
least “a little,” and 59% of the respondents read information about COVID-19 on social media at
least once per week, 63.6% of the respondents were unlikely to do fact-checking with a healthcare
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professional. Dadaczynski et al. (2) found that, in a cross-
sectional study among university students in Germany, 37.6%
(5,302/14,092) of the respondents use social media sometime
or frequently for searching information on COVID-19 and
related issues.

Studies have shown that, even long before the COVID-
19 pandemic, social media greatly affects society, and could
reflect social mental states (3–5). Work by Settanni et al. (3)
analyzing Facebook posts revealed that, overall, the expression of
negative emotions positively correlated with anxiety, depression,
and stress symptoms and negative emotion usage positively
correlated with anxiety symptoms. Park et al. (4) found that the
use of words related to negative emotions and anger significantly
increased among Twitter users with major depressive symptoms
compared to those otherwise. Wald et al. (5) showed that it is
possible to predict the factors in Big 5 Personality Index (6)
(Agreeableness, Conscientiousness, Extroversion, Neuroticism,
and Openness) and those in the Dark Triad (7) (Psychopathy,
Machiavellianism, Narcissism) by using user posts on Twitter
with rather good accuracy (AUC of 0.736).

Twitter is an attractive data source for analysis for several
reasons: it is one of the largest social media platforms worldwide,
it greatly affects several aspects of society (daily conversations,
news reports, event advertisements, etc.) in various domains
(health, entertainment, economics, research, politics, etc.), it
makes user posts accessible by everyone, and it enables a
tremendous amount of information to be easily accessed and
shared. During the COVID-19 pandemic especially, a large
volume of information on Twitter regarding the infection
situation, symptoms, treatment, vaccinations, restrictions, and
so on is being continuously shared and discussed. Users can
share their emotions and opinions regarding the information
instantaneously without geographical limitations. The effects of
these emotions and opinions can thus spread rapidly. As shown
in the collected data in a later section, the average number of daily
tweets containing selected COVID-19 related keywords has been
more than 400,000 during the COVID-19 epidemic in Japan.

Research on predicting the progression of the COVID-19
pandemic has received much attention worldwide (8). Early
prediction is important for implementing countermeasures
against its spread. Epidemiological models, e.g., the susceptible-
exposed-infected-recovered (SEIR) model, are commonly used
for such prediction. The parameters are obtained from observed
data or set on the basis of predefined scenarios. Complex
problems, e.g., the emergence of new variants, diverging
government policies (9, 10), and diverging public perceptions (11,
12), have arisen as the pandemic has lasted longer and longer.
Many countries, including Japan, have already experienced more
than four waves of the pandemic. To tackle the complicated
progression of the COVID-19 pandemic and to deal with the
challenge of obtaining parameters reflecting reality as conditions
continue to change, recent research has focused on utilizing extra
information to enhance the prediction model.

One way to obtain such information is to monitor social
media: Twitter, Facebook, Reddit, etc. Social networking services,
which were initially simply playgrounds for small communities of
computer users, have evolved into large social media platforms

connecting both online and offline social networks. Several
epidemic-related behaviors can be observed on social media, for
instance, health information seeking, even to a heavy reliance
on social media which has been observed during the COVID-19
pandemic (1, 2, 13). Several studies on the formation of pandemic
waves have revealed an association between non-pharmaceutical
interventions and social behaviors (14–16). With the benefit of
Twitter being one of the largest social media platforms and its
public posting practice, tremendous Twitter data can be utilized
for big data analysis, which is attractive for COVID-19 related
researches including works on predicting of COVID-19 epidemic
progression, for example, using tweet counts (with relevant
keywords) (17) and tweet full-text analysis (18).

Van Bavel et al. (19) observed that, especially in the current
COVID-19 pandemic, “Social networks can amplify the spread
of behaviors that are both harmful and beneficial during an
epidemic, and these effects may spread through the network
to friends, friends’ friends and even friends’ friends’ friends.”
Social networks created by popular social media platforms such
as Twitter are huge and feature instant connectivity without
geographical limitations. This means that popular social media
platforms can amplify the spread of behaviors to a magnitude
much greater than offline social networks (e.g., neighborhoods).

Several studies have revealed the emotions of social media
users toward COVID-19 progression (20–24). Wheaton et al.
(20) showed that “time interacting with social media did predict
symptoms of depression and stress, but not anxiety or OCD
symptoms.” Arora et al. (21) showed that “people with a negative
sentiment are more susceptible to addictive use of social media.”
Kaur et al. (24) showed in their analysis of Twitter data for
February, May, and June, (2020) that the highest percentage of
tweets belonged in the “Negative” category. Toriumi et al. (22)
also showed in their analysis using Twitter data in Japan that
social emotions toward COVID-19 from February to April, 2020
are mainly influenced by “fear”. In the work of Dyer and Kolic
(23), they found “evidence of psychophysical numbing: Twitter
users increasingly fixate on mortality, but in a decreasingly
emotional and increasingly analytic tone.”

Furthermore, social media users are exposed to massive
information with overwhelming sharing of COVID-19 related
news and intentional/unintentional misinformation, which can
cause severe mental health problems including high level of
stress, anxiety, and contagious fear (25, 26). Moreover, regulating
fake news content is still challenging (27), while COVID-19
misinformation and fake news which can exaggerate perceived
risk are at highly concerned proliferation (28). Especially in
Japan, the residents are at a high level of exposure to information
on social media platforms, especially Twitter. In Japan, Twitter is
one of the top influential social media platform with the number
of monthly active users of 45 million by October 20171.

Our review of previous work strongly suggests that social
media platforms, including Twitter, are ideal places for
monitoring, collecting, and analyzing clues that can lead to
behavioral changes (29) which can help in predicting the
progression of pandemics such as COVID-19. From this

1https://twitter.com/TwitterJP/status/923671036758958080
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standpoint, we set out to design a system for predicting COVID-
19 progression by utilizing Twitter data as indicators of social
media reactions. We collected tweet counts related to COVID-
19 as a measure of how the reactions on social media are shaped
during each wave of the COVID-19 in Japan.

In addition to general tweets, we have investigated the
utilization of emoji usage on Twitter to capture changes in
the emotions of social media users for use in enhancing
epidemiological models. Several studies have focused on
capturing emotion from texts including posts on Twitter
(“tweets”), for example, sentiment analysis (30) and emotion
analysis (31). However, accurately understanding emotional
tweets by using full-text analysis is a challenging task. Emoji
analysis is an attractive approach because social media users tend
to express emotions using non-verbal communication, and they
share a common understanding of many emoji as several studies
have shown that emojis are used on social media as non-verbal
communication cues to assist communication (32–35). Emoji
are digital images depicting simple illustrations including facial
expressions (smiley face , crying face , scared face , etc.).
Emotional messages can be directly expressed through emoji.
Because social media users share a common understanding
of many emoji, emotions can be effectively and conveniently
communicated through emoji. One one hand, this makes it
convenient to use emoji for expressing emotional messages.
One the other hand, this potentially exposes an user to a wide
range of emotions with various shades of meaning, which could
be overwhelming.

One crucial point when using social media data, particularly
Twitter data, is that social media users may become less engaged,
i.e., performing fewer actions such as “liking,” “commenting,” and
“sharing,” as the pandemic lasts longer and longer (17). When
engagement drops to a certain level, social media data becomes
less representative of behavioral changes. The results of a study
using Twitter data from the U.S. and Canada by (17) suggest
that there will be less engagement through social media due
to a feeling of exhaustion as waves of the pandemic continue.
Therefore, in this study, we also took into consideration the
results of previous studies using Japanese Twitter data.

2. MATERIALS AND METHODS

2.1. Data Collection
The data consisted of tweet counts and COVID-19 infection data
from Japan.

The tweet count data were collected using the Twitter API
(version 2) with academic research access. Several settings
were considered, from the general COVID-19 related tweet
count to more fine-grained target subsets of keywords. Three
sets of keywords were used: COVID-19 related set, COVID-
19 symptom related set2, and COVID-19 infection reporting
related set. For each set, the collections were further filtered
to retain only tweets containing emojis. The COVID-19 related
set was the primary set used. The other sets were used for an

2The symptom-related keywords were obtained from https://www.kansensho.or.
jp/ref/d77.html and (17).

ablation study and analysis of the characteristics of the tweets.
The details of the settings are shown in Table 1. The collected
data show that the number of COVID-19 related tweets has
been correlated to some degree with the COVID-19 epidemic
progression since the beginning of the epidemic (Figure 1). For
analysis of tweets regarding the use of emoji, we count tweets
in two categories: (g) general counting (without considering
whether the tweets contain emoji or not), and (e) only count
tweets containing emoji.

The COVID-19 infection reporting data for Japan were
obtained from JX Press3 The dataset contains daily infection
reports for all prefectures in Japan. It was used for training or
calibrating two core models used by the epidemic simulation
system described in Sections 2.2 and 2.3.

2.2. SNS Reaction Trend and COVID-19
Epidemic Progression Change Prediction
As seen in Figure 1, throughout the waves of COVID-19, there
exists a phenomenon that the reactions on Twitter also form
a wave shape and each wave of the reaction on Twitter also
has a correspondence to each wave of COVID-19. Given that
Twitter is an influential social media platform in Japan, it is
not surprising that the news about a surge in COVID-19 cases
immediately results in reactions on Twitter with certain key
phrases, for example, “x higher than last week,” and “all time
high,” which quickly catches the attention of Twitter users. Based
on that, we hypothesize that when the number of COVID-19
cases increases (again), the reactions on Twitter also increase.
On one hand, this increases the awareness of a possible high-risk
situation, which should cause people to change their behaviors
and bemore careful with their decisions and actions, for example,
by following preventative measures including staying home, and
social distancing. This may lead to a down-trend in COVID-19
infections. However, on the other hand, the massive exposure
to a large amount of negative information could increase
mental health problems such as experiencing excessive fear, and
stress (25, 26).

A down-trend of COVID-19 infection cases could cause
people to perceive a low-risk situation. As can be seen in the
change of mobility, according to the mobility trends reports from
Apple4 (Figure 2), the mobility trends up when the number of
COVID-19 cases decreases, which is what happened in Japan
during each of the COVID-19 waves. This indicates a tendency
to relaxing some restrictions when the COVID-19 situation is
perceived to be improving.

If a community remains infectious, or infectious outsiders
enter into the community, the risk of another infection surge
increases, and if the community perceives the situation as low-
risk, another infection surge may appear, resulting in a cycle of
surges and declines in the infection rate. This has been observed
in the past waves of COVID-19 in Japan.

As additionally shown in Figure 3, the trend in reported
infections or cases was similar to the trend in the reaction
level on social media. This suggests a non-negligible correlation

3https://jxpress.net/
4https://covid19.apple.com/mobility
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TABLE 1 | Tweet count settings. Two categories for counting are considered: (g) general counting (of tweets whether containing emoji or not), and (e) counting of tweets

containing emoji.

Tweets Related

To

Only Tweets with

Emoji

Query Keywords Daily No. of Tweets

COVID-19 (g) No 新型コロナ,コロナ感染,コロナ禍,コロナワクチン,緊急事態宣言,まん

延防止,感染者

(translation: [new-variant corona, corona infection, corona disaster, corona

vaccine, emergency declaration, spread prevention, infected

person/people])

414,576

COVID-19 (e) Yes same as above 29,484

COVID-19

symptoms (g)

No 発熱,鼻汁,咽頭痛,咳嗽,嗅覚異常,味覚異常,息切れ,咳,のどの痛み,喉

の痛み,嗅覚障害,味覚障害,

excluding {風邪,インフルエンザ,糖尿病,マラリア,サタデーナイト

フィーバ,喫煙,たばこ,アレルギー,アレルギ}

(translation: [fever, nasal discharge, sore throat, cough, dysosmia,

dysgeusia, shortness of breath, cough, sore throat, sore throat, dysosmia,

dysgeusia],

excluding: {cold, influenza, diabetes, malaria, Saturday night fever (a

movie-related reference to the risk of going out dancing), smoking, tobacco,

allergies, allergies })

28,814

COVID-19

symptoms (e)

Yes same as above 3,597

COVID-19

infection reporting

(g)

No 感染者数,陽性者数

(translation: [number of infected people, number of confirmed positive

cases])

6,518

COVID-19

infection reporting

(e)

Yes same as above 232

between the two signals. Predicting the trend of changes in the
epidemic progression would help to set up appropriate scenarios
for simulating the future epidemic state, which in turn would
support policymakers, for example, in implementing restrictions.
In this sense, given the suggestion of a potential relationship
between the trends of the two signals, additional information
from social media reactions may further support predicting
changes in the epidemic progression.

Here, the trend representations were estimated using the ratio
of the signals for days t and t − 7, which were the same day of
the week:

st = log(
ot

ot−7
), (1)

where ot represents the two signals, the reactions on Twitter
measured by tweet count and the epidemic state estimated
from the reported number of new infections on day t, and
st represents the trend measured as the 7-day change. This
transformation absorbs the weekly effect observed in the Japanese
data. The transformation was further smoothed by a 15-day
moving average.

To model the relationship between the trend in social media
reactions and the trend in epidemic progression, we utilized a
long short-term memory (LSTM) neural network (36), a well-
known and successful neural network architecture in time-series
modeling, and the multivariate time-series of the two trends.
LSTM neural networks have been used in various domains
for modeling time-series and have achieved practical results.

In previous studies of COVID-19 epidemic prediction systems,
LSTMmodels were used as the core models (37–39).

To cope with the unknown complexity of the relationship
between the two time-series, we use an ensemble system of multi-
layer LSTM models with various hyperparameter (number of
layers, number of neurons) settings and parameter initialization
of the LSTMmodels5.

The LSTM system is optimized by minimizing the mean
squared error:

MSE(s2 : t , s
∗
2 : t) =

1

t − 1

t
∑

k=2

1

d

d
∑

j=1

(sk,j − s∗k,j)
2, (2)

where t marks the end of the observable or training data, d = 2
is the number of time-series (including the trend of reactions on
Twitter and the trend of the epidemic progression), and s, s∗ are
the observed data and the corresponding predictions.

The inference procedure has two phases. In the first phase,
the LSTM ensemble system receives observed data {sk|k ∈ [1, t]}
up to time t and uses them to create memory state ct+1 and
prediction s∗t+1 (Equation 3). In the second phase, from input
time-step t + 1, the prediction of the previous time-step is used
as the input to predict the next time-step (Equation 4). The
inference procedure is illustrated in the “LSTM” box at the top-
left of Figure 4. In the training or optimization process, only the

5no. of layers ∈ {1, 2, 3, 4} × no. of neurons ∈ {4, 8, 16} × no. of initializations ∈
{128}.
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FIGURE 1 | Daily chart of tweet counts vs. reported COVID-19 infections in Japan (values were smoothed by 15-day moving average). T.R.T., Tweets related to. The

vertical solid lines mark the peak of the number of reported daily infections. The vertical dashed lines mark the bottom of the number of reported daily infections. The

spans separated by the vertical dashed lines contain each separate wave of COVID-19. The data suggest that the number of COVID-19 related tweets has been

correlated to some degree with the progression of the epidemic in Japan since the beginning of the epidemic.

first phase is invoked, and predictions s∗2 : t = {s∗
k
|k ∈ [2, t]} are

used for the aforementioned optimization.

{s∗k+1, ck+1} = LSTM(sk, ck) for k ∈ [1, t] (3)

{s∗k+1, ck+1} = LSTM(s∗k , ck) for k ∈ [t + 1, t + T − 1], (4)

where k is the input time-step, t marks the end of the
observable data, T is the length of the prediction period, c is the
memory state of the LSTM, and s, s∗ are the observed data and
corresponding predictions.

The outputs of the change prediction model are used
for setting up the COVID-19 simulation system described
in the next subsection. The outputs of the change
prediction model are processed to identify the timings
when the predicted values change sign (illustrated in
Figure 3):

• From positive to negative: the signal progression changes from
increasing (up-trend) to decreasing (down-trend).

• From negative to positive: the signal progression changes from
decreasing (down-trend) to increasing (up-trend).

2.3. COVID-19 Epidemic Simulation System
The COVID-19 epidemic simulation system consists of two
stages: (1) change prediction, (2) simulation. The change
prediction is executed as described in Section 2.3. The simulation

is executed using SEIR, a common epidemic model. The overall
flow of the system illustrated in Figure 4 is as follows.

1. Data collection: collect tweet count and COVID-19
epidemic state;

2. Data transformation: estimate trend representations for tweet
count and COVID-19 epidemic progression;

3. Change prediction: predict trends and identify change timings;

4. SEIR model parameter setup: set SEIR model parameters in
accordance with the identified change timings;

5. Simulation: perform epidemic simulation.

We used the simulation system proposed by (40) with a
stochastic SEIRmodel tomodel the disease dynamics. The system
supports multi-location epidemic modeling to estimate the force
of infection (rate at which susceptible individuals are infected)
by using inter-location mobility. The formulation of the SEIR
model is described in the Appendix. We performed prefecture-
wide multi-location setup. The SEIR model uses the following
parameters: the latent period 1

σ
, which is the time interval
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FIGURE 2 | Mobility trends reports for Tokyo (23 districts), Japan. Reports are published daily and reflect requests for directions in Apple Maps. The reports show a

relative volume of directions requests per country/region, sub-region, or city compared to a baseline volume on 2020/01/13. The values were smoothed by 15-day

moving average. The vertical solid lines mark the peak of the number of reported daily infections. The vertical dashed lines mark the bottom of the number of reported

daily infections. It is seen that in all the waves of COVID-19, the mobility is in up-trend when each COVID-19 wave is in down-trend.

between when an individual becomes infected and when he or
she becomes infectious, the infectious period 1

γ
, which is the time

interval during which an individual is infectious, and the effective
reproduction number Ri(t) for each location i at time t, which is
the number of cases generated in the current state of a population.

While the latent period 1
σ
and infectious period 1

γ
depend on

the COVID-19 variant, the effective reproduction number Ri(t)
depends not only on the variant but also on the contact rate in the
community, which changes as the behaviors of the community
members change. During one wave of the COVID-19 epidemic,
the change in Ri(t) was greatly affected by behavioral changes
due to perceived events, e.g., surging of cases and policy changes
(emergency declarations), resulting in up trends and down trends
in the epidemic progression. Hence, determining Ri(t) is the key
to effective simulation.

A set Ri = {Ri(t)} was obtained using the calibration method
used by (40) for the period from 2020/12/24 to 2021/01/21
(the 3rd wave in Japan) using the observed epidemic data. Two
subsets of Ri(t) were established: up-trend set Ru

i (2020/12/24–

2020/01/06) and down-trend set Rd
i (2021/01/07 – 2021/01/21).

In the simulation period from 2021/04/23 to 2021/06/30, for
each trend (up or down) time span [ts, te], a set of {Ri(t)} for each
location i was drawn from a uniform distribution:

Ri(t)|ts≤t≤te ∼ U[m
(p)
i ,M

(p)
i ], (5)

where m
(p)
i ,M

(p)
i are, respectively, the minimum and maximum

values of a set of previously obtained reproduction numbers,
which can be either Ru

i or Rd
i depending on whether time span

p is trending up or down. If [ts, te] is an up-trend time span,
Ru
i is selected, and if [ts, te] is a down-trend time span, Rd

i is
selected. The change timings, ts and te, are determined in the
change prediction stage, as described in Section 2.2.

For evaluation, we measure the errors in the change prediction
and simulation stages against the observed data for the period
from 2021/04/23 (in the up-trend of the 4th wave) to 2021/06/30
(ending of the 4th wave). We used data from 2020/12/24
to 2021/01/21 (in the 3rd wave) to obtain the SEIR model
parameters and data from 2020/11/15 to 2021/04/22 (the end
timing of observable data) for training the change prediction
model. Two observed timings of trend changes were used for
evaluation: ta = 2021/05/15 and tb = 2021/06/25, where ta
marks the change from up-trend to down-trend, and tb marks the
change from down-trend to up-trend in the epidemic progression
as observed in the infection reports.

The evaluation metric for change prediction was the difference
in days1days[t] between the predicted date t′ and the actual date
t of the trend change (Equation 6).

1days[t] = t′ − t (6)

The evaluation metric for simulation was the root-mean-square
error (RMSE).

3. RESULTS

Table 2 shows the results for change prediction and simulation.
Two baselines were used for reference.
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FIGURE 3 | Logarithm of increasing rate of the day of the week for reported infections and tweet counts calculated using Equation (1). T.R.T., Tweets related to. The

vertical solid lines mark the change of the COVID-19 trend from up-trend to down-trend (peaked out). The vertical dashed lines mark the change of the COVID-19

trend from down-trend to up-trend (infection cases start rising again). The change timings mark the moments when the logarithm of increasing rate passes the zero

line: negative-to-positive indicating up-trend and positive-to-negative indicating down-trend.

• Baseline 1: Ri(t) was set for the entire simulation period using
Ri in the up-trend and down-trend periods of the 3rd wave.
Ri(t) were sampled for both the up-trend and down-trend
periods without knowing the exact timing of the trend change.

• Baseline 2: Ri(t) was set for the entire simulation period using
Ru
i in the up-trend period of the 3rd wave. Ri(t) were sampled

for only the up-trend period.

For our approach, we used three system settings:

• +change prediction w/o using tweet data: the epidemic
simulation system was setup withchange prediction using only
the epidemic state data, not the tweet data.

• +change prediction using T.R.T. COVID-19 (g): the epidemic
simulation system was setup with change prediction using
both the epidemic state data and the COVID-19 related tweet
count data.

• +change prediction using T.R.T. COVID-19 (e): similar to
setting for (g) except that tweets were filtered to remove ones
not containing emoji.

The additional use of the COVID-19 related tweet count
(g) resulted in better prediction of the epidemic progression
trend changes than without using the count: prediction was
improved by 8.5 days for ta and 6.3 days for tb. This led
to a reduction of 42.8% in the RMSE. Given that the daily

tweet count of COVID-19 related tweets filtered for emoji
(e) was 92.9% smaller than the more general count (g), the
results are similar: the difference in change prediction was 0.2
days for ta and 2.4 days for tb, and the RMSE was 5.5%
worse. In all results, the predicted trend changes preceded
the observed changes. The baseline results show that without
estimating the trending change, the RMSE were 7.6–18.5
times worse.

4. DISCUSSION

The relationship between user reactions on social media and the
COVID-19 epidemic progression remains close for the long term.
Social media engagements related to COVID-19 have remained
fairly steady over the five waves of COVID-19 epidemic surges in
Japan. They reached their highest level in the first wave, dropped a
bit in the second wave, and then picked up in the following waves.
The engagements peaked at around the peak of each wave. This
demonstrates the value of using epidemic-related social media
data, particularly Twitter data.

The 3rd and 4th waves in the period from 2020/11/15
to 2021/06/25 exhibited similar characteristics: the wave
shapes were similar (Figure 1) and the vaccination rates were
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FIGURE 4 | COVID-19 epidemic simulation system (t marks end timing of observable data).

TABLE 2 | Evaluation results for change prediction (Equation 6) and simulation (RMSE) for 4th wave in Japan (2021/04/23–2021/06/30) with two epidemic progression

trend changes: ta = 2021/05/15 and tb = 2021/06/25.

Epidemic simulation system Change prediction (1days[ta]/1days[tb]) Simulation (RMSE) Daily no. of tweets

Baseline 1 n/a 18,093.9 n/a

Baseline 2 n/a 25,216.0 n/a

+change prediction w/o using tweet data −16.3/−28.0 2,377.9 n/a

+change prediction using T.R.T. COVID-19 (g) −7.8/−21.7 1,360.4 414,576

+change prediction using T.R.T. COVID-19 (e) −8.0/−19.3 1,435.1 29,484

Data from 2020/12/24 to 2021/01/21 were used to obtain SEIR model parameters for up-trend and down-trend periods of COVID-19 epidemic progression. Data from 2020/11/15 to

2021/04/22 were used for training change prediction model. T.R.T., Tweets related to.

similar6. Despite the similar wave shapes, the reactions to
non-pharmaceutical interventions and emergency declarations
differed between the two waves. In the 3rd wave, an emergency
declaration was issued on 2021/01/07, and a change in the
epidemic progression trend (from increasing to decreasing) was
observed on 2021/01/17 (10 days later). In contrast, in the
4th wave, an emergency declaration was issued on 2021/04/25,
and a change in the epidemic progression trend was observed
on 2021/05/15 (20 days later). The 10-day later response
in the 4th wave may be attributed to reluctance to comply
or exhaustion after already being subjected to two previous
emergency declarations which imposed a great level of stress
and anxiety (41, 42). The reluctance or exhaustion level can be
somewhat correlated with the reactions on social media when
users choose to share their emotional thoughts to others, which
provides informative features to our change prediction model

6https://www.kantei.go.jp/jp/headline/kansensho/vaccine.html

and resulted in more accurate prediction of the change in the
epidemic progression trend compared with the setting of not
using social media data.

As demonstrated in the results (Table 2), the ability to predict
the change timings including both the down-trend and up-trend
timings for the 4th waves shows that the change predictionmodel
learns to indicate that there exists the repetitive phenomenon in
the reactions on Twitter and the COVID-19 progression. With
the prediction, the model indicates that the next progression will
also come in a wave shape. The repetitive phenomenon, however,
could disappear or become undetectable if the community is
no longer infectious, or no more infectious outsiders enter
the community or there is no more reporting of the epidemic
situation. Reaching the peak of a wave early or late mainly
depends on community members’ perception of the epidemic
situation. As one major information sharing channel, social
media including Twitter plays an important role in amplifying
the impact of information availability which directly affects the
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FIGURE 5 | Daily chart of tweet counts vs. reported COVID-19 infections in the 6th wave of COVID-19 in Japan (values were smoothed by 15-day moving average).

T.R.T., Tweets related to.

perception of the epidemic situation. As this continues, themodel
can be useful for predicting the appearance of the phenomenon
in the form of change of reaction trends on social media and
COVID-19 progression trends.

From the results, we can see the challenges in predicting the
exact timings of these events of the trend changes. The accuracy
reduces as the time is further in the future. the first timing
is predicted with 7.8–8.0 days difference, but the next timing
is predicted with 19.3–21.7 days difference from the observed
timings. All predictions show earlier timings than the observed
ones. The challenges can be attributed to the change of COVID-
19 variants or the change of society’s perception of COVID-19
situation. This could be considered by deeply analyzing the tweets
in term of their contents and their networks of tens to hundreds
of millions of tweets or even more if possible relevant aspects
other than COVID-19 are necessary to collect.

The 6th Wave of COVID-19 in Japan
Since the end of 2021 and the start of 2022, Japan has been facing
the 6th wave of COVID-19 with the emerging of the Omicron
variant7. It once again triggers another wave of reactions on
Twitter (Figure 5). To illustrate the applicability of our method
to this new situation, we evaluate the prediction of the change
timing of the COVID-19 progression trend from up-trend to

down-trend as actually observed on t
(6)
a = 2022/02/10. The

7https://www.niid.go.jp/niid/en/2019-ncov-e.html

results (Table 3) show that the additional use of the COVID-
19 related tweet count (g) resulted in better prediction of the
epidemic progression trend changes than without using the
count: prediction was improved by 5.7 days. This led to a
reduction of 37.4% in the RMSE of COVID-19 case simulation.
The evaluation of the method is relatively similar in both the
4th and 6th waves. This suggests that the social media reactions
still remain in an effective relationship with the COVID-19
progression in the recent situation.

Future Direction
For further improvement in the simulation results, the method
for setting the SEIR model parameters needs to be further
improved, especially for the setting of Ri(t). In this study, the
distribution from which the set of {Ri(t)} for each location i
was drawn was assumed to be uniform, and the up- and down-
trend parameter sets were manually established. The setting
of the SEIR model parameters would be more challenging in
periods in which the epidemic conditions greatly differed, e.g.,
the 5th and 6th waves in Japan with the dominance of the
Delta and Omicron variants, respectively. Viable options include
selecting values from the most recent wave with adjustment for
the infectious power of newer variants and selecting from the
period with the most similar social media reactions although
measuring similarity would be a challenging task. Furthermore,
it is necessary to consider the emergence of new COVID-19
variants and how they would affect the parameters as well as
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TABLE 3 | Evaluation results for change prediction (Equation 6) and simulation (RMSE) in the 6th wave in Japan (2022/01/01–2022/03/05) with the epidemic progression

trend change observed on t
(6)
a = 2022/02/10.

Epidemic simulation system Change prediction (1days[t(6)a ]) Simulation (RMSE)

Baseline 1 n/a 322,075.6

Baseline 2 n/a 523,815.0

+change prediction w/o using tweet data −17.1 53,849.5

+change prediction using T.R.T. COVID-19 (g) −11.4 33,732.1

+change prediction using T.R.T. COVID-19 (e) −11.9 33,864.9

Data from 2020/12/24 to 2021/01/21 were used to obtain SEIR model parameters for up-trend and down-trend periods of COVID-19 epidemic progression with an adjustment of the

basic reproduction number for the infectious power of the Omicron variant using observed data from 2022/01/01 to 2022/01/14. Simulation RMSE was evaluated during the period

from 2022/01/15 to 2022/03/05. Data from 2020/11/15 to 2021/12/22 were used for training change prediction model. (T.R.T., Tweets related to).

TABLE 4 | Tweet counts for change prediction for 4th wave in Japan (2021/04/23–2021/06/30) with two epidemic progression trend changes: ta = 2021/05/15 and

tb = 2021/06/25.

Tweet count for change prediction Change prediction (1days[ta] / 1days[tb]) Simulation (RMSE) Daily no. of tweets

T.R.T. COVID-19 (g) −7.8/−21.7 1,360.4 414,576

T.R.T. COVID-19 (e) −8.0/−19.3 1,435.1 29,484

T.R.T. COVID-19 symptoms (g) −17.4/−27.7 2,478.9 28,814

T.R.T. COVID-19 symptoms (e) −16.2/−29.4 2,389.6 3,597

T.R.T. COVID-19 infection reporting (g) −13.4/−26.4 2,051.2 6,518

T.R.T. COVID-19 infection reporting (e) −12.4/−23.4 1,932.7 232

Data from 2020/12/24 to 2021/01/21 were used to obtain SEIR model parameters for up-trend and down-trend periods of COVID-19 epidemic progression. Data from 2020/11/15 to

2021/04/22 were used for training change prediction model. (T.R.T., Tweets related to).

the social media reactions. These challenges will be addressed in
future work.

As preparation for future work, we performed experiments on
training the change predictionmodel using different fine-grained
tweet counts:

• T.R.T. COVID-19 symptoms(g),
• T.R.T. COVID-19 symptoms(e),
• T.R.T. COVID-19 infection reporting (g),
• T.R.T. COVID-19 infection reporting (e).

The tweet counts are listed in Table 1, and the results of the
additional experiments are shown in Table 4.

Compared with using the general-topic COVID-19 related
tweet counts, using more specific-topic tweet counts did not
show improvement: the RMSE was 34.7–82.2% worse for the
simulation period. This suggests that the relationship between
reactions on social media and epidemic progression is complex.
The general count, covering a broad range of topics, exhibited
greater predictive power than the more specific counts. Manual
topic design thus may not be an efficient approach. The
development of automatic topic discovery techniques for finding
relevant topics discussed on social media that can support
epidemic progression prediction could be promising.

The results for tweet counts with emoji filtering (e) compared
with the general tweet counts (g) showed that the emoji settings
have similar representative value as the general settings: the
RMSE difference was only 3.6–5.8% even with 87.5–96.4% fewer
tweets. One advantage of using emoji settings is the ability to
perform fine-grained analysis on specific emotions (fear, anger,
etc.) represented by various emojis. Further studies on the
specific emotions used by social media users for typical topics

could help in discovering topics where changes in emotion could
affect epidemic progression. This could be done by analyzing
social media contents (emoji vs. topics) to identify emotions
trending on topics relevant to epidemic progression. This is left
for future work.

This work contributes its results to the demonstration of the
necessity of big social media data analysis in crucial worldwide
problems including dealing with pandemics. Together with
medical big data and wearable Internet of Medical Things (43–
45) which have the ability to monitor the physical conditions of
patients, big social media data analysis can help with detecting
mental health problems in the society. On one hand, real-time
COVID-19 symptom data with smart data fusion can be gathered
instantaneously by using wearable sensors potentially artificial
intelligence-enabled placed on the patient’s body. They could
be powered with advanced deep learning and cloud computing
for quick, early, and efficient treatment for individuals, thus
in turn improving public health care. On the other hand,
the similar technology of deep learning and cloud computing
can also be utilized for processing big social media data
including user interactions to not only detect the individual
mental health problems but can also detect the change of social
mental states.

5. CONCLUSION

We have presented an approach to predicting COVID-19
epidemic progression that utilizes data from Twitter, one of
the most influential social media platforms worldwide. We
demonstrated the effectiveness of this approach in a case study
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for Japan where Twitter is one of the most influential social
media platforms. Preliminary revealed that the reaction trends
on Twitter showed a repetitive phenomenon over all the waves
of COVID-19 in Japan: the trends in social reactions matched
those in the COVID-19 epidemic progression for the majority
of the time. From that observation, we designed a system that
utilizes neural networks for time-series modeling and exploits
the reactions represented by tweet counts to predict changes in
the trend of COVID-19 epidemic progression. Our experimental
results show that it is possible to predict the trends in COVID-
19 infections from the trends in the reactions on Twitter. This
means that it is important to pay attention to the evolution of
mass social media platforms and their effects on critical events
including pandemics. However, it may be challenging to identify
crucial factors from Twitter data that can be decisive clues to
changes in the COVID-19 progression trend. We will address
this problem by not simply focusing on the tweet count but
rather by analyzing the massive amounts of Twitter data (tens to
hundreds of millions of tweets), including the tweet contents and
the network of tweets.
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25. Lăzăroiu G, Horak J, Valaskova K. Scaring ourselves to death in the time of
COVID-19: pandemic awareness, virus anxiety, and contagious fear. Linguist
Philos Invest. (2020) 19:114–20. doi: 10.22381/LPI1920208

26. Rommer D, Majerova J, Machova V. Repeated COVID-19 pandemic-related
media consumption: Minimizing sharing of nonsensical misinformation
through health literacy and critical thinking. Linguist Philos Invest. (2020)
19:107–13. doi: 10.22381/LPI1920207

27. Ljungholm DP, Olah ML. Regulating fake news content during COVID-19
pandemic: evidence-based reality, trustworthy sources, and responsible media
reporting. Rev Contemp Philos. (2020) 19:43–9. doi: 10.22381/RCP1920203
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APPENDIX

In this study, we used the simulation system proposed by (40)
with a stochastic SEIRmodel used tomodel the disease dynamics.
This system supports multi-location epidemic modeling to
estimate the force of infection using inter-location mobility. For
Japan, we performed prefecture-widemulti-location setup. Given
the parameters, including the reproduction numbers Ri(t), latent
period 1

σ
, and infectious period 1

γ
, the transitions between the

compartments Susceptible, Exposed, Infected, and Recovered for
each location i are

NSi→Ei (t) =

Binom(Si, 1− exp(−1t · FOIi(t))) (7)

N
Ei→I

(1)
i
(t) = Binom(Ei, 1− exp(−1t · σ )) (8)

N
I
(1)
i →I

(2)
i
(t) = Binom(I(1)

i , 1− exp(−1t · γ ′)) (9)

N
I
(2)
i →I

(3)
i
(t) = Binom(I(2)

i , 1− exp(−1t · γ ′)) (10)

N
I
(3)
i →Ri

(t) = Binom(I(3)
i , 1− exp(−1t · γ ′)) (11)

γ ′ = γ · k (12)

FOIi(t) =



1−
∑

j 6=i

pa
Mi,j

Hi



 · FOI’i(t)+
∑

j 6=i

(

pa
Mi,j

Hi
· FOI’j(t)

)

(13)

FOI’i(t) = βi(t)
Ii(t)α

Hi
(14)

βi(t) = Ri(t) · γ (15)

Ii(t) =
k=3
∑

j=1

I
(j)
i (t), (16)

where Mi,j represent the daily mobility from
location i to location j, Hi is the population of
location i, pa is the proportion of time that moving
individuals spend away, and α is the mixing
coefficient.
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