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Abstract
Together with J. Paseka we introduced so-called sectionally pseudocomplemented lattices and posets and illuminated their
role in algebraic constructions. We believe that—similar to relatively pseudocomplemented lattices—these structures can
serve as an algebraic semantics of certain intuitionistic logics. The aim of the present paper is to define congruences and
filters in these structures, derive mutual relationships between them and describe basic properties of congruences in strongly
sectionally pseudocomplemented posets. For the description of filters in both sectionally pseudocomplemented lattices and
posets, we use the tools introduced by A. Ursini, i.e., ideal terms and the closedness with respect to them. It seems to be of
some interest that a similar machinery can be applied also for strongly sectionally pseudocomplemented posets in spite of the
fact that the corresponding ideal terms are not everywhere defined.

Keywords Sectionally pseudocomplemented lattice · Sectionally pseudocomplemented poset · Filter · Congruence · Weak
regularity · Congruence permutability · Maltsev term · Ideal term · Closedness of a subset · Congruence class · Deductive
system · Partial term

1 Introduction

The concept of a relative pseudocomplemented lattice was
introduced byR. P.Dilworth (Dilworth (1939)). It was used in
several branches of mathematics, e.g., as an algebraic axiom-
atization of intuitionistic logic (by Heyting and Brouwer)
where the relative pseudocomplement is interpreted as the
logical connective implication.

However, every relative pseudocomplemented lattice is
distributive, see, e.g., Birkhoff (1979) and Lakser (1971).
Because not every non-classical propositional calculus is
necessarily distributive (for instance, the logic of quan-
tum mechanics), it was a question whether the concept of
relative pseudocomplementation can be extended in a rea-
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sonable way to non-distributive lattices. This was realized
by the first author in Chajda (2003) by introducing sectional
pseudocomplementation. Later on, the concept of sectional
pseudocomplementation was extended also to posets, see
Chajda et al. (2021).

In the present paper we focus on congruences and fil-
ters on sectionally pseudocomplemented lattices and posets.
For lattices we can use the machinery of universal algebra
(see, e.g., Chajda et al. (2012)) because sectionally pseudo-
complemented lattices form a variety which is congruence
permutable, congruence distributive and weakly regular. The
situation with sectionally pseudocomplemented posets is a
bit more complicated due to the fact that such a poset in
general cannot be extended to a sectionally pseudocom-
plemented lattice by means of the Dedekind–MacNeille
completion, see Chajda et al. (2021) for the result.

Sectionally pseudocomplemented lattices having 0 and
their ideals will be the topic of one of our next studies.

2 Sectionally pseudocomplemented lattices

Recall that a lattice (L,∨,∧) is said to be sectionally
pseudocomplemented if for all a, b ∈ L there exists the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-05900-4&domain=pdf
http://orcid.org/0000-0003-3840-3879
http://orcid.org/0000-0002-7030-4080


8828 I. Chajda, H. Länger

Fig. 1 Sectionally
pseudocomplemented lattice
that is not relatively
pseudocomplemented
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pseudocomplement of a ∨ b in the interval ([b),≤), i.e., the
greatest element c of L satisfying

(a ∨ b) ∧ c = b.

(Here, [b) denotes the set {x ∈ L | b ≤ x}.) In this case c
is called the sectional pseudocomplement of a with respect
to b and it will be denoted by a ∗ b. We consider section-
ally pseudocomplemented lattices as algebras (L,∨,∧, ∗) of
type (2, 2, 2). Every non-empty sectionally pseudocomple-
mented lattice has a greatest element 1, namely the algebraic
constant x ∗ x . In the following we consider only non-empty
lattices.

An example of a sectionally pseudocomplemented lattice
that is not relatively pseudocomplemented is N5 depicted in
Fig. 1:

This lattice is not distributive and hence not relatively
pseudocomplemented (see Birkhoff (1979)). The operation
table for the sectional pseudocomplementation is as follows:

∗ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b c a 1 c 1
c b a b 1 1
1 0 a b c 1

Recall from Chajda et al. (2021), Theorems 2.5 and 2.6, the
following important result.

Proposition 2.1 The class of sectionally pseudocomplemented
lattices (L,∨,∧, ∗) forms a variety which besides the lattice
axioms is determined by the following identities:

z ∨ y ≤ x ∗ ((x ∨ y) ∧ (z ∨ y)),

(x ∨ y) ∧ (x ∗ y) ≈ y.

This variety is congruence permutable, congruence distribu-
tive and weakly regular. A Maltsev term for congruence
permutability is given by

p(x, y, z) := ((x ∗ y) ∗ z) ∧ ((z ∗ y) ∗ x).

For the concept of congruence permutability, we refer the
reader to Chajda et al. (2012).

Weak regularity means that every congruence � on a sec-
tionally pseudocomplemented lattice with greatest element
1 is determined by its kernel, i.e., by the congruence class
[1]�. Hence, our first task is to describe these classes. For
this purpose we introduce the following concept:

Definition 2.2 Let L = (L,∨,∧, ∗) be a sectionally pseu-
docomplemented lattice. A filter of L is a subset F of L
containing 1 such that x ∗ y, y ∗ x ∈ F implies

(x ∨ z) ∗ (y ∨ z), (x ∧ z) ∗ (y ∧ z),

(x ∗ z) ∗ (y ∗ z), (z ∗ x) ∗ (z ∗ y) ∈ F .

Let FilL denote the set of all filters of L. For any subset M
of L define a binary relation �(M) on L as follows:

�(M) := {(x, y) ∈ L2 | x ∗ y, y ∗ x ∈ M}.

The following results were proved in Chajda (2003) and
Chajda et al. (2021).

Lemma 2.3 If L = (L,∨,∧, ∗) is a sectionally pseudocom-
plemented lattice and a, b, c ∈ L, then

(i) a ∗ b = 1 if and only if a ≤ b,
(ii) 1 ∗ a = a,
(iii) a ≤ b ∗ a,
(iv) a ≤ (a ∗ b) ∗ b,
(v) if a ≤ b, then b ∗ c ≤ a ∗ c,
(vi) (a ∨ b) ∧ (a ∗ b) = b.

Observe that (iii) implies b ≤ (a ∗ b) ∗ b.
The relationship between congruences and filters in sec-

tionally pseudocomplemented lattices is illuminated in the
next two theorems.

Theorem 2.4 Let L = (L,∨,∧, ∗) be a sectionally pseudo-
complemented lattice and � ∈ ConL. Then, [1]� ∈ FilL
and for any x, y ∈ L,

(x, y) ∈ � if and only if x ∗ y, y ∗ x ∈ [1]�,

i.e., �([1]�) = �.

Proof Let a, b ∈ L . If (a, b) ∈ �, then a ∗ b, b ∗ a ∈
[a ∗ a]� = [1]�, i.e., (a, b) ∈ �([1]�). Conversely, if
(a, b) ∈ �([1]�), then a ∗ b, b ∗ a ∈ [1]� and hence, using
(ii) and (iv) of Lemma 2.3,

a = a ∧ ((a ∗ b) ∗ b) � (1 ∗ a) ∧ (1 ∗ b) � ((b ∗ a) ∗ a) ∧ b = b,

i.e., (a, b) ∈ �. This shows �([1]�) = �. Due to the
substitution property of � with respect to ∨, ∧ and ∗, we
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see that [1]� satisfies the conditions from Definition 2.2 and
hence [1]� ∈ FilL. �	
Theorem2.4witnesses that sectionally pseudocomplemented
lattices are weakly regular.

We can prove also the converse.

Theorem 2.5 Let L = (L,∨,∧, ∗) be a sectionally pseudo-
complemented lattice and F ∈ FilL. Then, �(F) ∈ ConL
and [1](�(F)) = F.

Proof Let a, b, c ∈ L . Evidently, �(F) is symmetric and
since 1 ∈ F and x ∗ x ≈ 1 by (i) of Lemma 2.3, it is also
reflexive. Assume a ∗ b, b ∗ a ∈ F . Then, by Definition 2.2

(a ∗ c) ∗ (b ∗ c), (b ∗ c) ∗ (a ∗ c), (c ∗ a) ∗ (c ∗ b),

(c ∗ b) ∗ (c ∗ a), (a ∨ c) ∗ (b ∨ c), (b ∨ c) ∗ (a ∨ c),

(a ∧ c) ∗ (b ∧ c), (b ∧ c) ∗ (a ∧ c) ∈ F

whence

(a ∗ c, b ∗ c), (c ∗ a, c ∗ b), (a ∨ c, b ∨ c), (a ∧ c, b ∧ c) ∈ �(F).

Hence,�(F) has the substitution property with respect to all
basic operations of L. Since the variety of sectionally pseu-
docomplemented lattices is congruence permutable,�(F) is
also transitive, see, e.g., Werner’s Theorem (Werner (1973))
or Corollary 3.1.13 in Chajda et al. (2012), and hence,
�(F) ∈ ConL. Finally, the following are equivalent:

a ∈ [1](�(F)),

(a, 1) ∈ �(F),

a ∗ 1, 1 ∗ a ∈ F,

1, a ∈ F,

a ∈ F

and hence [1](�(F)) = F . �	
It is elementary to check that for every sectionally pseudo-
complemented lattice L, (FilL,⊆) is a complete lattice.

Example 2.6 The sectionally pseudocomplemented lattice
from Fig. 1 has the following filters:

F(1) = {1},
F(a) = F(c) = {a, c, 1},
F(0) = F(b) = {0, a, b, c, 1}.

The following corollary follows from Theorems 2.4 and 2.5.

Corollary 2.7 For every sectionally pseudocomplemented
lattice L, the mappings � �→ [1]� and F �→ �(F) are
mutually inverse isomorphisms between the complete lattices
(ConL,⊆) and (FilL,⊆).

Let (L,∨,∧, ∗) be a sectionally pseudocomplemented lat-
tice. A deductive system of L is a subset D of L containing
1 and satisfying the following condition:

If a ∈ D, b ∈ L and a ∗ b ∈ D, then b ∈ D.

In the following (F∗(F∗a))∗a denotes the set {(x∗(y∗a))∗
a | x, y ∈ F}. Analogously, we proceed in similar cases.

Theorem 2.8 Let L = (L,∨,∧, ∗) be a sectionally pseudo-
complemented lattice, � ∈ ConL, F ∈ FilL and a, b ∈ L.
Then,

(i) Every class of � is a convex subset of (L,≤),
(ii) F is a deductive system of L,
(iii) F is a lattice filter of L,
(iv) a ∗ (F ∧ a) ⊆ F and (F ∗ (F ∗ a)) ∗ a ⊆ F.

Proof (i) If c, d ∈ [a]� and c ≤ b ≤ d, then

b = c ∨ b ∈ [d ∨ b]� = [d]� = [a]�.

(ii) If a, a ∗ b ∈ F , then

b = 1 ∗ b ∈ [a ∗ b](�(F)) = [1](�(F)) = F .

(iii) If a ∈ F , then

a ∨ b ∈ [1 ∨ b](�(F)) = [1](�(F)) = F .

Moreover, if a, b ∈ F , then

a ∧ b ∈ [1 ∧ 1](�(F)) = [1](�(F)) = F .

(iv)

a ∗ (F ∧ a) ⊆ [a ∗ (1 ∧ a)](�(F))

= [a ∗ a](�(F)) = [1](�(F)) = F,

(F ∗ (F ∗ a)) ∗ a ⊆ [(1 ∗ (1 ∗ a)) ∗ a](�(F))

= [(1 ∗ a) ∗ a](�(F)) = [a ∗ a](�(F)) =
= [1](�(F)) = F .

�	

3 Sectionally pseudocomplemented posets

Now we turn our attention to sectionally pseudocomple-
mented posets.
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Definition 3.1 Let P = (P,≤) be a poset. Then, P is called
sectionally pseudocomplemented if for all a, b ∈ P there
exists a greatest element c of P satisfying

L(U (a, b), c) = L(b).

This element c is called the sectional pseudocomplement a∗b
of a with respect to b. We write sectionally pseudocomple-
mented posets in the form (P,≤, ∗). A strongly sectionally
pseudocomplemented poset is an ordered quadruple (P,≤
, ∗, 1) such that (P,≤, ∗) is a sectionally pseudocomple-
mented poset with greatest element 1 satisfying the identity

x ≤ (x ∗ y) ∗ y.

The following results were proved in Chajda et al. (2021).

Lemma 3.2 If P = (P,≤, ∗) is a sectionally pseudocom-
plemented poset with greatest element 1 and a, b, c ∈ P,
then

(i) a ∗ b = 1 if and only if a ≤ b,
(ii) 1 ∗ a = a,
(iii) a ≤ b ∗ a,
(iv) if b ≤ a, then a ≤ (a ∗ b) ∗ b,
(v) if a ≤ b, then b ∗ c ≤ a ∗ c,
(vi) L(U (a, b), a ∗ b) = L(b).

Observe that (iii) implies b ≤ (a ∗ b) ∗ b. Hence, in case
a ≤ b we have a ≤ (a ∗ b) ∗ b.

It is easy to see that every sectionally pseudocomple-
mented lattice is a strongly sectionally pseudocomplemented
poset, and a lattice is sectionally pseudocomplemented if and
only if it is sectionally pseudocomplemented as a poset.

Remark 3.3 If (P,≤, ∗) is a sectionally pseudocomple-
mented poset and a, b ∈ P , then

L(U (a, b), a ∗ b) = L(b)

which shows that there exists the infimumU (a, b)∧ (a ∗ b),
and hence, the previous is equivalent to

U (a, b) ∧ (a ∗ b) = b.

Thus, in case a ≥ b we obtain a ∧ (a ∗ b) = b.

An example of a strongly sectionally pseudocomplemented
poset which is not a lattice is visualized in Fig. 2.

Fig. 2 Strongly sectionally
pseudocomplemented poset

0

a b

c

d e

1

The operation table of ∗ is as follows:

∗ 0 a b c d e 1
0 1 1 1 1 1 1 1
a b 1 b 1 1 1 1
b c a 1 c 1 1 1
c b a b 1 1 1 1
d 0 a b c 1 e 1
e 0 a b c d 1 1
1 0 a b c d e 1

This poset is not relatively pseudocomplemented since the
relative pseudocomplement of c with respect to a does not
exist.

It should be noted that there are sectionally pseudo-
complemented posets which are not strongly sectionally
pseudocomplemented, see, e.g., Chajda et al. (2021), but
these are rather curious.

Since a sectionally pseudocomplemented posetP has only
one operation, namely∗, a congruence onP should satisfy the
substitution property with respect to ∗. However, this condi-
tion is rather weak and we cannot expect to obtain a natural
relationship between congruences and congruence kernels
similar to that obtained for sectionally pseudocomplemented
lattices in the previous section. Namely, our concept of a
congruence on a strongly sectionally pseudocomplemented
poset should respect also some aspects of the partial order
relation. This is the reason why we introduce the following
property.

Definition 3.4 A binary relation ρ on a poset is called min-
stable if the following holds: If (a, b), (c, d) ∈ ρ, a is
comparable with c and b is comparable with d, then

(min(a, c),min(b, d)) ∈ ρ.

Observe that this condition trivially holds if a ≤ c and b ≤ d
or if a ≥ c and b ≥ d.

Now we can define
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Definition 3.5 Let P = (P,≤, ∗) be a sectionally pseudo-
complemented poset. A congruence on P is a min-stable
congruence on the algebraic reduct (P, ∗) of P. Let ConP
denote the set of all congruences on P.

Note that the congruences on a sectionally pseudocomple-
mented latticeLmay not coincide with the congruences onL
if it is considered only as a sectionally pseudocomplemented
poset.

In analogy to the lattice case, we define

Definition 3.6 Let P = (P,≤, ∗, 1) be a sectionally pseu-
docomplemented poset with greatest element 1. A filter of P
is a subset F of P containing 1 and satisfying the following
conditions for all x, y, z, v ∈ P:

• If x∗y, y∗x ∈ F , then (x∗z)∗(y∗z), (z∗x)∗(z∗y) ∈ F ,
• if x ∗ y, y∗x, z∗v, v∗z ∈ F , x and z are comparable and

y and v are comparable, then min(x, z)∗min(y, v) ∈ F .

Let FilP denote the set of all filters of P. It is elementary
to check that for every strongly sectionally pseudocomple-
mented poset P, (ConP,⊆) and (FilP,⊆) are complete
lattices. For any subset M of P put

�(M) := {(x, y) ∈ P2 | x ∗ y, y ∗ x ∈ M}.

The relationship between congruences and filters in strongly
sectionally pseudocomplemented posets is illuminated in the
next two theorems.

Theorem 3.7 Let P = (P,≤, ∗, 1) be a strongly sectionally
pseudocomplemented poset and � ∈ ConL. Then, [1]� ∈
FilL and for any x, y ∈ P,

(x, y) ∈ � if and only if x ∗ y, y ∗ x ∈ [1]�,

i.e., �([1]�) = �.

Proof Let a, b ∈ L . If (a, b) ∈ �, then, by Lemma 3.2,
a ∗ b, b ∗ a ∈ [a ∗ a]� = [1]�, i.e., (a, b) ∈ �([1]�).
Conversely, if (a, b) ∈ �([1]�), then a ∗ b, b ∗ a ∈ [1]�
and hence, using again Lemma 3.2,

(a, (b ∗ a) ∗ a) = (1 ∗ a, (b ∗ a) ∗ a) ∈ �,

((a ∗ b) ∗ b, b) = ((a ∗ b) ∗ b, 1 ∗ b) ∈ �.

Since P is strongly sectionally pseudocomplemented, we
have a ≤ (a ∗ b) ∗ b and (b ∗ a) ∗ a ≥ b; thus, by min-
stability of � we conclude

(a, b) = (min(a, (a ∗ b) ∗ b),min((b ∗ a) ∗ a, b)) ∈ �.

This shows �([1]�) = �. Due to the substitution property
of � with respect to ∗ and the min-stability of �, we obtain
[1]� ∈ FilL. �	

We have shown that every congruence � on a strongly sec-
tionally pseudocomplemented poset is fully determined by
its 1-class [1]�. Hence, we conclude

Corollary 3.8 Strongly sectionally pseudocomplementedposets
are weakly regular.

We can prove also the converse.

Theorem 3.9 Let P = (P,≤, ∗, 1) be a strongly sectionally
pseudocomplemented poset and F ∈ FilP. Then, �(F) ∈
ConP and [1](�(F)) = F.

Proof Let a, b, c, d ∈ P . Evidently, �(F) is symmetric and
since 1 ∈ F and x ∗ x ≈ 1, it is also reflexive. If (a, b) ∈
�(F), then a ∗ b, b ∗ a ∈ F and hence, using the properties
listed in Definition 3.6,

(a ∗ c) ∗ (b ∗ c), (b ∗ c) ∗ (a ∗ c) ∈ F,

(c ∗ a) ∗ (c ∗ b), (c ∗ b) ∗ (c ∗ a) ∈ F .

Thus, (a ∗ c, b ∗ c), (c ∗ a, c ∗ b) ∈ �(F). Hence, �(F)

has the substitution property with respect to ∗. Moreover,
if (a, b), (c, d) ∈ �(F), a is comparable with c and b is
comparable with d, then a ∗ b, b ∗ a, c ∗ d, d ∗ c ∈ F and by
Definition 3.6

min(a, c) ∗ min(b, d),min(b, d) ∗ min(a, c) ∈ F,

i.e., (min(a, c),min(b, d)) ∈ �(F). This shows that �(F)

is min-stable. If (a, b), (b, c) ∈ �(F), then

(a ∗ b) ∗ b �(F) (b ∗ b) ∗ c = 1 ∗ c = c,

a = 1 ∗ a = (b ∗ b) ∗ a �(F) (c ∗ b) ∗ b

and hence using min-stability of �(F)

(a, c) = (min((a ∗ b) ∗ b, a),min(c, (c ∗ b) ∗ b)) ∈ �(F),

i.e., �(F) is transitive. Therefore, �(F) ∈ ConP. Finally,
the following are equivalent:

a ∈ [1](�(F)),

(a, 1) ∈ �(F),

a ∗ 1, 1 ∗ a ∈ F,

1, a ∈ F,

a ∈ F .

This shows [1](�(F)) = F . �	
Example 3.10 The lattice of filters of the strongly section-
ally pseudocomplemented poset from Fig. 2 consists of the
following six filters:

F(1) = {1},
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Fig. 3 Lattice of filters of the
poset from Fig. 2

F (1)

F (d) F (e)

F ({d, e})

F (a)

F (0)

F(d) = {d, 1},
F(e) = {e, 1},

F({d, e}) = {d, e, 1},
F(a) = F(c) = {a, c, d, e, 1},
F(0) = F(b) = {0, a, b, c, d, e, 1}.

The corresponding Hasse diagram is depicted in Fig. 3:

The following corollary follows from Theorems 3.7
and 3.9.

Corollary 3.11 For every strongly sectionally pseudocomple-
mented poset P, the mappings � �→ [1]� and F �→ �(F)

aremutually inverse isomorphisms between the complete lat-
tices (ConP,⊆) and (FilP,⊆).

4 Properties of filters

Using the min-stability property of congruences in strongly
sectionally pseudocomplemented posets, we can prove

Theorem 4.1 Let P = (P,≤, ∗, 1) be a strongly sectionally
pseudocomplemented poset and � ∈ ConP. Then, every
class of � is a convex subset of (P,≤).

Proof If a, c ∈ P , b, d ∈ [a]� and b ≤ c ≤ d, then

(c ∗ d) ∗ b = 1 ∗ b = b ≤ c ≤ (c ∗ b) ∗ b,

((c ∗ d) ∗ b, (c ∗ b) ∗ b) ∈ �

and hence by min-stability of � we obtain

(b, c) = (min((c ∗ d) ∗ b, c),min((c ∗ b) ∗ b, c)) ∈ �,

which implies c ∈ [b]� = [a]�. �	
We now investigate quotients P/� of strongly sectionally
pseudocomplemented posets P with respect to its congru-
ences.

Let P = (P,≤, ∗, 1) be a strongly sectionally pseudo-
complemented poset and � ∈ ConP. We define a binary
relation ≤′ on P/� by

for all a, b ∈ P, [a]� ≤′ [b]� if and only if [a]� ∗ [b]� = [1]�.

Recall that a poset (P,≤) is called up-directed if for any
x, y ∈ P there exists some z ∈ P with x, y ≤ z. Hence,
every poset having a greatest element is up-directed.

It should be mentioned that the poset (P/�,≤′) where
P = (P,≤, ∗, 1) denotes the strongly sectionally pseudo-
complemented poset from Fig. 2 and � the congruence on
P corresponding to the filter F({d, e}) of P is isomorphic to
the lattice from Fig. 1.

The following theoremwas partly proved for congruences
on the algebraic reduct (P, ∗) in Chajda et al. (2021).

Theorem 4.2 Let P = (P,≤, ∗, 1) be a strongly sectionally
pseudocomplemented poset, n ≥ 1, a, a1, . . . , an, b ∈ P
and � ∈ ConP. Then, the following hold:

(i) if a ≤ b, then [a]� ≤′ [b]�,
(ii) [a]� ≤′ [b]� if and only if there exists some c ∈ [b]�

with a ≤ c,
(iii) (P/�,≤′) is a poset,
(iv) Every class of � is up-directed,
(v) U ([a1]�, . . . , [an]�) = {[x]� | x ∈ U (a1. . . . , an)}

in (P/�,≤′).

Proof (i) If a ≤ b, then a ∗ b = 1 whence a ∗ b � 1, i.e.,
[a]� ∗ [b]� = [a ∗ b]� = [1]�; thus, [a]� ≤′ [b]�.

(ii) If [a]� ≤′ [b]�, then a∗b � 1 and hence a ≤ (a∗b)∗
b ∈ [1 ∗ b]� = [b]�. So one can put c := (a ∗ b) ∗ b.
If, conversely, there exists some c ∈ [b]� with a ≤ c,
then according to (i) we have [a]� ≤′ [c]� = [b]�.

(iii) Obviously, ≤′ is reflexive. Now assume [a]� ≤′ [b]�
and [b]� ≤′ [a]�. Then, by (ii), there exists some
c ∈ [b]� with a ≤ c. Because of [c]� = [b]� ≤′
[a]� there exists some d ∈ [a]� with c ≤ d. Since
a ≤ c ≤ d, a, d ∈ [a]� and ([a]�,≤′) is convex we
conclude c ∈ [a]�. Therefore [a]� = [c]� = [b]�
which proves antisymmetry of ≤′. Finally, let c ∈ P
and assume [a]� ≤′ [b]� and [b]� ≤′ [c]�. Then,
by (ii) there exists some e ∈ [b]� with a ≤ e and
because of [e]� = [b]� ≤′ [c]� some f ∈ [c]� with
e ≤ f . From a ≤ e ≤ f we have a ≤ f which implies
[a]� ≤′ [ f ]� = [c]� by (i), proving transitivity of
≤′.

(iv) Let b, c ∈ [a]�. Then,

(b ∗ c) ∗ c ∈ [(c ∗ c) ∗ c]� = [1 ∗ c]� = [c]� = [a]�,

b ≤ (b ∗ c) ∗ c since P is strongly sectionally

pseudocomplemented,
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c ≤ (b ∗ c) ∗ c according to Lemma 3.2 (i i i).

Thus, (b ∗ c) ∗ c is a common upper bound of b and c
within ([a]�,≤).

(v) Assume [a]� ∈ U ([a1]�, . . . , [an]�). According to
(ii), for all i ∈ {1, . . . , n} there exists some bi ∈ [a]�
with ai ≤ bi . Because of (iv), ([a]�,≤′) is up-
directed and hence there exists some c ∈ [a]� with
b1, . . . , bn ≤ c. This shows

[a]� = [c]� ∈ {[x]� | x ∈ U (a1, . . . , an)}.

The converse inclusion follows from (i).
�	

From (iv) we conclude that if (P,≤) satisfies the ascending
chain condition (in particular, if P is finite), then every class
of � has a greatest element.

The following concept is inspired by the derivation rule
Modus Ponens in the non-classical logic based on a section-
ally pseudocomplemented poset where ∗ models the logical
connective implication.

Let (P,≤, ∗, 1) be a strongly sectionally pseudocomple-
mented poset. A deductive system of P is a subset D of P
containing 1 and satisfying the following condition:

If a ∈ D, b ∈ P and a ∗ b ∈ D, then b ∈ D.

We can prove the following result in analogy to the corre-
sponding result for sectionally pseudocomplemented lattices.

Theorem 4.3 Let P = (P,≤, ∗, 1) be a strongly sectionally
pseudocomplemented poset, F ∈ FilP and c ∈ P. Then,

(i) F is a deductive system of P,
(ii) F is an order filter of P,
(iii) P ∗ F ⊆ F,
(iv) c ∗ (F ∧ c), (F ∗ (F ∗ c)) ∗ c ⊆ F.

Proof We use the fact that the filter F is the 1-class of the
congruence �(F).

(i) If a ∈ F , b ∈ P and a ∗ b ∈ F , then

b = 1 ∗ b ∈ [a ∗ b](�(F)) = [1](�(F)) = F .

(ii) If a ∈ F , b ∈ P and a ≤ b, then a ∗ b = 1 ∈ F and
hence b ∈ F by (i).

(iii) If a ∈ P and b ∈ F , then a ∗ b ∈ [a ∗ 1](�(F)) =
[1](�(F)) = F .

(iv)

c ∗ (F ∧ c) ⊆ [c ∗ (1 ∧ c)](�(F))

= [c ∗ c](�(F)) = [1](�(F)) = F,

(F ∗ (F ∗ c)) ∗ c ⊆ [(1 ∗ (1 ∗ c)) ∗ c](�(F))

= [(1 ∗ c) ∗ c](�(F)) = [c ∗ c](�(F)) =
= [1](�(F)) = F .

�	
Theorem 4.3 shows that every filter is a deductive system.
However, our concept of a filter is rather complicated and it
seems that not all the properties of a filter are necessary to
prove this assertion. We can prove

Proposition 4.4 Let P = (P,≤, ∗, 1) be a strongly sec-
tionally pseudocomplemented poset and M a subset of P
containing 1 and satisfying (M ∗ (M ∗ x)) ∗ x ⊆ M for all
x ∈ P. Then, M is a deductive system of P.

Proof Let a ∈ M and b ∈ P . We have 1 ∈ M . If a ≤ b, then

b = 1 ∗ b = (a ∗ b) ∗ b = (a ∗ (1 ∗ b)) ∗ b ∈ (M ∗ (M ∗ b)) ∗ b ⊆ M .

Hence, if a ∗b ∈ M , then because of a ≤ (a ∗b)∗b we have
(a ∗ b) ∗ b ∈ M which implies

b = 1 ∗ b = (((a ∗ b) ∗ b) ∗ ((a ∗ b) ∗ b)) ∗ b ∈ (M ∗ (M ∗ b)) ∗ b ⊆ M .

�	
Observe that the condition mentioned in Proposition 4.4 is
just the second one of (iv) of Theorem 4.3.

For the concept of an ideal of a universal algebra which
corresponds to our concept of a filter and for the concept
of ideal terms, the reader is referred to Ursini (1972). In
particular, for ideals (alias filters) in permutable and weakly
regular varieties see also Chajda et al. (2012) for details.

Definition 4.5 An ideal term for sectionally pseudocomple-
mented lattices is a term t(x1, . . . , xn, y1, . . . , ym) in the
language of sectionally pseudocomplemented lattices satis-
fying the identity

t(x1, . . . , xn, 1, . . . , 1) ≈ 1.

Of course, there exist an infinite number of ideal terms in
sectionally pseudocomplemented lattices. The following list
including five ideal terms is a so-called basis for filters in
sectionally pseudocomplemented lattices, i.e., filters can be
characterized by this short list of ideal terms.

Lemma 4.6 The following terms are ideal terms for section-
ally pseudocomplemented lattices:

t1 := 1,

t2(x1, x2, x3, y1, y2)
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:= (((x1 ∨ x2) ∧ (y1 ∗ x2) ∧ y2) ∨ x3)

∗ (x2 ∨ x3),

t3(x1, x2, x3, y1, y2)

:= (((x1 ∨ x2) ∧ (y1 ∗ x2) ∧ y2) ∧ x3)

∗ (x2 ∧ x3),

t4(x1, x2, x3, y1, y2)

:= (((x1 ∨ x2) ∧ (y1 ∗ x2) ∧ y2) ∗ x3)

∗ (x2 ∗ x3),

t5(x1, x2, x3, y1, y2)

:= (x3 ∗ x1) ∗ (x3 ∗ ((x1 ∨ x2) ∧ (y2 ∗ x1) ∧ y1)).

Proof Put

t(x, y, z, u) := (x ∨ y) ∧ (z ∗ y) ∧ u.

Then,

t2(x1, x2, x3, y1, y2) = (t(x1, x2, y1, y2) ∨ x3) ∗ (x2 ∨ x3),

t3(x1, x2, x3, y1, y2) = (t(x1, x2, y1, y2) ∧ x3) ∗ (x2 ∧ x3),

t4(x1, x2, x3, y1, y2) = (t(x1, x2, y1, y2) ∗ x3) ∗ (x2 ∗ x3),

t5(x1, x2, x3, y1, y2) = (x3 ∗ x1) ∗ (x3 ∗ t(x2, x1, y2, y1)).

and according to Lemma 2.3

t(x, y, 1, 1) = (x ∨ y) ∧ (1 ∗ y) ∧ 1 = (x ∨ y) ∧ y = y

and hence

t2(x1, x2, x3, 1, 1)

= (t(x1, x2, 1, 1) ∨ x3) ∗ (x2 ∨ x3) = (x2 ∨ x3)

∗ (x2 ∨ x3) = 1,

t3(x1, x2, x3, 1, 1)

= (t(x1, x2, 1, 1) ∧ x3) ∗ (x2 ∧ x3) = (x2 ∧ x3)

∗ (x2 ∧ x3) = 1,

t4(x1, x2, x3, 1, 1) = (t(x1, x2, 1, 1) ∗ x3) ∗ (x2 ∗ x3)

= (x2 ∗ x3) ∗ (x2 ∗ x3) = 1,

t5(x1, x2, x3, 1, 1) = (x3 ∗ x1) ∗ (x3 ∗ t(x2, x1, 1, 1))

= (x3 ∗ x1) ∗ (x3 ∗ x1) = 1.

�	
The closedness with respect to ideal terms was also intro-
duced by A. Ursini ( Ursini (1972)).

Definition 4.7 A subset A of a sectionally pseudocomple-
mented lattice L = (L,∨,∧, ∗) is said to be closed with
respect to the ideal terms ti (x1, . . . , xn, y1, . . . , ym), i ∈ I ,
if for every i ∈ I , all x1, . . . , xn ∈ L and all y1, . . . , ym ∈ A
we have ti (x1, . . . , xn, y1, . . . , ym) ∈ A.

Nowwe prove that the ideal terms listed in Lemma 4.6 form a
basis for filters, i.e., filters are characterized as those subsets
which are closed with respect to these ideal terms.

Theorem 4.8 Let L = (L,∨,∧, ∗) be a sectionally pseudo-
complemented lattice and F ⊆ L. Then, F ∈ FilL if and
only if F is closed with respect to the ideal terms t1, . . . , t5
listed in Lemma 4.6.

Proof If F ∈ FilL, then F = [1](�(F)) according to The-
orem 2.5, and if

ti (x1, . . . , xn, y1, . . . , ym), i ∈ {1, . . . , 5},

are the ideal terms listed in Lemma 4.6, a1, . . . , an ∈ L and
b1, . . . , bm ∈ F , then

ti (a1, . . ., an, b1, . . ., bm)∈[ti (a1, . . ., an, 1, . . ., 1)](�(F))

= [1](�(F)) = F

according toLemma4.6 and hence F is closedwith respect to
the ideal terms t1, . . . , t5. Conversely, assume F to be closed
with respect to the ideal terms t1, . . . , t5. Then, 1 = t1 ∈ F .
Now assume a, b ∈ L and a ∗ b, b ∗ a ∈ F . For the term

t(x, y, z, u) := (x ∨ y) ∧ (z ∗ y) ∧ u,

we have

t2(x1, x2, x3, y1, y2) = (t(x1, x2, y1, y2) ∨ x3) ∗ (x2 ∨ x3),

t3(x1, x2, x3, y1, y2) = (t(x1, x2, y1, y2) ∧ x3) ∗ (x2 ∧ x3),

t4(x1, x2, x3, y1, y2) = (t(x1, x2, y1, y2) ∗ x3) ∗ (x2 ∗ x3),

t5(x1, x2, x3, y1, y2) = (x3 ∗ x1) ∗ (x3 ∗ t(x2, x1, y2, y1))

and according to Lemma 2.3 (iv) and (vi) we obtain

t(x, y, x ∗ y, y ∗ x) = (x ∨ y) ∧ ((x ∗ y) ∗ y) ∧ (y ∗ x) =
= ((y ∨ x) ∧ (y ∗ x)) ∧ ((x ∗ y) ∗ y)

= x ∧ ((x ∗ y) ∗ y) = x .

Hence,

(a ∨ c) ∗ (b ∨ c) = (t(a, b, a ∗ b, b ∗ a) ∨ c) ∗ (b ∨ c)

= t2(a, b, c, a ∗ b, b ∗ a) ∈ F,

(a ∧ c) ∗ (b ∧ c) = (t(a, b, a ∗ b, b ∗ a) ∧ c) ∗ (b ∧ c)

= t3(a, b, c, a ∗ b, b ∗ a) ∈ F,

(a ∗ c) ∗ (b ∗ c) = (t(a, b, a ∗ b, b ∗ a) ∗ c) ∗ (b ∗ c)

= t4(a, b, c, a ∗ b, b ∗ a) ∈ F,

(c ∗ a) ∗ (c ∗ b) = (c ∗ a) ∗ (c ∗ t(b, a, b ∗ a, a ∗ b))

= t5(a, b, c, a ∗ b, b ∗ a) ∈ F

showing F ∈ FilL. �	
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Remark 4.9 Let us note that the term t from the proof of
Theorem 4.8 gives rise to a Maltsev term. Namely, if

t(x, y, z, u) := (x ∨ y) ∧ (z ∗ y) ∧ u and

q(x, y, z) := t(x, z, x ∗ y, y ∗ x),

then

q(x, y, z) = (x ∨ z) ∧ ((x ∗ y) ∗ z) ∧ (y ∗ x),

q(x, x, z) = (x ∨ z) ∧ ((x ∗ x) ∗ z) ∧ (x ∗ x)

= (x ∨ z) ∧ (1 ∗ z) ∧ 1 = (x ∨ z) ∧ z = z,

q(x, z, z) = (x ∨ z) ∧ ((x ∗ z) ∗ z) ∧ (z ∗ x)

= ((z ∨ x) ∧ (z ∗ x)) ∧ ((x ∗ z) ∗ z) =
= x ∧ ((x ∗ z) ∗ z) = x .

Observe that the Maltsev term q(x, y, z) is different from
that in Proposition 2.1.

In the following we write a∧ b∧ c instead of inf(a, b, c).
Now we introduce a certain modification of the notion an

ideal term (for posets)which need not be defined everywhere.
This will be used in the sequel.

Definition 4.10 A partial ideal term for sectionally pseudo-
complemented posets with greatest element 1 is a partially
defined term T (x1, . . . , xn, y1, . . . , ym) in the language of
sectionally pseudocomplemented posets with greatest ele-
ment 1 satisfying the identity

T (x1, . . . , xn, 1, . . . , 1) ≈ 1.

This language contains also a binary operator U (x, y).

Using the concept of partial ideal terms, we will try to
describe filters also in strongly sectionally pseudocomple-
mented posets. Similarly as in Lemma 4.6, we firstly get a
list of four partial ideal terms which will be shown to suffice.

Lemma 4.11 The following partial terms are partial ideal
terms for strongly sectionally pseudocomplemented posets:

T1 := 1,

T2(x1, x2, x3, y1, y2)

:= ((U (x1, x2) ∧ (y1 ∗ x2) ∧ y2) ∗ x3) ∗ (x2 ∗ x3),

T3(x1, x2, x3, y1, y2)

:= (x3 ∗ x1) ∗ (x3 ∗ (U (x1, x2) ∧ (y2 ∗ x1) ∧ y1)),

T4(x1, x2, x3, x4, y1, y2, y3, y4)

:= ((U (x1, x2) ∧ (y1 ∗ x2) ∧ y2)∧
∧ (U (x3, x4) ∧ (y3 ∗ x4) ∧ y4)) ∗ (x2 ∧ x4).

Proof Put

T (x, y, z, u) := U (x, y) ∧ (z ∗ y) ∧ u.

Then,

T2(x1, x2, x3, y1, y2)

= (T (x1, x2, y1, y2) ∗ x3)

∗ (x2 ∗ x3),

T3(x1, x2, x3, y1, y2)

= (x3 ∗ x1)

∗ (x3 ∗ T (x2, x1, y2, y1)),

T4(x1, x2, x3, x4, y1, y2, y3, y4)

= (T (x1, x2, y1, y2) ∧ T (x3, x4, y3, y4))

∗ (x2 ∧ x4)

and according to Lemma 3.2

T (x, y, 1, 1) = U (x, y) ∧ (1 ∗ y) ∧ 1 = U (x, y) ∧ y = y.

Hence,

T2(x1, x2, x3, 1, 1)

= (T (x1, x2, 1, 1) ∗ x3)

∗ (x2 ∗ x3) = (x2 ∗ x3) ∗ (x2 ∗ x3) = 1,

T3(x1, x2, x3, 1, 1)

= (x3 ∗ x1) ∗ (x3 ∗ T (x2, x1, 1, 1)) = (x3 ∗ x1)

∗ (x3 ∗ x1) = 1,

T4(x1, x2, x3, x4, 1, 1, 1, 1)

= (T (x1, x2, 1, 1) ∧ T (x3, x4, 1, 1))

∗ (x2 ∧ x4) =
= (x2 ∧ x4) ∗ (x2 ∧ x4) = 1.

�	
Now we define closedness with respect to partial ideal

terms.

Definition 4.12 A subset A of a strongly sectionally pseudo-
complemented poset P = (P,≤, ∗, 1) is said to be closed
with respect to the partial ideal terms Ti (x1, . . . , xn, y1, . . .
. . . , ym), i ∈ I , if for every i ∈ I , all x1, . . . , xn ∈ P and all
y1, . . . , ym ∈ A we have that Ti (x1, . . . , xn, y1, . . . , ym) is
defined and Ti (x1, . . . , xn, y1, . . . , ym) ∈ A.

Although our ideal terms are only partial, we can prove that
every subset of a strongly sectionally pseudocomplemented
poset P closed with respect to them is really a filter of P.

Theorem 4.13 LetP = (P,≤, ∗, 1) be a strongly sectionally
pseudocomplemented poset and F a subset of P that is closed
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with respect to the partial ideal terms T1, . . . , T4 listed in
Lemma 4.11. Then, F ∈ FilP.

Proof We have 1 = T1 ∈ F . Now assume a, b, c, d ∈ P and
a ∗ b, b ∗ a, c ∗ d, d ∗ c ∈ F . For the partial term

T (x, y, z, u) := U (x, y) ∧ (z ∗ y) ∧ u,

we have

T2(x1, x2, x3, y1, y2)

= (T (x1, x2, y1, y2) ∗ x3) ∗ (x2 ∗ x3),

T3(x1, x2, x3, y1, y2)

= (x3 ∗ x1) ∗ (x3 ∗ T (x2, x1, y2, y1)),

T4(x1, x2, x3, x4, y1, y2, y3, y4)

= (T (x1, x2, y1, y2) ∧ T (x3, x4, y3, y4)) ∗ (x2 ∧ x4)

and according to Lemma 3.2 and Remark 3.3 we obtain

T (x, y, x ∗ y, y ∗ x) = U (x, y) ∧ ((x ∗ y) ∗ y) ∧ (y ∗ x) =
= (U (y, x) ∧ (y ∗ x)) ∧ ((x ∗ y) ∗ y)

= x ∧ ((x ∗ y) ∗ y) = x .

Hence,

(a ∗ c) ∗ (b ∗ c) = (T (a, b, a ∗ b, b ∗ a) ∗ c) ∗ (b ∗ c)

= T2(a, b, c, a ∗ b, b ∗ a) ∈ F,

(c ∗ a) ∗ (c ∗ b) = (c ∗ a) ∗ (c ∗ T (b, a, b ∗ a, a ∗ b))

= T3(a, b, c, a ∗ b, b ∗ a) ∈ F .

Moreover, if a and c are comparable and b and d are compa-
rable, then we apply the partial term T4 to derive

min(a, c) ∗ min(b, d)

= (T (a, b, a ∗ b, b ∗ a) ∧ T (c, d, c ∗ d, d ∗ c)) ∗ (b ∧ d) =
= T4(a, b, c, d, a ∗ b, b ∗ a, c ∗ d, d ∗ c) ∈ F .

This shows F ∈ FilP. �	
Remark 4.14 Let us consider the partial term T (x, y, z, u) :=
U (x, y) ∧ (z ∗ y) ∧ u from the proof of Lemma 4.11 and put

Q(x, y, z) := T (x, z, x ∗ y, y ∗ x),

i.e.,

Q(x, y, z) = U (x, z) ∧ ((x ∗ y) ∗ z) ∧ (y ∗ x).

Of course, this is only a partial termbecause the infimum in Q
need not exists for some elements from a strongly sectionally
pseudocomplemented poset P = (P,≤, ∗, 1). It is of some

interest that this partial term behaves like a Maltsev term.
Namely, we can easily compute

Q(x, x, z) = U (x, z) ∧ ((x ∗ x) ∗ z) ∧ (x ∗ x)

= U (x, z) ∧ (1 ∗ z) ∧ 1 = U (x, z) ∧ z = z,

Q(x, z, z) = U (x, z) ∧ ((x ∗ z) ∗ z) ∧ (z ∗ x)

= (U (z, x) ∧ (z ∗ x)) ∧ ((x ∗ z) ∗ z) =
= x ∧ ((x ∗ z) ∗ z) = x .

Moreover, these expressions Q(x, x, z) and Q(x, z, z) are
defined for all x, z ∈ P .

For every sectionally pseudocomplemented lattice L =
(L,∨,∧, ∗) and every M ⊆ L , let F(M) denote the filter of
L generated by M .

The connection between filters generated by a certain
subset and congruences on sectionally pseudocomplemented
lattices is described in the following proposition.

Proposition 4.15 LetL = (L,∨,∧, ∗)be a sectionally pseu-
docomplemented lattice, M ⊆ L and a ∈ L. Then,

�(F(M)) = �(M × {1}),
[1](�(M × {1})) = F(M).

In particular,

�(F(a)) = �(a, 1),

[1](�(a, 1)) = F(a).

Proof Since M × {1} ⊆ �(F(M)), we have

�(M × {1}) ⊆ �(F(M))

and hence

[1](�(M × {1})) ⊆ [1](�(F(M))) = F(M)

according to Corollary 2.7. Because of M ⊆ [1](�(M ×
{1})), we have

F(M) ⊆ [1](�(M × {1}))

and hence

�(F(M)) ⊆ �([1](�(M × {1}))) = �(M × {1})

according to Corollary 2.7. �	
An analogous result holds for strongly sectionally pseudo-
complemented posets.
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