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Editorial on the Research Topic

Veterinary Reproductive Immunology

FROM MEDAWAR’S PARADOX TO NEUROIMMUNOENDOCRINE,

METABOLIC AND ENVIRONMENTAL INTEGRATION

The field of Reproductive Immunology has evolved from the paradigms of transplantation
immunology to an integrated concept of interactions between the endocrine, immune, nervous,
and reproductive systems as critical components of the physiology of reproduction. The origin
of reproductive immunology was the Medawar paradox when he proposed several theories
explaining failure of the mother to reject the fetal allograft in an epoch when the rules of Major
Histocompatibility Complex and its compromise in transplantation immunology were defined.
From an orthodox immunologist’s perspective, it is hard to fully understand the mechanisms
underlying maternal-fetal tolerance in mammalian reproduction. Medawar’s theories were tested
experimentally by several scientists, whose results are considered fundamental to the origin of
reproductive immunology. Although Medawar’ paradox is considered the inflection point for the
origin of reproductive immunology (1, 2), Billington (3) stated that Mechnikov and Landsteiner
were the pioneers of reproductive immunology with their discoveries of expression of phagocytic
cells and Fc receptors in placentae that are responsible for uptake of placental antibodies in women
during gestation. Also, there was the discovery of hemolytic anemia in the rhesus monkey and
its treatment with counteracting antibodies, respectively (3). Since the first hypotheses proposed
by Medawar on the possible mechanisms of non-rejection of the fetal allografts, to the pioneering
studies in rodents and in women undertaken by Beer, Billingham, Scott, and Yang onmaternal-fetal
tolerance in the 60’s (3), pioneers in reproductive immunology have paved the way for current
research in reproductive immunology of human and other mammals.

Regarding the compromise of MHC antigens in reproduction, Billington reported that fetal
size was greater when female mice produced fetuses from a strain different from their own (4).
In this paper, Billington cited early work highlighting the importance of fetal antigens and cells in
establishing maternal-fetal tolerance in mice, rats, cattle, and humans. In that epoch, the first report
on circulating syncytiotrophoblast fragments in human pregnancy and their possible relationship
to maternal tolerance to the fetal allograft (5) provided further evidence of for a relationship to
pathologies such as preeclampsia (6).

Several pieces of evidence support the role of fetal MHC antigens in successful pregnancies,
depending on the species and stage of gestation (7–12). The presence of maternal cells in the fetal
circulation and fetal cells and cell-free DNA trafficking into the maternal circulation was reported
for humans [(13–15), and reviewed in (16)], mice (17–19), and domestic animal species (20–22).
The trafficking of cells between the mother and the fetus is a crucial component of the interaction
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between maternal and fetal immune cells (13, 23–25),
highlighting the importance of maternal cells in “educating” the
fetal immune system for the antigenic environment it will face
in postnatal life [(26), reviewed in (27, 28)]. The presence of
maternal immune cells at the maternal-fetal interface is accepted
as a critical component of the physiology of gestation (29) and
in pathological conditions such as hypertensive disorders of
pregnancy, including preeclampsia (30–32).

Several authors proposed that fetal cells bearing MHC
antigens and other circulating fetal antigens could act as
conventional triggers of the maternal cellular immune responses
resulting in rejection of the fetal allograft and maternally induced
runt disease in the offspring (33, 34). Accordingly, the work of led
by Clark and Chaouat with the CBA2/DBA model in the 1980s
(35–37) provided evidence of immune-mediated fetal resorption.
This model helped test several hypotheses on the compromise of
stressful conditions in the physiopathology of immune-mediated
pregnancy loss.

In the late 1970s and early 1980s, research by Martal
et al. (38, 39) and Bazer and Roberts group on ovine and
bovine trophoblast interferons established the molecular basis
of maternal recognition of pregnancy in ruminants (40–42)
and triggered an exciting field of research in the maternal-fetal
dialogue between the endometrium, the corpus luteum, and the
hypothalamic-hypophyseal axis.

The work led by Anne Croy showed the essential role that the
trophoblast layer of the placenta plays inmaintaining interspecies
pregnancies (43). Furthermore, Croy’s team (44) and Moffett’s
group (45, 46) provided evidence for the importance of uterine
Natural Killer cells, dendritic cells (47), and innate uterine
lymphoid cells [reviewed in (48)] for successful pregnancies in
mice and humans, highlighting the importance of innate immune
cells in the physiology of gestation. Besides, the works by Antczak
and Allen on the compromise of the maternal immune response
in the developing chorionic girdles in equine placentation in the
early 80’s (49, 50) provided evidence for the importance of cells of
the adaptive immune system in successful placental development
and fetal growth in mares.

The proposal of an immunotropic hypothesis (51) elicited new
and exciting concepts to the field of reproductive immunology
[(52, 53), reviewed in (54, 55)] and elicited controversy (56–58)
on the importance of the adaptive immune system in gestation
maintenance. The initial concept of a Th1/Th2 balance required
for successful gestation further evolved toward the concept of a
balance between regulatory T cells (T-reg) (59) and T-reg/Th17
cells being critical for successful pregnancies (60, 61).

From the beginning of the twenty-first century, several
studies by Skarzynski’s group provided evidence for a neuro-
immuno-endocrine interaction between the endometrium and
corpus luteum in cattle (62–67) and horses (68, 69) and
the role epithelial cells play in the maternal-fetal dialogue
(70). Concomitantly, there were results from Bazer’s group
on the compromise of several modulators in the maternal-
fetal dialogue in sheep (71–75) add critical evidence regarding
the function of the reproductive system as an integrated
system in which neuro-immune-endocrine and metabolic
cues are integrated for successful reproduction (or failure

if loss of homeostasis). Other research groups around the
world provided additional evidence for the importance of
cellular and humoral immune components and processes in
the physiology of pregnancy (54, 76–79). Failure in several
processes were implicated in immune-mediated embryonic
and fetal losses during the course of gestation [reviewed
in (80)].

In this special edition on Veterinary Reproductive
Immunology, several papers contributed to increasing our
understanding of neuro-immune-endocrine interactions related
to physiological and pathological conditions of gestation.
The papers provide novel results related to anti-GnRH
vaccines in cats, the establishment of pregnancy in dogs,
processes related to endometrial function in cattle, horses,
and pigs, and pre-implantation signaling in mice. Further,
the papers included address state-of-the-art protocols in
molecular biology, providing readers, scientists, and clinicians
with advanced concepts on reproductive immunology. The
discussion is still open, as mentioned by Billington (3), who
proposed that reproductive immunology would continuously
provide scientific information and controversy (3), as it is
an essential aspect of research and discovery in the field of
animal reproduction. New research areas, including glycan
expression at the maternal-fetal interface in the placenta
of several animal species and humans, are becoming more
prominent in reproductive immunology. However, there
are still a lack of comprehensive theories integrating the
contributions of findings from studies in glycobiology into
concepts related to successful mammalian reproduction. Even
though there is abundant scientific evidence for the essential
roles that signals from immune, endocrine, nervous, epithelial,
stromal, and trophoblast cells produce to intercommunicate
the endocrine, immune, neural, and reproductive tissues, no
explicit theories exist to fully explain the way these systems
function and contribute to maintaining the physiology of
gestation or why, when the system is altered, there are losses
of gestations. For these reasons, in the future, we will seek
momentum in research whereby the scientific community will
provide an integrated view on the homeostasis required for
successful reproduction, including integration of immunology,
genomics, proteomics, glycomics, and environmental influences
in mammalian reproduction.
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