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Abstract: High-integrity information about the vehicle’s dynamic state, including position and
heading (yaw angle), is required in order to implement automated driving functions. In this work,
a comparison of three integrity algorithms for the vehicle dynamic state estimation of a research
vehicle for an application in automated driving is presented. Requirements for this application
are derived from the literature. All implemented integrity algorithms output a protection level
for the position and heading solution. In the comparison, four measurement data sets obtained
for the vehicle dynamic state estimation, which is based on a Global Navigation Satellite Signal
receiver, inertial measurement units and odometry information (wheel speeds and steering angles),
are used. The data sets represent four driving scenarios with different environmental conditions,
especially regarding the satellite signal reception. All in all, the Kalman Integrated Protection Level
demonstrated the best performance out of the three implemented integrity algorithms. Its protection
level bounds the position error within the specified integrity risk in all four chosen scenarios. For the
heading error, this also holds true, with a slight exception in the very challenging urban scenario.

Keywords: integrity; vehicle dynamic state estimation; GNSS; IMU; odometry; automated driving;
sensor data fusion; Kalman filter; RAIM

1. Introduction

Automated driving offers great potential to improve future transportation. The
expected benefits include reduced fuel consumption, improved passenger safety, optimized
traffic flow and enhanced mobility for people who are unable or unwilling to drive [1,2].
Therefore, many research projects are motivated by these expected benefits [3-5]. Even
though every project has its own system architecture, eventually, in all projects, there
is a need to estimate the vehicle’s dynamic state (including position and attitude) for
subsequent tasks, e.g., the trajectory control. Different approaches for this estimation task
can be found in the literature (e.g., [6,7]), which most often include several sensors, e.g.,
Global Navigation Satellite System (GNSS) receivers, Inertial Measurement Units (IMU),
sensors to measure wheel speeds and steering angels (odometry), Light Detection and
Ranging (LiDAR) and Radio Detection and Ranging (RADAR) sensors, as well as cameras.
Typically, filter (e.g., Kalman filter) or snapshot methods (e.g., least squares methods)
are used for the sensor data fusion. In order to quantify the performance of such a
navigation system, the quality parameters accuracy, integrity, continuity and availability
are proposed by Pullen [8]. While there are many studies about the accuracy of navigation
systems (e.g., [9]), which partly also take availability and continuity into account, up to
now, integrity did not receive the appropriate attention in the automotive industry [10].
Integrity is crucial for automated driving, since it refers to the amount of trust one can place
in the navigation system’s solution and its ability to output timely warnings when not to
use it [11]. Consequently, to develop and implement automated driving functions of Level
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3-5 of the SAE Standard ]J3016 [12], high-integrity information about the vehicle’s dynamic
state will be necessary [13]. Therefore, there is an urgent need for integrity concepts for
sensor data fusion algorithms to estimate the vehicle’s dynamic state which motivates the
investigation presented here as part of our research project UNICARagil.

This work describes further developments of integrity concepts that we previously
presented in a conference paper [14]. Therefore, the same foundation, including the
motivation, structure, definitions and requirements, as well as parts of the literature review
and implementation, is used in this work.

In the collaborative project UNICARagil carried out by a consortium of eight German
universities and eight industrial partners, disruptive modular structures for agile, auto-
mated vehicle concepts are developed, and over a period of four years, four prototype vehi-
cles of different characteristics are built [15]. The Vehicle Dynamic State Estimation (VDSE)
has to fulfill high performance requirements regarding the mentioned parameters: accuracy,
integrity, continuity and availability. Therefore, the localization algorithm to be developed
does not only have to be accurate, precise and of high availability, it also has to provide
integrity information about the estimated quantities [15]. The sensor setup of the VDSE in
UNICARagil includes a multi-constellation dual-frequency Real-Time Kinematic (RTK)
GNSS receiver, two IMUs, which are both Micro-Electro-Mechanical Systems (MEMS) (one
commercial grade MEMS-IMU and one mid-performance MEMS-IMU), and odometry
sensors, which measure wheel speeds and steering angles. Detailed information about the
used sensors is given in Section 4.1.

Besides the VDSE, there is a second sensor data fusion algorithm for localization in
UNICARagil, which is using a high-definition map and cameras to estimate the vehicle’s
pose. The architecture describing the interaction between the two localization functions is
explained in detail by Homolla et al. [16]. The actual concept of the VDSE contains several
sensor fusion algorithms, which are developed by independent teams to reduce the risk of
simultaneous error occurrences stemming from hidden design flaws [17]. The algorithms
are utilizing different subsets of the available sensor information [17]. As an example for
the comparison in this work, one of these algorithms is chosen which performs a loose
coupling of GNSS and the mid-performance MEMS-IMU and is using the odometry data
in addition.

In the remainder of this work, in Section 2, the definition of integrity monitoring, as
well as the use case and requirements of the VDSE, are discussed. Afterwards, integrity
concepts from the literature are reviewed in Section 3. The implementation of the sensor
data fusion algorithm and the integrity algorithms is explained in Section 4. In Section 5,
the carried out experiments and results are discussed. A conclusion and an outlook of
future work are given in Section 6.

2. Definitions and Requirements

Before the actual integrity concepts are discussed, it is important to clarify what is
meant by integrity and which requirements need to be fulfilled for the use case of the
integrity concepts. These topics are covered by the following two Subsections.

2.1. Definitions

The definition of integrity is given by the Federal Radio Navigation Plan of the United
States Government [11] as: “Integrity is the measure of the trust that can be placed in the
correctness of the information supplied by a navigation system. Integrity includes the
ability of the system to provide timely warnings to users when the system should not
be used for navigation.” In order to further specify integrity, the following parameters
are used, which are explained in the European Space Agency’s online encyclopedia [18],
exemplary for the Position Error (PE):

e Alert Limit (AL): “The alert limit for a given parameter measurement is the error
tolerance not to be exceeded without issuing an alert.”
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e  Time to Alert (TTA): “The maximum allowable time elapsed from the onset of the
navigation system being out of tolerance until the equipment enunciates the alert.”

¢ Integrity Risk (IR): “Probability that, at any moment, the position error exceeds the
Alert Limit.”

e  Protection Level (PL): “Statistical bound error computed so as to guarantee that the
probability of the absolute position error exceeding said number is smaller than or
equal to the target integrity risk.”

A common way to visualize these parameters is the Stanford integrity diagram.
Figure 1 shows such a diagram exemplary for the PE.
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Figure 1. Stanford integrity diagram (Figure based on [18]).

As long as the integrity algorithm works as intended, the PE is bound by the PL, which
is represented by the area above the diagonal in the diagram. During normal operations, the
PL is lower then the AL. If the PL exceeds the AL, the system becomes unavailable. In case
of a PE greater than the PL, the integrity information is misleading, which is represented
by the area under the diagonal in the diagram. This becomes a hazard if the PE is actually
greater than the AL, which is the case in the red area in the diagram.

In general, integrity monitoring systems fulfill two tasks: different levels of fault
detection and mitigation (including fault detection, recovery, isolation and/or exclusion)
and solution protection ([19] chapter 17). We assume that the fault detection and mitigation
is executed before the integrity level and therefore the integrity algorithms in this work
only refer to solution protection.

2.2. Use Case and Requirements

When comparing different integrity concepts, it is important to keep the intended use
case in mind. In this work, integrity algorithms for the fusion algorithms of the VDSE in
UNICARagil are compared. This leads to several requirements:

First, there are general requirements of the VDSE in UNICARagil. These include that
the outputs of the VDSE are available in real-time to be processed by other services in
the automated vehicle, especially by the motion controller [15]. Additionally, a distinct
statement about the quantities estimated by the VDSE is required, which includes a level
of confidence, e.g., a PL ([20] chapter 5). Eventually, the VDSE will provide integrity
information for all its outputs. However, in this work, only the horizontal position and the
yaw estimate are considered, since they are crucial for collision avoidance in road traffic.
Even though integrity information can be represented in many different forms, in this study,
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the comparison of a predefined, constant AL with a PL outputted by the integrity algorithm
is preferred, which is consistent with the previously introduced Stanford integrity diagram.

Secondly, requirements for the integrity information in particular have to be consid-
ered, which stem from the use case of the VDSE. In order to define the required ALs of
localization algorithms for an application in automated driving, one has to define the PL
and the corresponding IR first. In the literature, 1-D and 2-D PLs are used with different
assumptions about the road geometry and the acceptable IR. On one hand, Reid et al. [21]
derive for different types of vehicles and types of roads in the US ALs using a 1-D PLs and
an IR of 1078 /h: For a passenger vehicle on US local roads, the most similar scenario to
the given use case in UNICARagil, the ALs is given as 0.29 m in lateral and longitudinal
direction of the vehicle, as 1.40 m in vertical direction and as 1.50° for the attitude angles
(roll, pitch, yaw). On the other hand, the European GNSS Agency (GSA) reports their
requirements [22] for automated driving which include accuracy requirements, meaning
95 %-quantile, for the localization algorithm of 20 cm horizontally (2-D) and 2 m, vertically,
as well as integrity requirements in terms of ALs of 10 to 15 m with an integrity risk of 10~7.
As these two examples show, there are no common integrity requirements for automated
driving so far. Besides that, the accuracy requirements are still a challenge for localization
algorithms developed up to now for an application in automated driving [21]. For the
comparison of the implemented integrity algorithms in this study, a working hypothesis
of 0.6m as AL for the 2-D horizontal PE and 1.0° as AL for the yaw angle or Heading
Error (HE) with an IR of 1072 is used. The ALs are chosen as an intermediate of the values
from the literature mentioned before. The IR is set as less restrictive than the mentioned
values, which are inspired by aviation applications, since these values are at the moment
not realistic for GNSS-based VDSE fusion algorithms in the application of automated
driving in urban areas.

3. State of the Art

In the literature, a great variety of algorithms to evaluate a system’s integrity can be
found that stem from different research areas [23,24]. Since the application in this work
is in VDSE or localization functions, we focus in the following on approaches from the
domain of navigation, especially localization functions based on a sensor fusion using a
GNSS receiver, and adopt the nomenclature from this domain. In order to differentiate
the integrity concepts from the literature, we take certain properties of the localization
function itself into account, since the integrity algorithms are typically developed for a
specific system setup. In the following, the sensors used for the localization function, the
intended or first field of application, the system architecture of the localization function or
sensor data fusion (e.g., filtering or snapshot methods) and the utilized integrity measures
(e.g., PL and/or AL) are used as distinguishing properties.

For an application in aviation, several integrity algorithms are developed for local-
ization functions focusing on the position solution. Initially, a single-frequency single-
constellation GNSS receiver is utilized as only sensor and the system architecture im-
plements a least-squares algorithm [25]. The integrity algorithms are based most often
on Receiver Autonomous Integrity Monitoring (RAIM), which is using the overdeter-
mined position solution computed by the mentioned snapshot method from the GNSS
pseudorange observations (redundant measurements) to perform consistency checks [26].
Additionally, Detection, Identification and Adaption (DIA) procedures are applied, which
include a global test to detect outlier presence assuming a certain statistical distribution
and, depending on the implementation, a local test to identify them [20].

As GNSS develop further and integrity requirements become stricter, drawbacks of
the first RAIM algorithms are identified, which include the general assumption of only
one present outlier per epoch and the utilization of a single-frequency, single-constellation
GNSS receiver [27,28]. This leads to further developments and extensions of RAIM: Several
studies extend the concept of RAIM to multiple outliers, e.g., by Tu et al. [27]. Another
development to modify RAIM is carried out by the Stanford GPS Lab. Blanch et al. [29]
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present a baseline version of Advanced Receiver Autonomous Integrity Monitoring (ARAIM),
an extension of RAIM to multi-constellation dual-frequency GNSS. A modification to adapt
the least-squares baseline version to a Kalman Filter (KF) version for Precise Point Posi-
tioning (PPP) is introduced by Gunning et al. [30]. Further developments published by
the same author include an extension to integrate IMU observations into the localization
function [31]. Pullen et al. [13] take the concept of ARAIM developed for aviation to auto-
motive applications and describe the integration of ARAIM in the Globalstar Connected
Car Program. Besides that, there are other extensions of RAIM to GNSS/IMU algorithms
which focus on detecting outliers, e.g., for a tightly coupled fusion by Hewitson et al. [32]
and Liu et al. [33]. In the latter reference, outliers are categorized in slowly/quickly
growing or step errors and dedicated testing methods for each category are developed.

Another group of integrity algorithms is developed, especially for multi-sensor data
fusion. Multiple studies for the different system architectures can be found in the literature,
e.g., for detecting erroneous sensor data in a fusion using Bayesian method [34] and using
integrity monitoring for KF applications [35]. A dedicated approach to compute PLs for
a localization function used for automated driving is developed by GMV company and
its partners. In the patent [36], Azaola Saenz introduces the Isotropy-Based Protection
Level (IBPL), which is designed for a localization function using GNSS pseudoranges and
computes a PL based on least-squares residuals and scalar factors stemming from the
Dilution of Precision (DOP), the number of observations and the number of estimated
states. Building upon IBPL, an extension of this concept for system architectures based on a
KF is developed, which is called Kalman Integrated Protection Level (KIPL). It is disclosed
by Navarro Madrid in the patent [37]. For KIPL, the influence of all measurement inputs
to the sensor data fusion are modeled dynamically and fused to a total error distribution
which is used to compute the PL [38]. Results of KIPL in the ESCAPE research project are
presented by Tijero et al. [39].

Applying the mentioned grouping criteria to these integrity concepts from the lit-
erature is used to decide which one of them will serve as a basis for the implemented
integrity algorithms. Figure 2 shows the resulting decision tree. Since the use case requires
an integrity concept for a fusion algorithm using multiple sensors and filtering, ARAIM
and KIPL are selected. To compare them to traditional approaches, an integrity concept
based on the standard deviations estimated by the KF is selected as a third algorithm.

Integrity concepts

Estimation based
on multi sensor
fusion

Estimation based
on GNSS receiver

Using filtering
(e.g., Kalman Filter)

Using snapshot
methods
(e.g., Least Squares)

ARAIM KIPL

Figure 2. Decision tree for integrity concepts (representation not comprehensive).

4. Implementation

In this Section, the three implemented integrity algorithms are explained. All of
them provide a PL which is compared with the defined AL for the given use case. For
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position, velocity, GNSS

the comparison, one of the fusion filters of the VDSE of UNICARagil is used, which is
explained in Section 4.1.

4.1. Fusion Algorithm

As mentioned in the introduction, one of the GNSS/IMU/odometry sensor fusion
algorithms from the VDSE is used for the comparison of the implemented integrity algo-
rithms. Figure 3 depicts the block diagram of the sensor data fusion in which an Error-State
Extended Kalman Filter (ES-EKF) is implemented. The algorithm builds upon the devel-
opments and results of the PhD thesis of Reuper [40]. The main differences to Reuper’s
PhD thesis [40] are the usage of a dual-antenna RTK GNSS receiver in a loose coupling
and the integrity layer. Since the implemented equations for the ES-EKF [40] and the loose
coupling of GNSS and IMU [19] are state of the art, they are omitted here but can be found
in the cited literature.

GNSS
receiver

yaw angle preprocessing

acceleration,
angular rate N  Strapdown

Integrity layer

integrity and
accuracy measures
position, velocity,

yaw angle states, variances,

resi tc.
estimated esidues, etc

sensor biases

Error State Extended

steering angle,
wheel speeds Odometry

algorithm Kalman Filter

a-priofri
navigation
solution

position, velocity,
acceleration, orientation,

dynamic tire angular rates

radii

velocity at wheel
contact points

Odometry
sensors

preprocessing

Figure 3. Block diagram of Global Navigation Satellite System (GNSS)/Inertial Measurement Unit (IMU)/odometry fusion
filter used for comparison of implemented integrity algorithms (Figure based on [14]).

The ES-EKF uses 19 states which are depicted in Table 1. Measurement updates from
the GNSS observations (position, velocity, yaw angle) and from the odometry observations
(velocity at wheel contact points) are used in the ES-EKF to estimate these states, while
the IMU is processed in a strapdown algorithm utilizing the estimated sensor biases.
Additionally, Zero Velocity Update (ZVU) and Zero Angular Rate Update (ZARU) are
implemented as explained by Groves ([19] chapter 15.3) and applied when a standstill
of the vehicle is detected by the odometry sensors, meaning that, for more than 0.5s, all
odometry sensors observe a velocity of zero.

Outputs of the filter are position, velocity, attitude and angular rate in three di-
mensions. Besides that, the integrity layer computes PLs, which in this comparison, is
performed by one of the selected integrity algorithms explained in the following subsection.

Different quantities from the ES-EKF are used as inputs to the integrity algorithms.
These include the estimated state covariance matrix P or the respective estimated standard
deviations for the traditional approach. Additionally, KIPL utilizes the measurement
matrices H;;, measurement noise covariance matrices Rmeas,, and measurement residual
vectors Yy, for all used measurement types m and the transition matrix F, as well as the
estimated state x.
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Table 1. States of error-state extended Kalman filter in fusion filter used for comparison of imple-
mented integrity algorithms.

State Dimension Unit Description
oY 3 rad Misalignment
ov 3 m/s Velocity error
ép 3 m Position error
0be 3 rad/s Gyroscope offset error
ob, 3 m/s? Accelerometer offset error
org 4 m Dynamic tire radius error

4.2. Integrity Algorithms

Each of the implemented integrity algorithms is given a name according to the under-
lying formulas or their basis from the literature. We introduced the concepts of the three
integrity algorithms in a conference paper [14]. In this work, a complete implementation
and further developments for more challenging GNSS reception conditions are presented.
Many known integrity algorithms output over-optimistic PLs in difficult environmental
conditions. The developments presented in this work aim to avoid that by amendments
to our previously presented concepts [14]. The parameters were empirically tuned using
the Stanford integrity diagram such that the specified performance criteria, especially
regarding the IR, are fulfilled.

4.2.1. kSigma

The first integrity algorithm represents the traditional approach of computing con-
fidence levels based on the estimated standard deviations by the ES-EKF. The PLs are
computed by scaling the respective standard deviations with a scalar factor k. Therefore, in
the following, this algorithm is referred to as kSigma.

The equations for the horizontal and vertical position PL, PLysigma,post and PLisigma,posv s
as well as for the heading PL, PLysigma,y, are given by

D LkSigma,posH = kposH UH 1
Pl LkSigma,posV = kposV ou (2)
P LkSigma,t/J = klp Oy 3)
with
02 + 02, 2+o3\’
o = | Eo | ) ok )

where the variances of the east, north, up component and the east-north covariance of
the position solution and the yaw standard deviation are expressed as (7%, (712\], (ff[, OEN,
oy respectively [41]. The scalar factors kyy and ky are both set to three, representing an
integrity risk of approximately 0.3%, assuming normally distributed errors. For ky an
empirically defined factor of nine was chosen to not exceed the specified IR. In order
to prevent over-optimistic PLs, lower bounds for the estimated standard deviations are
introduced. A lower bound of 0.03m for oy and oy; as well as 0.017° for oy is applied
before the PLs of Equations (1)—(3) are computed.

4.2.2. Kalman Integrated Protection Level (KIPL)

While the first integrity algorithm is rather simple and straight forward in its equations,
the second algorithm uses a more sophisticated approach including an implementation of
the previously mentioned KIPL method, wherefore it is referred to as KIPL in the following.
All explained computations for this integrity algorithm are performed analogously for



Sensors 2021, 21, 1458

8 of 22

the position and heading PL and differences in the parameters for the respective cases are
marked with a subscript (pos or ).

In this algorithm, the estimation error of the ES-EKF is modeled as the sum of its
contributions, meaning the measurement inputs to the filter [42]. These contributions are
categorized by measurement type, whereby each measurement type m is modeled by a zero-
mean multivariate Student distribution ty;,, (R, [38]. In the use case of this work, filter one
of the VDSE, there are six measurement types, namely, the GNSS position, GNSS velocity,
GNSS heading angle and odometry velocity observations, as well as the zero updates,
ZVU and ZARU. The PL is computed for the three-dimensional position and for the one-
dimensional yaw angle, leading to dpos = 3 and dy = 1. After the measurement update
step of the ES-EKF, the distribution ty, (Ry;) of the respective measurement type m is
updated by recalculating it as the sum of two zero-mean multivariate Student distributions
tn,, (Rm1) and tn, (Ry2) which model the estimation errors of the filter in the prediction
and measurement update step respectively [38]. In the patent [37] the Equations (5)-(13)
to calculate Ny,1, Ryy1, N2 and Ry are given with the measurement matrix Hy,, the state
covariance matrix P, the measurement noise covariance matrix Rmeas,,, the measurement
residual vector y,;, the transition matrix F from the ES-EKF and the tuning parameters j
and py,.

Sm = HuPHy; + Rmeasy, (5)

Ky = PHLS 1, (6)

N1 =y + BN, 7)

N = Nobs,, — t(HuKp) — tr(omHnKn), (8)
Ry = 2 KuSuKL, )

i = (VS + BN} ) N%ﬂ (10)
Nyo =N, (11)

R, = UR,UT, (12)

u= (1 — ZKmHm> F (13)

Table 2 shows the initial values required for these Equations. In general, a transpose
of a matrix A is represented by AT, while A’ is the value of matrix A from the previous
step and I stands for the identity matrix.

Table 2. Initial values for KIPL integrity algorithm (values based on [37]).

Parameter Value
N 1
N 1
Ry, 0
A 0
m 0

Having ty,, (Ry1) and ty, (Ry2) computed, in the next step, their sum is approximated
by using

R = le + RmZ + Dy + DZI (14)
with

Dy = rmKuS;, /2 AL U (15)

and solving
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d—2 _ Nm+2-2
V() - o
16
2 N, (Nm1 + Nu2) Ny a2 N (Ny1 + Ni2) Nz
Nm% tmllexp{ = 2Nmﬂ; - t%nZ +Nm§ tm226xp - 21\]7:1Z = t%ﬂ
numerically for N, with
1
letr(le) 2
foq = | 17
1
Nmztr(Rm2) 2
thy = | ————"F 1
m2 |: fT(S) 7 ( 8)
1
Nptr(Ry) ] 2
= | 1
S = (1+w) (Nu1Ry1 + N Ry2) (20)

and the tuning parameter w [38]. In a third step, the update of A, is calculated as disclosed
in the patent [37] by

Am = rmpmsal/szn + PmA;nU/- (21)

The PL results as sum of the error bounds B, from each measurement type m

PLxipL = ;Bm (22)
using
B = k(, Ny) by (23)
with
b = (trm/d)*'?, (24)

where tr,, represents the trace of the matrix R, over the states for which the PL is computed
for, meaning the three PE states in case of the position PL and the HE state in case of the
heading PL, and solving

2 /00 yd—l
dy=uw (25)
B(%,%) k (1+y2)(Nm+d)/2

numerically for k(«, Ny, ) with the integrity risk « = 0.01 and the beta function B(x, y) [37].

For the six mentioned measurement types, the parameters used in this implementation
are depicted in Table 3, wherein I, represents the identity matrix of order n. Out of
these parameters, w and § are empirically found tuning parameters and p;, represents
a correlation factor [37]. The parameter w has to be greater than one and a value of ten
represents high-confidence levels, according to Welte [38]. The value range of j is given as
0 < B < 1 and a non-zero value represents the influence of statistics of previous epochs
on the characterization of the error noise at the present epoch [37]. When tuning the
parameters for the used setup of sensors and fusion filter, the goal was to minimize the
outputted PLs, while not exceeding the specified IR.

The number of observations in a measurement type determines 1, , leading to three
for the three-dimensional GNSS position and velocity solution, and to one for the GNSS
yaw solution. For the odometry, only the horizontal velocity is considered and only one
lateral velocity per axle, as described by Reuper [40]. Therefore, there are six odometry
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observations. The detection of vehicle standstill for ZVU and ZARU is considered as
one observation.

Table 3. Parameters for Kalman Integrated Protection Level (KIPL) integrity algorithm.

Parameter GNSS Position GNSS Velocity GNSS Heading Odometry ZvU ZARU
w 10 10 10 10 10 10
B 0.99 0.99 0.99 0.99 0.99 0.99
Mobs,, 3 3 1 6 1 1
Om 0913 0913 0.9 091 0.9 0.9

Motivated by the results from experiments with real measurement data during the
implementation, an empirical factor of two is applied to the position PL from Equation (22).
Eventually, the position PL is multiplied by V/2 to obtain the 2D horizontal PLKIPL,posH
from the 1D PLxypL, pos- Note that the PL stays constant in-between measurement updates.
Not updated error bounds By, are taken from the previous step.

Additionally, two empirically motivated measures are introduced to prevent over-
optimistic PLs for PLxpy posH and PLkgpr,y- These are a dynamic buffer to account for
high dynamics and a dynamic lower bound to take difficult GNSS reception conditions
into account.

For the lower bound B, a quadratic function in the form

Biow (qent) = @2 G2t + 1 Gent + a0 (26)
is used, with the counter gyt and the parameters ay, a1, ap which are depicted in Table 4.

Table 4. Parameters for dynamic lower bound for KIPL integrity algorithm.

Parameter Position Heading
a 0.0003m/s? 0
a 0.035m/s 0.013deg /s
ag 0.075m 0.05deg
freset 5s 5s

The error in the position with no GNSS reception grows approximately like a quadratic
function with respect to time, which motivates this design choice. Since the heading error
grows approximately linearly with respect to time, the parameter a; is set to zero for the
heading lower bound. The lower bound is applied in two kinds of situations with respect
to the GNSS reception conditions, leading to two lower bounds Bjoy, noGNss (Gent, noGNSS)
and Bioyw, noRTK (qent, norTK ), Which each have a separate counter. The counters are named
Jent, noGNSS and Jent, norTK, count time in seconds and are both initialized with zero. If there
is no GNSS reception for one epoch, meaning the GNSS receiver does not output a position
solution to the loosely coupled filter, the counter gcn, nogNss Will start counting. It continues
counting until there is GNSS-RTK reception for a time greset (given in Table 4), which leads
to a reset of the counter gcnt, nogNss to zero. The counter gent norTK is activated if gent, noGNss
is equal to zero and is counting the time since the last GNSS-RTK reception, but will only
be used if it is higher than the threshold greset. As soon as there is an epoch with GNSS-RTK
reception, the counter gent, norTk Will be reset to zero. Eventually, the sum of the two lower
bounds Blow, rlOGNSS(l’]CI’It, noGNSS) and Blow, noRTK (qcnt, noRTK) is apphed to P LKIPL,posH and
PLqp,y respectively, which will be explained with formulas in the following.

The buffer Bpyfer,posH is applied after the lower bound and computed as

Bbuffer,posH = kposH,buffer Afiltered, H (27)

with the horizontal acceleration agjereq i as @ moving average from the past five seconds
and a scalar factor kposy puffer Of 0.05. Since in the experiments, the influence of high
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dynamics was only observed on the position error, the dynamic buffer is only applied to
the position PL and not to the heading PL.

Figure 4 summarizes the described procedure to compute PLs for the KIPL integrity
algorithm and concludes with the following equation

PL _ P LKIPL,posH + Bbuffer,posH P LKIPL,posH > Blow,posH 78
KIPL,posHmod — ( )
Blow,posH + Bbuffer,posH Pl LKIPL,posH < Blow,posH
PLxipr, PLxipL,p 2 Biow,
PLKIPL,y,mod = v v v (29)
Biow,y PLxipL,y < Biow,y
using
B _ Blow,posH,noGNSS + Blow,posH,noRTK ent,noRTK 2 (reset 30
low,posH — ( )
Blow,posH,noGNSS entnoRTK < Jreset
B . Blow,tp,noGNSS + Blow,lp,noRTK Jent,noRTK = freset 31
low, iy — . ( )
Biow,i,noGNss fent,noRTK < freset

Initialize
counters

Compute
PL, Equation (22)

Y

no

GNSS
reception?

Y

Increase counter
for no GNSS
reception

Counter no

no GNSS =0?

Increase counter Reset counter
GNSS RTE no GNSS-RTK no GNSS
pion: reception reception

Reset counter
no GNSS-RTK
reception

v

Compute lower
bound and PL, <
Equations (28) - (31)

Figure 4. Flow chart of KIPL integrity algorithm PL computation.

4.2.3. Advanced Receiver Autonomous Integrity Monitoring (ARAIM)

The third integrity algorithm includes an implementation of ARAIM introduced by
the Stanford GPS Lab as it was presented by Gunning et al. [30] for PPP using Multiple
Hypothesis Solution Separation (MHSS). To apply the mentioned implementation to the
given use case, RTK solutions as one-out subsets, meaning solutions with all but one of
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the satellites in sight, and the all-in-view solution are computed. These computations
are performed with version demo5_b33c of RTKLIB provided by Everett [43], which is
based on the original version of RTKLIB by Takasu [44]. GNSS correction data, meaning
ultra rapid orbit and clock corrections (clk and sp3 files), are downloaded from the Geo-
ForschungsZentrum (GFZ) Potsdam. The broadcast ephemerids from the German Federal
Agency for Cartography and Geodesy (BKG) are used. For the following fusion, the GNSS
position solution and estimated standard deviation computed with the mentioned version
of RTKLIB are combined with the yaw (only for filter initialization) and velocity values
of the real-time solution provided by the RTK-GNSS receiver. Afterwards, the previously
described fusion filter is applied for all subsets and the all-in-view solution. Analogously
to kSigma, a constant lower bound for the estimated standard deviation for the position
solution of 0.005 m is applied before it is multiplied by an empirical factor of three.
With the equations given by Gunning et al. [30], the PL level is computed by

B ‘ _1( PHMI (i)
PLARAIM = miax (Tl + Q (NP(Hi) (o (32)
with the threshold
T; = Q! (i Pea )0l (33)
using
US(;')Z — 02 _ 0(0)2, (34)

the standard deviation for the ith subset ¢! and for the all-in-view solution ¢(©), the
number of subsets N, the complement of the normal cumulative distribution function Q
and its inverse Q_l. The parameters are also taken from Gunning et al. [30], as a; = %,
PHMI = 11077, Pga = 31076, P(H;) = 10~°. Eventually, the PL for the HE is already given
as PLARAIM,p and for the horizontal PE results as

PLARAIM posH = \/ PL3ramv e + PLARAIM N (35)

with the PL’s components in east and north direction, PLaoranv e and PLaramvN, from
Equation (32).

In order to account for difficult GNSS reception conditions, additional measures are
taken. The RTKLIB quality level is used as an indication of these conditions. Only a
quality level of one means that the integer ambiguity for the RTK-GNSS solution is solved
properly [45]. If RTKLIB outputs a non-ideal quality level (meaning non-equal to one), an
empirical factor of three is used for both PLs, PLaraM,posH and PLarAIM,p- Besides that, a
constant value of 0.1° is added to PL ARAIM, -

5. Experiments and Results

For the comparison and evaluation of the implemented integrity algorithms for the
VDSE in UNICARagil, four measurement experiments are used, which represent four
driving scenarios with different environmental conditions. Before these are explained in
detail (Section 5.2), the sensor setup is described (Section 5.1). Afterwards, the results are
evaluated (Section 5.3).

5.1. Sensor Setup

Table 5 depicts the sensors and its properties used for the previously explained sensor
data fusion filter of the VDSE, as well as for the reference solution.
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Table 5. Sensors and processing of the fusion filter of the vehicle dynamic state estimation of UNICARagil used to compare
the implemented integrity algorithms and of the reference solution.

Implemented Fusion Filter (VDSE) Reference
Processin Real-time capable Post-processing
& (MATLAB code) (NovAtel WayPoint Inertial Explorer 8.90)
IMU Micro-Electro-Mechanical System Ring Laser Gyroscope
(Sensonor STIM300) (iMAR iNAV-RQH1003)
dual-frequency, multi-frequency,
GNSS multi-constellation, multi-constellation,
dual-antenna single-antenna
RTK-GNSS receiver RTK-GNSS receiver
(NovAtel OEM7720) (NovAtel OEM729)
production-line odometry )
Odometry (Volkswagen T5)

The reference solution is obtained from a post-processing evaluation of the obser-
vations from a navigation grade Ring Laser Gyroscope (RLG)-IMU (iMAR Navigation
GmbH, St. Ingbert, Germany) and a multi-frequency, multi-constellation GNSS receiver
(NovAtel Inc., Calgary, AB, Canada) in the software NovAtel WayPoint Inertial Explorer
8.90 (NovAtel Inc., Calgary, AB, Canada). All measurement experiments are carried out
with a conventional vehicle (Volkswagen T5), since the prototype vehicles in UNICARagil
are still under construction. The lever arms between the sensors were determined by a
photogrammetric survey of the vehicle.

5.2. Experiments

The four selected measurement experiments are extracted from three data sets that
we recorded in May, 2019 with the measurement vehicle of the Chair of Physical and
Satellite Geodesy at Technical University of Darmstadt, a Volkswagen T5 equipped with
the mentioned sensors from Table 5. Table 6 summarizes the experiments” key information.

Table 6. Characteristics of the four selected scenarios to compare the implemented integrity algorithms.

Airfield Highway Country Road Urban
GNSS recept- Ideal . Good Mlxed Challenging .
. Iy (open sky (bridges and overhead (vegetation and small (downtown, passing
ion conditions . A .
view) sign structures) towns) twice a tunnel)
TU Darmstadt Highway A5 Odenwald near
. e . . . Darmstadt,
Location airfield Griesheim, near Darmstadt, Heppenheim,
Germany
Germany Germany Germany
Duration 7 min 14 min 60 min 62 min
Date 7 May 2019 9 May 2019 6 May 2019 7 May 2019

A method developed within the project UNICARagil [46] is utilized to identify po-
tential causal factors for integrity failure of the VDSE by using Fault Tree Analysis (FTA)
and System Theoretic Process Analysis (STPA) [47]. The selection of measurement ex-
periments is made such that the selected scenarios include as many of the identified
potential causal factors as possible in real measurements. The selected scenarios represent
four typical driving scenarios for automated vehicles and they contain a variety of
different challenges regarding the GNSS reception conditions. The difficulty for the
VDSE and the integrity algorithms increases steadily from the scenario on the airfield
as ideal scenario with no difficulties regarding the GNSS reception conditions to the
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urban scenario with numerous challenges including signal obstruction, multipath and
Non-Line-of-Sight (NLOS) reception.

The first experiment stems from a data set recorded on the Technical University of
Darmstadt’s airfield (August-Euler-Flugplatz) in Griesheim, Germany on 7 May 2019. On
the airfield, there is open sky view and the GNSS receptions conditions are ideal. Two and
a half rounds over the runway and taxiway are driven, first anti-clockwise then clockwise.
Figure 5a depicts the trajectory in a satellite picture.

‘Lindenfels

 Google Earth : . I - y Google Earth

(d)

Figure 5. Driven trajectory in the four selected experiments: (a) TU Darmstadt airfield Griesheim, Germany, (b) Highway

A5 near Darmstadt, Germany, (c¢) Odenwald near Heppenheim, Germany, (d) Darmstadt, Germany (Screenshots taken from
Google Earth Pro, map credits given on the screenshot).

In the second experiment, the GNSS reception conditions are not ideal anymore. It
was recorded on 9 May 2019 between Morfelden and Darmstadt, Germany, mainly on
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highway A5 direction south. The trajectory is depicted in Figure 5b and contains frequent
signal obstruction, due to e.g., bridges and overhead road sign structures.

The third data set stems form a measurement recorded on 6 May 2019 near Hep-
penheim, Germany. The driven trajectory is shown in Figure 5c and leads through the
Odenwald, a mountain range with forest areas. The route contains driving on country
roads which leads to more difficult GNSS reception conditions due to signal obstruction
from vegetation in the forest and buildings in the towns.

The fourth experiment was recorded in the city center of Darmstadt, Germany on 7
May 2019. The GNSS reception conditions are degraded since the route contains GNSS
signal obstruction due to multi-level buildings and due to vegetation while passing a forest
as well as due to total signal blockage in a tunnel in Darmstadt downtown which is passed
through twice (Figure 5d).

5.3. Results

In order to evaluate the performance of the implemented PLs, first the position PLs are
analyzed before a closer look at the heading PLs is taken. Figure 6 depicts the position PLs
of the three implemented integrity algorithms over time in the four described experiments
as solid lines. Besides that, also the respective error (PE) is plotted as a dashed line, which
is computed as difference between the reference solution and the fusion result. This leads
to different PEs for kSigma and KIPL on one side and ARAIM on the other side, since for
ARAIM another GNSS solution is used. As explained in Section 4.2.3, ARAIM uses the
GNSS solution of RTKLIB, while the other two integrity algorithms rely on the real-time
solution of the RTK-GNSS receiver, which leads to different fusion results and therefore to
different PEs. For the ordinate, a maximum value of 1.2 m is chosen to focus on the critical
area for the integrity performance, meaning around the chosen AL of 0.6 m.

There are several differences between the integrity algorithms with respect to the per-
formance of the provided PLs observable. Most notably, the PL range changes dramatically
between the scenarios. While on the airfield, all PLs stay under the defined AL of 0.6 m,
this is not the case anymore in more challenging GNSS reception conditions.

In general, the more challenging the conditions are, the higher the PLs are, which
seems plausible but leads to lower availability in challenging GNSS reception conditions.
Especially, the chosen implementation of ARAIM is strongly effected by GNSS signal
obstruction, e.g., by bridges and overhead traffic sign structures on the highway. These
are the root cause for the peaks in PLoramnv during this scenario, which results in a lower
availability for ARAIM. On country roads and in urban areas, PLaram is also significantly
higher than the other two PLs.

Besides that, in the four scenarios, the PL of KIPL is slightly greater than the one
provided by kSigma, but both PLs stay mostly under the defined AL. When analyzing the
relationship between PL and PE, KIPL seems to provide the most reliable PL out of the
three implemented PLs, since the other two show some weaknesses in more challenging
conditions. This becomes observable, e.g., in the highway scenario at around 220's for
ARAIM and in the urban scenario at around 2750 s for kSigma.

These qualitative observations are confirmed by the quantitative results. Table 7
depicts the percentage of epochs in which the provided position PL is binding the PE.
According to the specified IR of 1%, this value should not be lower than 100% — 1% = 99%.
In ideal GNSS reception conditions, like on the airfield, all integrity algorithms can keep
this specification. With more difficult circumstances, this is not the case anymore, and in
the urban scenario, only the KIPL integrity algorithm reaches a value of more than 99% of
the epochs with PE < PL.
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Figure 6. Comparison of the horizontal position error and the three implemented protection levels in the four selected

scenarios: (a) airfield, (b) highway, (c) country road and (d) urban.
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Table 7. Percentage of epochs in which the error in the position solution of the sensor data fusion
algorithm is bounded by the implemented protection levels.

Error < PL (% of Epochs) Airfield Highway Country Road Urban
Position-kSigma 100.0 100.0 99.8 96.1
Position-KIPL 100.0 100.0 100.0 99.8
Position-ARAIM 100.0 96.3 99.8 97.7

In Table 8, the availability of the fusion filter with the implemented integrity algorithms
in the four scenarios is depicted. As explained in Section 2.1, the filter becomes unavailable
if the provided PL exceeds the specified AL. As anticipated by the qualitative analysis, the
availability decreases in challenging GNSS reception conditions, especially for the chosen
implementation of ARAIM. The availability of the fusion filter with kSigma and KIPL is
very similiar with a slight advantage for kSigma.

Table 8. Availability of the fusion filter with the implemented integrity algorithms.

PL < AL (% of Epochs) Airfield Highway Country Road Urban
Position-kSigma 100.0 100.0 97.6 90.8
Position-KIPL 100.0 100.0 97.8 90.5
Position-ARAIM 100.0 83.1 9.0 26.5

All in all, KIPL shows the best performance for the position PL in the chosen imple-
mentation and with the selected tuning parameters in the four selected experiments of this
work. Therefore, only for KIPL, the detailed analysis for the four experiments utilizing
Stanford integrity diagrams is conducted, now also including the heading PL.

Figures 7 and 8 depict the Stanford Integrity Diagrams for the four selected scenarios
for the position and heading PL of the chosen implementation of KIPL. The previously
mentioned correlation of GNSS reception conditions and magnitude of the position PL
becomes more visible in Figure 7. For the heading PL, the same trend can be observed in
Figure 8. Regarding the performance in terms of integrity and availability, the results for
position and heading PL of KIPL are also similar.

In ideal and good GNSS reception conditions (airfield and highway scenario), the PLs
bound the errors at all times and stay under the defined ALs, which leads to an availability
of 100%.

In the country road scenario, for position and heading, the PLs also bound the errors
at all times. In case of the position PL, it exceeds the chosen AL in 2.2% of the epochs, while
for the heading solution, there is an availability of 100% in this scenario. For both PLs, no
misleading or hazardous operation events are occurring.

Only in the very challenging GNSS reception conditions of the urban environment
in the fourth chosen scenario does KIPL output misleading information. For the position
PL, this is the case in less than 0.2% of the epochs in this scenario, which is lower than the
specified IR of 1%. For the heading PL in this experiment, the specified integrity risk is
slightly exceeded: In 1.3% of the epochs the HE exceeds the provided heading PL. The
availability of the heading solution is slightly higher than for the position solution in
the chosen implementation of KIPL, which leads to 100% availability in three of the four
scenarios (two out of four for the position solution) and about 96% availability of the
heading solution (about 90% for the position solution) in the urban scenario.
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Figure 7. Stanford integrity diagrams for the protection level of the horizontal position error computed with chosen
implementation of KIPL integrity algorithm in the four selected scenarios: (a) airfield, (b) highway, (¢) country road and
(d) urban.

Conclusively, the chosen implementation of KIPL with the selected tuning parameters
shows a better performance than the other two implemented integrity algorithms in
the four selected experiments. The specified IR can be kept in all scenarios, except for
the heading PL in the very challenging urban environment where it exceeds it slightly.
The position and heading solution are available at all times in good GNSS reception
conditions with this integrity algorithm implementation. In challenging GNSS reception
conditions, the availability decreases to about 96% for rural areas and about 90% for urban
areas, respectively.
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Figure 8. Stanford integrity diagrams for the protection level of the heading error computed with chosen implementation of

KIPL integrity algorithm in the four selected scenarios: (a) airfield, (b) highway, (c) country road and (d) urban.

6. Conclusions and Outlook

In this work, we developed and implemented three integrity algorithms for sensor
data fusion algorithms to estimate the vehicle’s dynamic state for an application in a
research vehicle for automated driving. Requirements for the integrity algorithms were
derived from the literature and known integrity concepts were reviewed. While many
other integrity concepts from the literature are only applicable to sensor fusion by snapshot
methods, the three implemented integrity algorithms are compatible with multi-sensor
fusion in a ES-EKEF like it is used in the VDSE of the research project UNICARagil and
output a PL for the position and heading (yaw angle) solution.

Four experiments with data from real driving measurements were recorded and used
to compare and evaluate the integrity algorithm’s performance. A special focus is on
the GNSS reception conditions, which have a strong influence on the VDSE’s estimated
state’s quality. In favorable to mixed GNSS reception conditions, like in the first three
experiments, all implemented PLs bound the PE within the specified IR at all times. In
the last experiment, in an urban environment, the GNSS reception conditions are more
challenging, which results in a slightly higher IR than specified.

All in all, the integrity algorithm KIPL showed the best performance in the four
experiments, when the chosen implementation and set of tuning parameters is used. In
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contrast to the other two implemented integrity algorithms, the specified IR is kept for the
position PL in all four experiments and only slightly exceeded for the heading PL in the
urban environment. The availability in the chosen experiments with the specified AL is
100% in favorable GNSS reception conditions and about 96% for rural areas and about 90%
for urban areas, respectively.

The comparison shows that reliable integrity information for the position and heading
solution can be provided by the implemented integrity algorithms. Even though all three
integrity algorithms provide a PL, their concepts and underlaying formulas differ substan-
tially. As mentioned before, the implemented PLs bound the PE in all experiments but their
magnitude varies, which has a significant influence on the availability. When selecting an
integrity algorithm for the specific application of a fusion algorithm in the VDSE in the
research project UNICARagil, this point and additional aspects like computation effort for
a possible use in real-time will have to be taken into account.

In future work, the implemented integrity algorithms will be part of the integrity layer
of the VDSE. This layer will serve as an input to a voting algorithm which generates a
unique output of the VDSE out of the results from the different sensor fusion algorithms
using subsets of the available sensor data in this service in UNICARagil. To do so, the
integrity algorithms will be extended to the whole vehicle’s state, including the velocity,
acceleration and angular rate. While developing and testing the voting algorithm, the
integrity layer’s performance will be continuously monitored, and further algorithm
optimization and parameter tuning will be applied if necessary.

Another aspect of future work will be to develop a strategy of how to react to an
integrity alarm of a fusion algorithm in the VDSE and how to recover the system to a safe
operational state. This task will be solved together with other services in UNICARagil,
including the self-perception service, which is explained e.g., by Buchholz et al. [17].
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