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Background: Recurrent implantation failure (RIF) refers to that infertile patients have
undergone multiple in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles
and transferred multiple embryos without embryo implantation or clinical pregnancy. Due to
the lack of clear evidence-based medical guidelines for the number of embryos to be
transferred in RIF patients, how to obtain the highest single cycle pregnancy success rate
with as few embryos transferred as possible while avoiding multiple pregnancy as much as
possible, that is, how to balance the pregnancy success rate andmultiple pregnancy rate, is a
great challenge for clinicians and RIF patients. We urgently need an effective and reliable
assisted decision-making method to help clinicians find this balance, and an artificial
intelligence (AI) system will provide an efficient solution.

Design and Methods: In this research, we filtered out the RIF data set (n = 45,921) from
the Human Fertilisation and Embryology Authority (HFEA) database from 2005 to 2016.
The data set was divided into two groups according to the number of embryos transferred,
Group A and B. Group A included 34,175 cycles with two embryos transferred, while
Group B included 11,746 cycles with only one embryo transferred, each containing 44
features and a prediction label (pregnancy). Four machine learning algorithms (RF, GBDT,
AdaBoost, and MLP) were used to train Group A and Group B data set respectively and
10-folder cross validation method was used to validate the models.

Results: The results revealed that the AdaBoost model of Group A obtained the best
performance, while the GBDT model in Group B was proved to be the best model. Both
models had been proved to provide accurate prediction of transfer outcome.

Conclusion: Our research provided a new approach for targeted and personalized
treatment of RIF patients to help them achieve efficient and reliable pregnancy. And an
AI-assisted decision-making system will be designed to help clinicians and RIF patients
develop personalized transfer strategies, which not only guarantees efficient and reliable
pregnancy, but also avoids the risk of multiple pregnancy as much as possible.
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1 INTRODUCTION

Since the first test tube baby was born in 1978, in vitro
fertilization-embryo transfer (IVF-ET) has become one of the
most important methods to treat infertility. So far, pregnancy rate
following one IVF-ET cycle can be as high as 60%. But even in the
very successful units, about 10% of women undergoing in vitro
fertilization (IVF) treatment fail repeatedly (Margalioth et al.,
2006; Busnelli et al., 2020). Recurrent implantation failure (RIF)
refers to that infertile patients have undergone multiple IVF or
intracytoplasmic sperm injection (ICSI) cycles and transferred
multiple embryos without embryo implantation or clinical
pregnancy.

Currently, there is no consensus on the definition of RIF
(Coughlan et al., 2014). Disputes mainly exist in the number of
embryo transfer cycles, the number and quality of embryos
transferred, the age of patients and so on. Stern et al. defined
patients with accumulative transfer of more than 10 embryos
without clinical pregnancy as RIF (Stern et al., 2003). With the
development of IVF-ET technology, the total number of embryo
transfer cycles and the cumulative number of embryos transferred
for diagnosing RIF have also changed accordingly. At present, the
definition of RIF recognized by most clinicians was proposed by
Simon et al., in 2012, that is, receiving three or more embryo
transfer cycles (including fresh or frozen cycles), and transferring
one or two high-quality embryos each cycle without clinical
pregnancy (Simon and Laufer, 2012). In addition, in 2018,
Cao et al. (2018) believed that RIF can be identified as
receiving ≥2 transfer cycles, with high-quality embryos in each
cycle and no pregnancy. In 2021, the ESHRE survey results
opinion on RIF was no more than two failed ETs (Cimadomo
et al., 2021).

In order to ensure a better clinical pregnancy rate for RIF
patients, the current routine transfer strategies of many
reproductive centers around the world include increasing the
number of embryos transferred in a single cycle to improve the
success rate of single cycle pregnancy or accumulating multiple
single embryo transfer (SET) cycles to obtain a final clinical
pregnancy (Calhaz-Jorge et al., 2016; Penzias et al., 2017).
However, these two transfer strategies have some limitations
and disadvantages.

Although increasing the number of embryos transferred in a
single transfer cycle can improve the clinical pregnancy rate, it
will also increase the multiple pregnancy rate (Pandian et al.,
2004; de Mouzon et al., 2012). Multiple pregnancy will
significantly increase the possibility of maternal and infant
complications, such as: miscarriage, premature birth, fetal
distress, low birth weight infants, serious obstetric
complications (such as postpartum hemorrhage and
gestational hypertension, etc.) (Pinborg, 2005; Santana et al.,
2016; Calhaz-Jorge et al., 2017). In addition, it will greatly
increase the expenditure of patients and bring them a huge
economic burden (Lee et al., 2016). Just as the optimal goal of
assisted reproductive technologies (ART) to treat infertility
should be one healthy baby at a time, multiple pregnancy is
one of the most important adverse pregnancy outcomes that
should be strictly prevented in this field. Therefore, improving the

pregnancy success rate of RIF patients by increasing the number
of embryos transferred in a single transfer cycle is actually a risk-
benefit strategy, not the best one.

On the other hand, the strategy of accumulating multiple SET
cycles to obtain a clinical pregnancy completely avoids the risk of
multiple pregnancy caused by iatrogenic factors, but significantly
increases the time cost, economic burden, and family pressure of
RIF patients. For example, just as female age is closely related to
pregnancy success and maternal complications, a lengthy
treatment process is bound to carry great risks. The strategy is
a conservative and inefficient strategy, not the best one.

Due to the lack of clear evidence-based medical guidelines for
the number of embryos to be transferred in RIF patients, how to
obtain the highest single cycle pregnancy success rate with as few
embryos transferred as possible while avoiding multiple
pregnancy as much as possible, that is, how to balance the
pregnancy success rate and multiple pregnancy rate, is a great
challenge for clinicians and RIF patients (Tobias et al., 2016;
Kamath et al., 2020; Ma et al., 2022). We urgently need an
effective and reliable assisted decision-making method to help
clinicians find this balance, and the computer-aided decision-
making system will provide an efficient solution.

At present, based on big data, advanced algorithms and
computing power (hash rate), artificial intelligence (AI) has
been rapidly developed and widely used in various fields. AI
has proved its strong strength in the application of pattern
recognition technologies such as speech recognition and face
recognition. The connection between medical health and AI is
also getting closer (Deo, 2015; Obermeyer and Emanuel, 2016).
More and more applications appear in intelligent diagnosis,
virtual assistant, medical imaging, drug mining, nutrition,
biotechnology, hospital management, health management,
mental health, wearable devices and other application
scenarios. Moreover, AI, especially machine learning has
rapidly demonstrated its ability to predict human fertility.

A perfect embryo transfer strategy should have at least two
elements: (ⅰ) to ensure a high level of clinical pregnancy rate; (ⅱ) to
reduce the multiple pregnancy rate as much as possible. For a
long time, a large number of studies have been devoted to
exploring appropriate embryo transfer strategies (Practice
Committee of the American Society for Reproductive
Medicine, 2017; Practice Committee of the American Society
for Reproductive Medicine and Practice Committee of the Society
for Assisted Reproductive Technology, 2017). Our aim is to use
this new technology of AI to find the best embryo transfer
strategy. We included the data of patients receiving ART
treatment from the Human Fertilisation and Embryology
Authority (HFEA), which is a world-class expert organization
collecting data and statistics about the fertility treatment cycles
performed each year in the United Kingdom. The data of RIF
patients between 2005–2016 were filtered out to construct the
data set for model training. We further divided the data set into
two groups according to the embryo transfer strategy, i.e., Group
A: double embryo transfer (DET) group; Group B: single embryo
transfer (SET) group. Finally, two prediction models were trained
and built separately using machine learning algorithms. The two
models will predict the pregnancy outcome after embryo transfer
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(SET or DET) based on the clinical variables before embryo
transfer in RIF patients who are starting a new IVF cycle. Then,
the prediction results will help clinicians develop transfer
strategies to achieve the best pregnancy outcome.

2 MATERIALS AND METHODS

2.1 Data Set Construction
The Human Fertilisation and Embryology Authority (HFEA) is the
UK’s independent regulator of fertility treatment and research using
human embryos. It is a world-class expert organization in the fertility
sector, and the first statutory body of this type in the world. HFEA
collects data and statistics about the fertility treatment cycles performed
each year in the United Kingdom to improve patient care and help
researchers to conductworld-class research,whilst ensuring very strong
protection of patient, donor and offspring confidentiality.

In this research, we are allowed to access a large and rich
anonymized data set from HFEA. The data set cannot help to

identify any patients, or children born as a result of treatment. So,
no ethics approval is required for this research.

The raw data set in this research contains 760,732 patient
records with 95 fields on treatment cycles started between 2005
and 2016. We used more stringent criteria to filter RIF samples
to avoid research errors as much as possible, that is, having
received at least three transfer cycles (fresh or frozen), with
high-quality embryos in each cycle, without pregnancy, and
undergoing IVF treatment again (at least the fourth cycle).
Data set filtering mainly includes four steps. Step 1: cycles
unrelated to RIF cases were excluded. Step 2: cycles involving
sperm, egg, or embryo donation, and cycles involving
surrogacy were excluded. Step 3: cycles involving only one
or two embryos transferred were reserved. Step 4: the
remaining data were divided into two sub datasets: Group
A and Group B; Group A contained 34,175 cycles with two
embryos transferred and Group B contained 11,746 cycles with
one embryo transferred. The entire data set filtering process is
shown in Figure 1.

FIGURE 1 | Data set construction flowchart.
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Focusing on the 95 fields of the raw data set, after the above
data filtering steps, some fields containing exactly one value
were eliminated, which are obviously meaningless to a
machine learning algorithm. In addition, we also eliminated

some fields that have nothing to do with RIF cases, such as
fields involving donation, surrogacy, etc. Finally, 45 fields were
retained. The detailed description of these 45 fields can be seen
in Table 1.

TABLE 1 | Description of 45 fields in the data set.

Field name Field type Description

Patient age at treatment Categorical Patient age at treatment, banded as follows: 18–34, 35–37, 38–39, 40–42, 43–44, 45–50
Date patient started trying to become pregnant or date of last
pregnancy

Numeric The number of years ago that patient started trying to become pregnant or years since last
pregnancy

Type of infertility—female primary Categorical 1 if the patient has never been pregnant, 0 otherwise
Type of infertility—female secondary Categorical 1 if the patient has ever been pregnant, 0 otherwise
Type of infertility—male primary Categorical 1 if the partner has never impregnated any woman, 0 otherwise
Type of infertility—male secondary Categorical 1 if the partner has ever impregnated some woman, 0 otherwise
Type of infertility—couple primary Categorical 1 if the patient has never been pregnant while the partner has never impregnated any woman, 0

otherwise
Type of infertility—couple secondary Categorical 1 if the patient has ever been pregnant while the partner has ever impregnated some woman, 0

otherwise
Cause of infertility—tubal disease Categorical 1 if the primary cause of infertility is due to tubal disease, 0 otherwise
Cause of infertility—ovulatory disorder Categorical 1 if the primary cause of infertility is due to ovulatory disorder, 0 otherwise
Cause of infertility—male factor Categorical 1 if the primary cause of infertility is due to the partner, 0 otherwise
Cause of infertility—patient unexplained Categorical 1 if the primary cause of infertility is unknown, 0 otherwise
Cause of infertility—endometriosis Categorical 1 if the primary cause of infertility is due to endometriosis, 0 otherwise
Cause of infertility—cervical factors Categorical 1 if the primary cause of infertility is due to cervical factors, 0 otherwise
Cause of infertility—partner sperm concentration Categorical 1 if the primary cause of infertility is due to partner sperm concentration, 0 otherwise
Cause of infertility—partner sperm morphology Categorical 1 if the primary cause of infertility is due to partner sperm morphology, 0 otherwise
Cause of infertility—partner sperm motility Categorical 1 if the primary cause of infertility is due to partner sperm motility, 0 otherwise
Cause of infertility—partner sperm immunological factors Categorical 1 if the primary cause of infertility is due to partner sperm immunological factors, 0 otherwise
Stimulation used Categorical 1 if this was a stimulated cycle, 0 otherwise
Specific treatment type Categorical The specific treatment type used in this cycle, includes IVF, ICSI.
PGD Categorical 1 if this cycle involved the use of preimplantation genetic diagnosis, 0 otherwise
PGD treatment Categorical 1 if this cycle would be contained in the “PGD” CaFC category on the HFEA website, 0

otherwise
PGS Categorical 1 if this cycle involved the use of preimplantation genetic screening, 0 otherwise
PGS treatment Categorical 1 if this cycle would be contained in the “PGS” CaFC category on the HFEA website, 0

otherwise
Elective single embryo transfer Categorical 1 if this cycle involved the deliberate use of only one embryo, 0 otherwise
Fresh cycle Categorical 1 if this cycle used fresh embryos, 0 otherwise
Frozen cycle Categorical 1 if this cycle used frozen embryos, 0 otherwise
Eggs thawed Numeric If this cycle used frozen eggs, the number of eggs thawed
Fresh eggs collected Numeric The number of eggs collected in this cycle
Fresh eggs stored Numeric The number of eggs collected in this cycle and subsequently frozen
Total eggs mixed Numeric The number of eggs mixed with sperm
Eggs mixed with partner sperm Numeric The number of eggs mixed with sperm from the partner
Total embryos created Numeric The total number of embryos created in this cycle
Eggs micro-injected Numeric The number of eggs that were injected with sperm e.g., By ICSI.
Embryos from eggs micro-injected Numeric The number of embryos that were created in this cycle using ICSI.
Total embryos thawed Numeric If this was a frozen cycle, the total number of embryos that were thawed
Embryos transferred from eggs micro-injected Numeric The number of embryos transferred into the patient in this cycle that were created using ICSI.
Embryos stored for use by patient Numeric The number of embryos that were created in this cycle and then frozen for subsequent use by

the patient
Embryos (from eggs micro-injected) stored for use by patient Numeric The number of embryos that were created in this cycle by injecting sperm and then frozen for

subsequent use by the patient
Date of egg collection Numeric The number of days between egg collection and the first date provided in the series: egg

collection date; egg thaw date; egg mix date; embryo thaw date; embryo transfer date
Date of egg thawing Numeric The number of days between egg thawing and the first date provided in the series: egg

collection date; egg thaw date; egg mix date; embryo thaw date; embryo transfer date
Date of egg mixing Numeric The number of days between eggmixing and the first date provided in the series: egg collection

date; egg thaw date; egg mix date; embryo thaw date; embryo transfer date
Date of embryo thawing Numeric The number of days between embryo thawing and the first date provided in the series: egg

collection date; egg thaw date; egg mix date; embryo thaw date; embryo transfer date
Date of embryo transfer Numeric The number of days between embryo transfer and the first date provided in the series: egg

collection date; egg thaw date; egg mix date; embryo thaw date; embryo transfer date
Early outcome Categorical 1 if there was an intrauterine fetal pulsation seen due to this cycle, 0 otherwise
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The field “Early Outcome” indicates whether an intrauterine
fetal pulsation was found, which was used as a prediction label, or
output. The remaining 44 fields were defined as features, or
inputs. Finally, the data set was constructed, that is, one
34,175 × 45 matrix for Group A and one 11,746 × 45 matrix
for Group B.

2.2 Data Cleaning
In this process, our main purpose is to correct the data, eliminate
the recording errors during data acquisition and standardize the
data format so that the algorithm can recognize. It includes the
following steps:

(ⅰ) Standardize the data format into two categories: numeric
and categorical, e.g., “Patient Age at Treatment”was converted
to categorical data (18–34: ‘0’, 35–37: ‘1’, 38–39: ‘2’, 40–42: ‘3’,
43–44: ‘4’, 45–50: ‘5’), “Eggs Thawed” was converted to
numeric data (range from 0 to 21), “Total Embryos
Thawed” was converted to numeric data (range from 0 to
26), etc.
(ⅱ) Check for missing values and outliers, e.g., all the blanks in
“PGD treatment” and “PGS Treatment” were filled with 0,
outliers in “Date of Egg Mixing” were deleted, etc.
(ⅲ) Apply Z-score normalization method to make the data
have a mean of 0 and a standard deviation of 1, which can
weaken the influence of the value range on the model (Shiffler,
1988).

In addition, due to the imbalance of the data set, that is, the
number of negative cycles is greater than that of positive cycles,
we randomly sampled the negative samples to ensure that the
data set used for model training is a completely balanced one,
which can greatly improve the classification performance.

2.3 Model Building
Our main purpose is to use machine learning algorithms to build
a mapping from features to labels, which is similar to a specific
function. Each set of features is used as the input of the function,
and then the output of the function will be classified under a
specific threshold. The algorithms obtain the best threshold in

multiple iterations of classification and summary. At this time,
the classification result is closest to the real label. That is the entire
learning process. In this research, four machine learning
algorithms were used to build the classification model
(prediction model).

2.3.1 Random Forest
Random Forest (RF) is an averaging algorithm based on
randomized decision trees (DT). The algorithm is a perturb-
and-combine technique specifically designed for trees (Breiman,
1998). This means a diverse set of classifiers is created by
introducing randomness in the classifier construction. The
prediction of the ensemble is given as the averaged prediction
of the individual classifiers (Breiman, 2001). In RF, each tree in
the ensemble is built from a sample drawn with replacement
(i.e., a bootstrap sample) from the training set. Furthermore,
when splitting each node during the construction of a tree, the
best split is found either from all input features or a random
subset. The purpose of these two sources of randomness is to
decrease the variance of the forest estimator. Indeed, individual
decision trees typically exhibit high variance and tend to overfit.
The injected randomness in forests yield decision trees with
somewhat decoupled prediction errors. By taking an average
of those predictions, some errors can cancel out. RF achieve a
reduced variance by combining diverse trees, sometimes at the
cost of a slight increase in bias. In practice the variance reduction
is often significant, hence yielding an overall better model (Geurts
et al., 2006).

2.3.2 AdaBoost
AdaBoost is to fit a sequence of weak learners (i.e., models that are
only slightly better than random guessing, such as small decision
trees) on repeatedly modified versions of the data (Freund and
Schapire, 1997). The predictions from all of them are then
combined through a weighted majority vote (or sum) to
produce the final prediction. The data modifications at each
so-called boosting iteration consist of applying weights
ω1,ω2,ω3, . . . ,ωN to each of the training samples. Initially,
those weights are all set to ωi � 1/N, so that the first step
simply trains a weak learner on the original data. For each

TABLE 2 | Evaluation metrics of all models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

Sensitivity
(%)

Specificity
(%)

F1-
score
(%)

AUC-
ROC

AUC-
PR

Group A (n = 34,175)
RF 73.16 74.87 68.67 68.67 77.54 71.64 0.7856 0.7902
GBDT 76.02 77.85 71.85 71.85 80.08 74.73 0.8066 0.8134

AdaBoost
76.16 78.23 71.64 71.64 80.57 74.79 0.8129 0.8206

MLP 76.25 79.58 69.79 69.79 82.55 74.36 0.8139 0.8197
Group B (n = 11,746)
RF 84.71 86.31 83.10 83.10 86.36 84.67 0.8954 0.9003
GBDT 85.06 85.60 84.89 84.89 85.23 85.24 0.9025 0.9043

AdaBoost
84.50 85.24 84.07 84.07 85.09 84.94 0.9031 0.9114

MLP 84.22 87.02 81.04 81.04 87.50 83.93 0.8969 0.9032
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successive iteration, the sample weights are individually modified
and the learning algorithm is reapplied to the reweighted data. At
a given step, those training examples that were incorrectly
predicted by the boosted model induced at the previous step
have their weights increased, whereas the weights are decreased
for those that were predicted correctly. As iterations proceed,
examples that are difficult to predict receive ever-increasing
influence. Each subsequent weak learner is thereby forced to
concentrate on the examples that are missed by the previous ones
in the sequence (Hastie et al., 2009).

2.3.3 Gradient Boosted Decision Tree
Gradient Tree Boosting or Gradient Boosted Decision Tree
(GBDT) is a generalization of boosting to arbitrary
differentiable loss functions (Friedman, 2002). GBDT is an
accurate and effective off-the-shelf procedure that can be used
for both regression and classification problems in a variety of
areas including Web search ranking and ecology. GBRT is an
additive model whose prediction yi for a given input xi is of the
following form:

ŷi � FM(xi) � ∑M
m�1

hm(xi)

where the hm are estimators called weak learners in the context
of boosting. GBDT uses DT of fixed size as weak learners.
Similar to other boosting algorithms, GBRT is built in a greedy
fashion:

Fm(x) � Fm−1(x) + hm(x)
where the newly added tree hm is fitted in order to minimize a
sum of losses Lm, given the previous ensemble Fm−1:

hm � argmin
h

Lm � argmin
h

∑n
i�1
l(yi, Fm−1(xi) + h(xi))

where l(yi, F(xi)) is defined as loss function. Using a first-order
Taylor approximation, the value of l can be approximated as
follows:

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi))
+ hm(xi)[zl(yi, F(xi))

zF(xi) ]
F�Fm−1

Then, we will denote gi as follows:

gi � [zl(yi, F(xi))
zF(xi) ]

F�Fm−1

Removing the constant terms, we have:

hm ≈ argmin
h

∑n
i�1
h(xi)gi

This is minimized if h(xi) is fitted to predict a value that is
proportional to the negative gradient −gi. Therefore, at each
iteration, the estimator hm is fitted to predict the negative
gradients of the samples. The gradients are updated at each

iteration. This can be considered as some kind of gradient
descent in a functional space.

2.3.4 Multi-layer Perceptron
Multi-layer Perceptron (MLP), also known as Artificial Neural
Network (ANN), is a supervised learning algorithm that learns a
function f(·): Rm → Ro by training on a data set, where m is the
number of dimensions for input and o is the number of
dimensions for output. It can learn a non-linear function
approximator for either classification or regression. It is
different from logistic regression, in that between the input
and the output layer, there can be one or more non-linear
layers, called hidden layers. Given a set of training examples
(x1, y1), (x2, y2),/(xn, yn) where xi ∈ Rn and yi ∈ {0, 1}, a one
hidden layer one hidden neuron MLP learns the function f(x) �
W2g(WT

1x + b1) + b2 where W1 ∈ Rm and W2, b1, b2 ∈ R are
model parameters. W1,W2 represent the weights of the input
layer and hidden layer, respectively; and b1, b2 represent the bias
added to the hidden layer and the output layer, respectively.
g(·): R → R is the activation function. For binary classification,
f(x) passes through the logistic function g(z) � 1/(1 + e−z) to
obtain output values between zero and one. A threshold, set to
0.5, would assign samples of outputs larger or equal 0.5 to the
positive class, and the rest to the negative class. The loss function
for classification is Cross-Entropy, which in binary case is
given as,

Loss(ŷ, y,W) � −y ln ŷ − (1 − y) ln(1 − ŷ) + α‖W‖22
Starting from initial random weights, MLP minimizes the loss

function by repeatedly updating these weights. After computing
the loss, a backward pass propagates it from the output layer to
the previous layers, providing each weight parameter with an
update value meant to decrease the loss. The algorithm stops
when it reaches a preset maximum number of iterations; or when
the improvement in loss is below a certain, small number
(Rumelhart et al., 1986; Widrow and Lehr, 2002).

2.4 Model Validation
Hold-out method: divide the data set D into two mutually
exclusive subsets, one as the training set S and the other as
the test set T, i.e.,D � S ∪ T, S ∩ T � ∅. After training the model
on S, use T to evaluate its test error as an estimate of the
generalization error. In this research, we used 70% of the data
set as the training set and 30% as the test set.

K-folder cross validation method: randomly divide the data set
D into K mutually exclusive subsets of the same size,
i.e., D � D1 ∪ D2 ∪ . . .∪ DK,Di ∩ Dj � ∅(i ≠ j). Each time
randomly select K − 1 subsets as the training set, and the
remaining one as the test set. In each of these K training and
validation runs, the subset used to validate the model is different.
Finally, we average the training error and validation error
respectively for these K runs. In this research, K was set to 10,
i.e., 10-folder cross validation (Kohavi, 1995; Rao and Fung,
2008).

We used hold-out method to pre-select the models, which can
quickly eliminate some models that are not suitable for this
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research. 10-folder cross validation was used to conduct in-depth
analysis of the model, which can make full use of the distribution
characteristics of the data set.

2.5 Performance Measure
In machine learning research, confusion matrix is a visualization
technique used to summarize the performance of classification
algorithms, especially for supervised learning. In binary
classification, the confusion matrix consists of four elements,
which are true negatives (TN), true positives (TP), false positives
(FP), and false negatives (FN). In a binary confusion matrix,
upper left corner (TN) and lower right corner (TP) refer to correct
classification performance; lower left corner (FN) and upper right
(FP) corner refer to incorrect classification performance.

Accuracy is the ratio of the number of correctly predicted
samples to the total number of samples, i.e.,

Accuracy � TP + TN

TP + FP + TN + FN

Accuracy seems to be a good evaluation metric, but in practice,
it may hide a lot of details we need. which hinders a better
understanding of the performance of the classification model.
Therefore, we need to calculate more metrics from the four
elements of the confusion matrix to obtain a more
comprehensive performance measure (Stralen et al., 2009). At
this time, we used the following metrics:

Precision indicates the ratio of samples correctly predicted as
positive to the total samples predicted as positive, i.e.,

Precision � TP

TP + FP

Recall indicates the ratio of samples correctly predicted as
positive to the total positive samples, i.e.,

Recall � TP

TP + FN

Sensitivity also represents the positive classification
performance, which has the same formula as Recall. Specificity
indicates the ratio of samples correctly predicted as negative to
the total negative samples, i.e.,

Sensitivity � TP

TP + FN
Specificity � TN

TN + FP

Precision and Recall are contradictory, and we cannot have
them both. If both Precision and Recall are considered
comprehensively, a new evaluation metric F1-score, also
known as the comprehensive classification rate, can be
obtained. The formula is as follows:

F1 score � 2p
Precision × Recall
Precision + Recall

The Precision-Recall curve (P-R curve) is actually a curve
composed of two variables, Precision and Recall, in which the
horizontal axis represents Recall, and the vertical axis represents
Precision. A threshold corresponds to a point on the PR curve. By
selecting an appropriate threshold, the samples are classified, and

then calculate the corresponding Precision and Recall. The P-R
curve can be drawn by connecting the points formed bymany sets
of Precision and Recall corresponding to different thresholds. The
P-R curve is closer to the upper right corner (i.e., Precision = 1,
Recall = 1), the better the performance of the classifier. Moreover,
if the P-R curve of one classifier is completely enclosed by the P-R
curve of another classifier, it can be asserted that the performance
of the latter is better than that of the former (Mosley, 2013).

Receiver operating characteristic curve (ROC curve) was also
used in this research. In the ROC curve, the horizontal axis is
defined as false positive rate (FPR), and the vertical axis is defined
as true positive rate (TPR). Similar to the P-R curve, the
corresponding FPR and TPR are calculated after selecting an
appropriate threshold, and the curve is drawn by connecting the
points formed by different sets of FPR and TPR. The ROC curve
is closer to the upper left corner (i.e., TPR = 1, FPR = 0), the better
the performance of the classifier (Fawcett, 2005).

Moreover, area under receiver operating characteristic curve
(AUC-ROC), which can intuitively evaluate the performance of
the classifier, has a numerical value range from 0 to 1, where 1
represents the best performance, 0 is the worst, 0.5–1 means the
model can predict by setting an appropriate threshold and AUC-
ROC = 0.5 means no predictive value like random guessing. In the
same way, we can also calculate the area under Precision-Recall
curve (AUC-PR), that is, the larger the value, the better the
performance (Hanley and Mcneil, 1982).

3 RESULTS

3.1 Cycle Data Statistics
The data set included in this research was filtered from 760,732
cycle records in the HFEA database from 2005 to 2016. A total of
45,921 cycle records were used in the model training and
validation process. They were divided into two groups
according to the number of embryos transferred, Group A and
Group B. Group A contained 34,175 cycles with two embryos
transferred, while Group B contained 11,746 cycles with only one
embryo transferred. “Early Outcome” (intrauterine fetal
pulsation) was used as the prediction label (or output), and
the remaining 44 fields were identified as features (or input).
As mentioned above, the entire data set included one 34,175 × 45
matrix for Group A and one 11,746 × 45 matrix for Group B.

In Group A, the total number of cycles was 34,175, including
9,333 positive outcome cycles and 24,842 negative outcome
cycles. Focusing on the feature “Patient Age at Treatment”,
among all cycles, the patients aged 18–34 had the largest
proportion (n = 12,784, 37.41%), followed by those aged
35–37 (n = 9,748, 28.52%). Focusing on the features “Type of
Infertility”, “Couple Primary” cycles accounted for the largest
proportion (n = 10,179, 29.78%), followed by the “Female
Primary” cycles (n = 8,985, 26.29%) and “Male Primary”
cycles (n = 8,699, 25.45%). Focusing on the features “Cause of
Infertility”, “Male Factor” cycles accounted for the largest
proportion (n = 13,501, 39.51%), and “Unexplained” cycles
had the second largest proportion (n = 9,339, 27.33%).
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Moreover, “Stimulation used” cycles had a higher percentage (n =
21,936, 64.19%).

In Group B, the total number of cycles was 11,746, including
2,386 positive outcome cycles and 9,360 negative outcome cycles.
The proportion of patients aged 18–34 was still the largest (n =
4,121, 35.08%), followed by those aged 35–37 (n = 3,025, 25.75%).
Among the features “Type of Infertility”, “Couple Primary” cycles
accounted for the largest proportion (n = 1844, 15.70%), followed
by the “Female Primary” cycles (n = 1,624, 13.83%) and “Male
Primary” cycles (n = 1,554, 13.23%). Among the features “Cause
of Infertility”, “Male Factor” cycles accounted for the highest
proportion (n = 4,340, 36.95%), and “Unexplained” cycles had the
second highest proportion (n = 3,352, 28.54%). In this group,
cycles without “Stimulation used” had a higher percentage (n =
6,824, 58.10%).

3.2 Model Evaluation and Analysis
As shown in Table 2, a total of eight metrics were used to evaluate
model performance, the specific definitions of these eight metrics
have been introduced above. Eight metrics were divided into two
groups: one group contains five separate performance metrics,
i.e., Accuracy, Precision, Recall, Sensitivity, and Specificity; the
other group contains 3 comprehensive performance metrics,
i.e., F1-score, AUC-ROC and AUC-PR.

In Group A, theMLPmodel got the highestAccuracy (76.25%)
and Precision (79.58%), but the Recall (69.79%) was very low. The
MLP model also obtained the highest Specificity (82.55%) and
lower Sensitivity (69.79%), indicating that this model was not
balanced. The RF model obtained the lowest scores in all five

separate performance metrics. The GBDT model and the
AdaBoost model got very balanced scores in all five separate
performance metrics. Among the three comprehensive
performance metrics, the AdaBoost model won the best F1-
score (74.79%) as well as AUC-PR (0.8206), and also won the
second-best AUC-ROC (0.8129). Figure 2 shows the ROC curves
and P-R curves of the four models in Group A respectively, and
the shaded part under the curve is the AUC. In Figures 4A,B, the
ROC curves and P-R curves of the four models in Group A were
superimposed together and the green curves (AdaBoost model)
wrapped more of the other curves. After comprehensive
comparison, we found that the AdaBoost model was the
model with the most balanced performance, that is, the
best model.

In Group B, the MLP model obtained the highest Precision
(87.02%) and Specificity (87.50%), along with the lowest Recall
(81.04%) and Sensitivity (81.04%), indicating that this model was
still unbalanced in this group. The GBDTmodel obtained the best
Accuracy (85.06%) and the RF model got the second-best
Accuracy (84.71%). But in the other four separate performance
metrics, the imbalance of the RF model was slightly larger than
the GBDT model and the AdaBoost model, while the GBDT
model was slightly better than the AdaBoost model. We turned
our focus to the comprehensive performance metrics, where the
GBDT model won the best F1-score (85.24%), but the AdaBoost
model won the best AUC-ROC (0.9031) and AUC-PR (0.9114).
In addition, Figure 3 shows more details of the curves and their
shadow areas. In Figures 4C,D, the ROC curves and P-R curves
of the four models in Group B were superimposed together and

FIGURE 2 | The ROC curves and P-R curves of the four models in Group A. (A–D) The ROC curves and AUC scores of four models in Group A: the dark blue curve
refers to the ROC curve, the area under the curve is covered by light blue color and the AUC score is clearly marked. (E–H) The P-R curves and AUC scores of four
models in Group A: the dark blue curve refers to the P-R curve, the area under the curve is covered by light blue color and the AUC score is clearly marked.
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the green and blue curves (AdaBoost model and GBDT model)
wrapped more of the other curves. The metrics and curves proved
that the GBDT model obtained the best classification
performance in Group B, that is, the best classifier.

Although we strictly evaluated the models according to the
metrics and curves, in fact, the performance difference of these
four models is not large, especially the GBDT model and
AdaBoost model.

4 DISCUSSION

RIF patients, as a special group in the infertile population, are still
unable to obtain pregnancy and live birth after multiple IVF-ET
cycles. At present, it is believed that a personalized embryo
transfer strategy may be the most direct and effective method
to improve the success rate of embryo transfer and obtain a good
pregnancy outcome (Patel et al., 2019). To ensure clinical
pregnancy rates in RIF patients, transfer strategies in many
reproductive centers include: (ⅰ) increasing the number of
embryos transferred in a single cycle; (ⅱ) accumulating
multiple single embryo transfer (SET) cycles. As we mentioned
above, both strategies have limitations and disadvantages: the
former will significantly increase the multiple pregnancy rate and
the risk of pregnancy; the latter will significantly increase the time
cost and economic burden, as well as the patients’ mental stress.
However, it is currently impossible to carry out targeted
operations and treatments for each individual or even each
embryo and more often, we only rely on the experience of
clinicians. Obviously, we urgently need a reliable, accurate and

intelligent assisted decision-making method to help clinicians
and RIF patients develop personalized transfer strategies, which
not only guarantees efficient and reliable pregnancy, but also
avoids the risk of multiple pregnancy as much as possible.

In this research, we focused on AI. AI is a new technical
science that studies and develops theories, methods, technologies
and application systems for simulating, extending and expanding
human intelligence. AI is a branch of computer science that
attempts to understand the essence of intelligence and produce a
new type of intelligent machine that responds in a similar way to
human intelligence. Research in this field includes robotics,
language recognition, image recognition, natural language
processing and expert systems, etc. Since the birth of AI,
theories and technologies have become increasingly mature,
and the application fields have been expanding. Currently, AI,
especially machine learning has rapidly demonstrated its ability
to predict human fertility (Curchoe and Bormann, 2019). The
research indicated that machine learning models including
patients’ data can assist clinicians to offering couples
undergoing IVF personalized treatment strategies (Siristatidis
et al., 2016). Barnett-Itzhaki et al. tested two machine learning
algorithms, SVM and artificial neural network (ANN) to predict
IVF outcomes (β-HCG, clinical pregnancies, live births, etc.)
(Barnett-Itzhaki et al., 2020). Raef et al. examined six machine
learning approaches based on the dataset containing 82 features
of IVF cycles to predict outcome and concluded that random
forest (RF) was the best classifier (Raef et al., 2020). Tran et al.
created a deep learning model to predict the probability of
pregnancy with fetal heart (FH) from time-lapse videos (Tran
et al., 2019).

FIGURE 3 | The ROC curves and P-R curves of the four models in Group B. (A–D) The ROC curves and AUC scores of four models in Group B: the dark orange
curve refers to the ROC curve, the area under the curve is covered by light orange color and the AUC score is clearly marked. (E–H) The P-R curves and AUC scores of
four models in Group A: the dark orange curve refers to the P-R curve, the area under the curve is covered by light orange color and the AUC score is clearly marked.
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In this research, we filtered out the RIF data set (n = 45,921) from
HFEA database containing 760,732 cycle records from 2005 to 2016,
and far exceeding the currently known data set of RIF patients in
other studies. We divided the data set into Group A (DET, n =
34,175) and Group B (SET, n = 11,746), each containing 44 features
and a prediction label (pregnancy). Four machine learning
algorithms (RF, GBDT, AdaBoost, and MLP) were used to train
Group A and Group B data set respectively and 10-folder cross
validation method was used to validate the models. The results
revealed that the AdaBoost model of Group A obtained the best
performance, while the GBDT model in Group B was proved to be
the best model. Both models had been proved to provide accurate
prediction of transfer outcome. Naturally, our research still has some

limitations. Our data are all from the United Kingdom and are
limited in terms of ethnic and geographic diversity. Some potential
specific indicators may not be fully covered. In addition, natural-
cycle IVF (NC-IVF) and stimulated IVF (SIVF) have a different basis
for success. SET in NC-IVF, which is most commonly as being used
in poor responders, and SET in SIVF, which is most commonly used
in high responders, have a different basis. This factor should be taken
into account when setting up future models.

In conclusion, our research provided a new approach for targeted
and personalized treatment of RIF patients to help them achieve
efficient and reliable pregnancy. In addition, As we first imagined, an
AI-assisted decision-making system is being designed for clinical
application. The clinical variables before embryo transfer stage of

FIGURE 4 | Comprehensive comparison of four models. (A) Comprehensive ROC curves of four models in Group A: the larger the area under the curve, the better
the performance. (B) Comprehensive P-R curves of four models in Group A: the larger the area under the curve, the better the performance. (C) Comprehensive ROC
curves of four models in Group B. (D) Comprehensive P-R curves of four models in Group B.
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RIF patients undergoing a new cycle will be entered into the system.
The date of embryo transfer (cleavage embryo or blastocyst) as an
unknown variable can be finely set as an input option. Then, the two
prediction models in the system start to work separately, and
prediction results will be calculated, that is, results after SET and
DET. When the success rate of SET is predicted to be high, the
system suggests that SET is preferred to reduce the multiple
pregnancy rate. When the predicted success rate of SET is much
lower than that of DET, clinicians can choose whether to perform
DET according to the patient’s own wishes. The AI-assisted
decision-making system cannot replace the decision-making of
clinicians. It only provides suggestions. Furthermore, we will also
open the model upgrade interface. More samples or features can be
incorporated for training with the goal to improve the prediction
accuracy and to make the prediction results more multidimensional
(not just predicting SET and DET).
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