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Abstract: Assessing dementia conversion in patients with mild cognitive impairment (MCI) remains
challenging owing to pathological heterogeneity. While many MCI patients ultimately proceed to
Alzheimer’s disease (AD), a subset of patients remain stable for various times. Our aim was to
characterize the plasma metabolites of nineteen MCI patients proceeding to AD (P-MCI) and twenty-
nine stable MCI (S-MCI) patients by untargeted metabolomics profiling. Alterations in the plasma
metabolites between the P-MCI and S-MCI groups, as well as between the P-MCI and AD groups,
were compared over the observation period. With the help of machine learning-based stratification, a
20-metabolite signature panel was identified that was associated with the presence and progression of
AD. Furthermore, when the metabolic signature panel was used for classification of the three patient
groups, this gave an accuracy of 73.5% using the panel. Moreover, when specifically classifying the
P-MCI and S-MCI subjects, a fivefold cross-validation accuracy of 80.3% was obtained using the
random forest model. Importantly, indole-3-propionic acid, a bacteria-generated metabolite from
tryptophan, was identified as a predictor of AD progression, suggesting a role for gut microbiota in
AD pathophysiology. Our study establishes a metabolite panel to assist in the stratification of MCI
patients and to predict conversion to AD.

Keywords: Alzheimer’s disease; mild cognitive impairment; untargeted metabolomics; plasma;
feature selection

1. Introduction

Alzheimer’s disease (AD) is currently the most common dementia disease worldwide,
and it has been estimated that it will affect more than 100 million people by 2050 [1].
Up to the present, clinical trials testing AD disease-modifying therapies have failed to
provide any promising solutions [2]. In this context, two new directions for AD therapeutic
development have been proposed. Firstly, that possible pathological mechanisms other
than the amyloid-driven hypothesis should be explored and, secondly, that individuals
during the early stages of AD should be identified, with this being the time frame in which
intervention is most likely to be possible. With respect to AD diagnosis, mild cognitive
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impairment (MCI) is often considered to be the prodromal stage of clinically diagnosed
AD. Although MCI patients are at high risk of developing AD, they are pathologically
heterogeneous and seem to consist of a range of different subtypes [3]. For example, not all
MCI patients progressed to dementia and some remained stable for a relatively long period
of time, while a small portion even reverted to normal cognition [4,5]. More importantly,
some MCI patients do not develop AD, but rather develop other types of dementia [6].
Therefore, predicting the individual development pattern of a given patient at the MCI
stage is critical when physicians are diagnosing AD; nevertheless, this remains an unmet
clinical need.

Current clinical methods for diagnosing AD include brain imaging and the measure-
ment of β-amyloid and tau levels in the cerebrospinal fluid [7]. Considering the high cost
and invasive nature of these approaches, the development of alternative diagnostic tools
would be very useful when carrying out early AD detection [8,9]. Establishing one or more
blood-based metabolic signatures would be a rapid and less invasive approach to assisting
AD diagnosis [10]. Although over 200 metabolites have been reported to be potential AD
biomarkers in plasma/serum [11–16], only a few reports have reported metabolites that
are closely linked to AD conversion among MCI patients [15,17,18]; furthermore, most of
these metabolites are lipids owing to the use of a commercial kit.

In the present study, we have collected untargeted metabolomic data from human
plasma samples to allow a comprehensive investigation of the metabolic alterations that
have occurred in a range of MCI patients. Univariate, multivariate statistical analysis, and
machine learning (ML) models were used for MCI stratification based on clinical diagnosis
at follow-up. The ultimate goal of this study is to establish a metabolic signature panel that
will identify the various MCI subtypes, and thus provide for individualized treatment of
patients during AD development.

2. Results
2.1. Demographics of the MCI Patients and Metabolomic Analysis in Plasma Samples

A total of 61 human plasma samples, collected under IRB regulations, were analyzed
during the present study; these included 48 patients diagnosed as MCI. To investigate the
association of the plasma metabolites with AD conversion, we focused on the longitudinal
data collected from the MCI patients who proceeded to AD (P-MCI subjects, n = 19); these
are the patients that underwent MCI-to-AD conversion during the observation period. For
comparison purposes, the MCI patients who remained MCI or exhibited an alleviation of
symptoms over the 3- to 5-year study period were defined as stable MCI (S-MCI, n = 29).
The demographics of these subjects are shown in Table 1, including age, gender ratio,
education, and cognition evaluation. Age, baseline MMSE, and APOE ε4 alleles were
significantly associated with AD progression risk (all p < 0.05). Metabolomics analysis of
these plasma samples was carried out using a liquid chromatography-mass spectrometer
(LC-MS). To circumvent analytical drift among the batches, a pooled quality control (QC)
for normalization was used, as suggested previously [19]. Upon normalization, a total of
3749 common features were selected for comparison across all samples.

2.2. Metabolic Alterations in Patients Who Have Progressed from MCI to AD or Who Have
Remained MCI during the Observation Period

Firstly, we investigated whether these subgroups can be discriminated by univariate
statistical analysis. Independent sample t-tests were used to compare the P-MCI and S-MCI
groups, and a total of 99 significant (p < 0.05) differentially expressed metabolites were
defined (Figure 1a). In addition, to investigate the association of the plasma metabolites
with the AD transition, metabolic features from samples collected in the MCI stage of
P-MCI patients were compared to those collected in the AD stage of same P-MCI patients.
The paired t-test statistics upon AD transition of 13 P-MCI patients provided a total of
108 metabolic features with p values <0.05 (Figure 1b). The number of overlapping features
among these two lists was limited (Figure 1c). Unexpectedly, all these metabolites did not
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continuously decrease or increase; for example, the levels of Met-1916 decreased in the
P-MCI group compared with the S-MCI group, whereas the same metabolite increased on
MCI-to-AD progression, as shown in Figure 1d. These analyses indicated that the plasma
metabolome changes across the pathology of AD were non-linear. This prompted us to use
ML methods to facilitate the task of classification.

Table 1. Characteristics of the 49 individuals defined as P-MCI patients and S-MCI patients.

Characteristic S-MCI P-MCI

Subject (n) 29 19
Age (years) 68.0 ± 8.5 76.0 ± 9.9 *
Female (%) 51.7 52.6

Education (years) 12.3 ± 3.8 10.9 ± 4.5
Baseline MMSE score 28.2 ± 1.8 25.2 ± 1.6 *

Conversion to AD dementia
(MMSE score at follow-up) No (27.3 ± 1.7) Yes (22.6 ± 1.9 a)

AD medication, n (%) 1 (3.4) 5 (19)
Aricept, n 1 4
Exelon, n 0 1

APOE ε4 carrier (%) 13.8 47.3 *
Follow-up (years) 5.5 ± 1.2 4.4 ± 1.6

Means ± standard deviation (SD) are shown for continuous variables; MMSE, Mini-Mental State Examination;
APOE, apolipoprotein E. * p < 0.05. a Calculated from 13 patients.

Figure 1. Longitudinal and cross-sectional analysis comparing the plasma metabolomic data of MCI
patients. (a) Comparison of the metabolic profiles between 19 P-MCI and 29 S-MCI patients based on
independent t-tests. A total of 99 metabolic features were statistically significant (p < 0.05). (b) Com-
parison between 13 paired P-MCI and AD groups to identify differential metabolites associated
with AD development based on paired t-tests. A total of 108 metabolic features were statistically
significant (p < 0.05). (c) A Venn diagram of the comparison between the P-MCI vs. S-MCI and P-MCI
vs. AD metabolic features. (d) Box and whisker plots of four common metabolic for differentiating
the S-MCI, P-MCI, and AD patients based on paired and independent t-tests. Paired samples are
connected by lines. Grey dots represent six P-MCI subjects without AD metabolomics data. * p < 0.05.
S-MCI, stable MCI; P-MCI, MCI proceeding to AD.
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2.3. Building Machine Learning-Based Models for the Classification of AD, P-MCI, and S-MCI

LASSO, support vector machine (SVM), and random forest (RF) were used to identify
a subset of features that are most relevant to classifying the S-MCI, P-MCI, and AD samples
from the original 3749 features. Subsequently, fivefold cross-validation with ten repeti-
tions was utilized to eliminate bias and improve the reliability of the results. A schematic
diagram illustrating the overall procedure is shown in Figure 2a. The top 20 features
with high selection frequencies during the ML-based group classification are shown in
Figure 2b. Based on the performance of three-group classifications obtained using popular
ML algorithms including logistic regression, RF, and SVM, we chose the top-ranked eight
features trained using the logistic regression model (Figure 2c). Using these eight features,
we were able to classify the selected test subjects into the S-MCI, P-MCI, and AD groups
at an average classification accuracy of 73.5 ± 14.2%. Alternatively, to focus on the clas-
sification between P-MCI and S-MCI subjects, better values were obtained for accuracy
(80.3 ± 13.6%) using the RF model (Figure 2d). Similarly, a comparable accuracy value
(79.8 ± 14.8%) was observed for the P-MCI–AD comparison (Figure 2e). On the other hand,
the classification model training using the 20 metabolites with most significant association
resulted in a modest predictive ability (accuracy = 49.8–65%, Figure S1), which suggests
that the statistical significance of the univariate analysis did not produce an optimized
marker combination.

Figure 2. Model development and evaluation for biomarker discovery involving the risk assessment of AD conversion. (a) The
workflow of the feature selection used to establish a signature panel for differentiating the S-MCI, P-MCI, and AD patients.
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In each loop, the dataset was partitioned into a ‘Training Set’ and a ‘Test Set’ and the top 20 most informative features were
selected as predictors. The predictive performance of the classifiers was estimated by fivefold cross-validation. (b) The top
20 differentiating features ranked by a combination of the Lasso, RF, and SVM algorithms. (c) Accuracies of classification
among the S-MCI, P-MCI, and AD patients using a varying number (2–20) of the top-ranked features based on the RF, SVM,
and logistic regression models. (d) Prediction accuracies of binary classification models during which all MCI patients
were assigned into either the P-MCI group or the S-MCI group. (e) Accuracies of the binary classification models to
predict MCI-to-AD progression. The accuracies (shown as mean ± standard deviation) were determined using fivefold
cross-validations. S-MCI, stable MCI; P-MCI, MCI proceeding to AD.

2.4. Multivariate Statistical Analysis of All Three Groups

Next, we applied principal component analysis (PCA), which is an unsupervised
method, to uncover the potential distinction across the three classes (29 S-MCI, 19 P-MCI,
and 13 AD). The P-MCI, S-MCI, and AD groups share a very similar distribution based on
the original 3749 metabolites (Figure 3a). Although the most frequently selected features
are better able to discriminate the three cognitively impaired populations, a subset of each
group of samples still overlapped among these groups using the PCA model (Figure 3b,c).
Thus, currently, differentiation between the three groups of cognitively impaired patients
using conventional statistical analysis remains a challenge.

Figure 3. Principal component analysis (PCA) was used to derive the major distribution patterns from metabolomics data
for all three groups. (a) PCA of 3749 metabolic features from 61 samples of S-MCI, P-MCI, and AD patients. (b,c) PCA
representation of the twenty (b) or eight (c) metabolites selected by the machine learning algorithms. S-MCI, stable MCI;
P-MCI, MCI proceeding to AD.

2.5. Development of an Eight-Metabolite Index for Binary Discrimination

Finally, a plasma eight-metabolite index was created by combining eight metabolite
abundances using the coefficient of each metabolic feature in the specific binary logistic
regression models. In the S-MCI–P-MCI classifier system, the eight-metabolite index
significantly differentiated between the P-MCI and S-MCI groups, and the area under
the receiver operating characteristic (ROC) curve was 0.96 (95%CI: 0.9–1; Figure 4a left
panel). Additionally, ROC analysis showed perfect classification (AUC = 1) for subjects
in the P-MCI and AD groups (Figure 4a right panel). Both AUC values were higher than
those obtained from the statistically significant metabolites between (1) P-MCI and S-MCI
subjects and (2) P-MCI and AD subjects (Figure 4b). Altogether, our findings indicate that
a higher predictive performance can be obtained by integrating the metabolomic signature
panel suggested by ML.
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Figure 4. ROC curve analysis assessing the performance of the binary diagnostic tests using the various statistical and
machine learning strategies. (a) ROC curves based on eight-metabolite index generated using the logistic regression model
to discriminate between P-MCI vs. S-MCI groups and AD vs. P-MCI groups. The associated AUC and 95% confidence
interval (CI) are indicated. (b) ROC curves based on univariate statistical significance to discriminate between P-MCI and
S-MCI groups and the AD and P-MCI groups. The grey diagonal line represents random classifier performance (AUC = 0.5).
Each metabolic feature and metabolite index is depicted in a vertical box plot where the horizontal lines represent the
median value and the black dots represent the outliers (>1.5 interquartile range from ends of the box). Student’s t-test was
used to assess the significance of the difference between two groups. AUC, area under the ROC curve. S-MCI, stable MCI;
P-MCI, MCI proceeding to AD; ROC, receiver operating characteristic.

2.6. Identification of the Metabolites That Seem to Reflect the Risk of AD Conversion

Among top twenty most predictive features for AD risk assessment, nine metabolites
were structurally assigned based on their accurate mass and fragmentation pattern; these
metabolite identities are summarized in Table 2. Expression profiles across the P-MCI,
S-MCI, and AD groups of these top eight metabolites, which were the most frequently
selected, are shown in Figure 5. The majority of the metabolites, specifically five out of
eight, were found to be significant altered in the P-MCI group compared with the S-MCI
group, whereas no significant changes were observed when the P-MCI to AD groups were
compared. Of note, the rank 1 metabolite, N-formylmethionine, was also the metabolic fea-
ture exhibiting the most statistical significance (smallest p-value) within the S-MCI versus
P-MCI comparison (Figure 4b). Two other metabolites showed a significant reduction on
the MCI-to-AD transition. However, these were found not to differ significantly between
the P-MCI and S-MCI groups. Interestingly, although no significant inter-group variation
was detected, the overall increasing trend of indole-3-propionic acid from S-MCI to AD
suggested a potential link for cognitive impairment (rank 8 in Figure 5).
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Table 2. List of the nine ML-selected MCI-differentiating features with their identified metabolite annotation.

Rank Description Metabolic
Feature Compound ID Adduct Formula Score Fragment Score Mass Error (ppm)

1 N-Formyl-L-methionine Met-0771 HMDB0001015 M-H C6H11NO3S 39.7 18.2 3.16

3 Cinnamic acid Met-1609 HMDB0000567 M-H C9H8O2 28.3 0.09 7.35

4 CL(16:0/22:5/16:1/16:1) Met-3745 HMDB0056838 M-2H C79H140O17P2 28.1 3.06 −2.31

8 Indole-3-propionic acid Met-1849 HMDB0002302 M-H C11H11NO2 38.5 0 −2.52

9 CDP-DG(a-25:0/i-24:0) Met-3290 HMDB0116150 M-H C61H115N3O15P2 38.5 20.6 18.06

12 Citbismine F Met-2163 HMDB0034473 M-H C36H34N2O10 33.9 0.03 17.64

13 Pyrogallol-1-O-sulphate Met-0930 HMDB0060016 M-H C6H6O6S 37 0 −6.93

14 L-Furosine Met-0967 HMDB0029390 M-H C12H18N2O4 35 0 −16.06

20 L-Arginine Met-0978 HMDB0000517 M-H C6H14N4O2 45.2 40.6 −9.27
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Figure 5. Box and whisker plots of eight representative features for differentiating the S-MCI, P-MCI, and AD groups. The
box defines the 25th and 75th percentile of the intensity distribution and the horizontal line within the box representing the
50th percentile (median). Outliers are defined as having an intensity exceeding 1.5 interquartile ranges lower than 25th
percentile or higher than the 75th percentile, which were indicated as dots. * p < 0.05. S-MCI, stable MCI; P-MCI, MCI
proceeding to AD; CL, cardiolipin; n.s., non-significant.

3. Discussion
3.1. Plasma Biomarkers That Can Be Used to Diagnose AD and Track Its Progression

It has been shown that the AD-related disturbances of serum/plasma metabolome
are highly variable with low reproducibility [20,21]. Importantly, metabolic alterations
associated with AD may not be able to differentiate patients that have distinct MCI stages
in terms of their progression rate and direction. It is, therefore, important to identify the
unique signatures associated with different MCI patients and explore how these vary in
terms of their future development towards either AD or non-AD dementia. However, there
is currently no clinical method able to accurately predict which MCI subjects will later
progress to AD. In the present study, we have focused on establishing a robust prediction
model for evaluating AD risk based on the patient’s metabolite biomarker signature.

3.2. Marker Panel Separating P-MCI and S-MCI Patients

Owing to the complexity of MCI pathology, a single biomarker is unlikely to yield
enough sensitivity and specificity, and thus multiple biomarkers are likely to be necessary
to facilitate disease monitoring. In this study, the differential metabolites observed in P-
MCI patients did not deteriorate further during MCI-to-AD progression (Figure 1), which
indicates that relationship between cognitive impairment and the plasma metabolome
appears to be complex. In line with this observation, conflicting direction for the as-
sociations between AD progression risk and AD diagnosis in CSF samples have been
reported [22]. A recent study also excludes a “linear” pathology from cognitively normal
to AD [23]. Altogether, taking into account the long preclinical phase of dementia, a variety
of dementia-associated metabolic alterations are likely to be presented during the MCI
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stage. Thus, there seems to be an exciting opportunity for using multivariate metabolomic
markers to classify MCI patients at high risk of converting to AD.

Considering the high-dimensional context, as well as the high degree of metabolite-
metabolite interaction, found in untargeted metabolomics data [24], logistic regression,
together with feature selection algorithms such as LASSO, RF, and SVM, are now being
increasingly applied to the analysis of metabolomics data [25,26]. Here, the interaction
effects between 3749 metabolic features were taken into account by including RF, LASSO,
and SVM as selection algorithms in order to establish a minimal metabolic signature panel
set (Figure 2a). Furthermore, the eight top-selected metabolic features, when combined,
were able to differentiate stable MCI subjects, MCI subjects who later converted to AD,
and AD patients, with an overall average accuracy of 73.5%. PCA also showed moderate
separation among three classes (S-MCI, P-MCI, and AD) when the top-selected metabolic
features were used (Figure 3).

Notably, the best performing model was derived from the binary class discriminations
of S-MCI–P-MCI (80.3% accuracy) models (Figure 2d). Several machine learning-based
approaches have been proposed for predicting MCI-to-AD progression [27,28], but most of
them incorporated cognitive/functional markers and brain magnetic resonance imaging
(MRI). Very little data are available on the accuracy of discriminating P-MCI from S-MCI
using only blood metabolome data, and only one report has shown comparable accuracy
(72%) when predicting AD progression; this was based on the concentrations of three
metabolites in MCI patients [17].

On the other hand, all of the metabolomics analyses carried out during this study
would seem to be associated with short-term MCI-to-AD conversion, as defined by a
previous study [27]. It will thus be interesting to further investigate whether the conversion
signature panel proposed in this study exhibits a time window correlation; this would
require the long-term follow-up of a future cohort. Meanwhile, the predictive ability of
the present eight metabolite signature when identifying MCI patients with a risk of rapid
progression to AD is highly important if one is carrying out clinical evaluation of a MCI
patient and then wishing to intervene.

3.3. The Metabolite Index Can Be Used for Individualized Risk Prediction

Alterations in circulating metabolites, including lipids, amino acids, and hormones,
have been associated with a risk of dementia [29]. To the best of our knowledge, there
is no AD progression risk score/index available based on plasma metabolomics data in
the literature. Therefore, we have developed a plasma eight-metabolite index, which is
calculated using the coefficients in the P-MCI versus S-MCI logistic regression model. The
eight-metabolite index is able to achieve an AUC of 0.96 in the corresponding ROC curve
(Figure 4), which confirms it as having potential diagnostic utility for MCI subjects. The
validity of the index needs to be further confirmed by examining diverse MCI subjects in
order to rule out over-fitting of the logistic regression model owing to the limited sample
size of the current study.

3.4. Potential Pathways Underlying the Risk for Progression to Dementia

In this work, we identified a panel of 20 metabolic features, which exhibits predictive
potential for MCI subtypes (Table 2). These include amino acid derivatives (furosine,
N-formylmethionine, and arginine), cardiolipin 16:0/22:5/16:1/16:1 and its precursor
CDP-DG a-25:0/i-24:0, diet-related metabolites (cinnamic acid, citbismine F, and pyrogallol-
1-sulfate), and gut microbial metabolite (indole-3-propionic acid). While a change in amino
acid derivatives is frequently associated with diverse diseases, alteration of cardiolipin,
a mitochondria-membrane phospholipid, in brain tissues was associated with AD and
other neurodegenerative diseases [30,31]. Despite that cardiolipin was decreased in the
AD mouse model, the causal relationship between cardiolipin and AD pathology was not
confirmed. However, our results suggest that the circulating level of cardiolipin is impor-
tant to stratify MCI patients with different AD risk. On the other hand, cinnamic acid was
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previously shown to stimulate lysosomal biogenesis and reduce amyloid plaque pathol-
ogy in the AD mouse model [32]. It is suggested to further investigate whether plasma
levels of cinnamic acid are associated with AD risk. In addition, N-formylmethionine
is an initiator of protein synthesis in bacteria or mitochondria. Nevertheless, linkage of
this mitochondria-derived metabolite to AD progression in MCI patients requires further
investigation.

3.5. Implication of Identification of Gut Microbiota-Derived Metabolites

In our results, the metabolite, indole-3-propionic acid, an indole derivative converted
from tryptophan by gut bacteria, was identified as a predictor of AD progression (Table 2).
It has been reported that MCI and AD patients have altered gut microbiome compared
with controls [33,34]. Previous research has suggested that gut diversity might impact
the bioavailability of tryptophan and its downstream metabolites [35]. Whether this
explains the association of indole-3-propionic acid with AD progression risk, specifically
that there is only disturbance in P-MCI subjects, but not in S-MCI subjects, remains to
be explored. In addition, pyrogallol-O-sulfate, a colonic microbiota-derived polyphenol
catabolite, has been shown to improve cellular responses to oxidative injuries, and is able
to pass through the blood–brain barrier in the cell model [36]. Therefore, the plasma
pyrogallol-O-sulfate may directly affect brain function and is associated with AD risk
in MCI patients. Given that accumulating evidence suggests a significant relationship
between diet and gut microbiome [37], our results highlight the importance of studying
the microbiome-dependent effects in MCI patients.

3.6. Conclusions

The current challenge when carrying out MCI stratification is a lack of reliable in-
dicators at the molecular level. To address this issue, we have attempted to apply ML
algorithms to screen suitable metabolites that are able to create a signature panel for
MCI development. Our findings demonstrate that a combination of a high-dimensional
(>3500 features) untargeted metabolomics dataset with ML algorithms allows an evalu-
ation that assists in the stratification of diverse MCI patients. Such an assessment using
metabolite signature panels should help determine the degree of cognitive impairment
of a given MCI patient, as well as the risk of disease development for that MCI patient;
both of the above are important in terms of early intervention, effective monitoring, and
predementia management.

4. Materials and Methods
4.1. Study Subjects

The Institutional Review Board (IRB) of Taipei Veterans General Hospital approved the
study protocol. MCI samples and AD samples were obtained from Taipei Veterans General
Hospital with the consent of the patients; these included 48 patients who were later defined
as P-MCI or S-MCI based on their progression time window (Table 1). Clinical diagnosis of
AD and MCI was based on a physical examination, a clinical interview, and a neuropsy-
chological assessment as recommended by the National Institute on Aging/Alzheimer’s
Association workgroups in 2011 [38].

4.2. Sample Collection and Metabolite Extraction

Fasting blood was drawn using EDTA-coated vacuum tubes and centrifuged at 4 ◦C
and 3000× g for 10 min in order to obtain plasma samples; these were then stored at −80 ◦C
until analysis. Each plasma sample (40 µL) was spiked with two internal standards (1 ppm
lysine-13C6, 1 ppm stearic acid-13C18) and deproteinized by the addition of 160 µL 100%
methanol. After centrifugation at 4 ◦C and 13,000× g for 10 min, the supernatant was
lyophilized and re-dissolved in ultrapure water for LC-MS analysis.
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4.3. LC-MS Analysis

LC-MS analysis was carried out on a Waters Xevo G2-S Q-Tof tandem mass spectrom-
eter coupled with Acquity UPLC (Waters) using a BEH C18 column (2.1 × 100 mm 1.7 µm,
Waters) kept at 40 ◦C. The total run time was 9 min and was performed at a flow rate of
0.3 mL/min. The gradient conditions for sample analysis were 1% B from 0 min to 0.5
min, 1–100% B over 0.5 min to 4 min, and then the composition was held at 100% B for 1
min, which was followed by a return to the initial composition over 1 min; the final condi-
tions were maintained for a further 3 min. The mobile phase A was an aqueous solution
containing 0.1% ammonium hydroxide and mobile phase B was acetonitrile containing
0.1% ammonium hydroxide. Leucine enkephalin ([M − H]− = 554.2615 m/z) was used for
the continuous mass calibration. MSE data were acquired at both low and high collision
energy with a mass scan range of 50–1200 m/z. In addition to the above, a pooled quality
control (pQC) reference was prepared by mixing 10 µL from each 61 plasma samples; this
was then aliquoted and analyzed during each LC-MS analysis batch in order to provide a
basis for normalization between the different LC-MS analysis batches.

4.4. Untargeted Metabolomics and Statistical Analysis

MSE data in the negative mode were processed using Progenesis QI (Nonlinear
Dynamics), which generated a collection of chemical features; these were represented by
their retention time, mass-to-charge (m/z), and ion intensity. Triplicate measurements of
each individual sample were averaged. Subsequently, the ion intensities of all the chemical
features from the different batches were normalized against the pQC reference sample.
The principle component analysis (PCA) of the selected groups was carried out using
EZinfo (Umetrics, version 3.0.3). The detailed procedures for the pQC normalization are
described in the Supplementary Methods. The ROC curve analysis was carried out using
SPSS version 24.0 (SPSS Inc., Chicago, IL, USA).

4.5. ML-Based Classification of the S-MCI, P-MCI, and AD Groups

Firstly, the dataset was randomly split into an 80% training set and a 20% test set. We
used the LASSO [39] algorithm to select the features for group classification, which was
followed by analysis by two algorithms, SVM [40] and RF [41]; these were used to rank
the metabolites by their coefficients and Gini importance values, respectively. To increase
the reliability of the feature selection and ranking, the above processes were repeated
1000 times, and then the top-ranked features were selected and used to build a signature
panel. A program was developed using R version 3.5.2 (https://www.r-project.org (ac-
cessed on 12 February 2021)), which allowed feature selection using the metabolomics
data. Additionally, logistic regression, SVM, and RF models were trained based on the
most frequently selected metabolites. The predictive accuracies of various models were
evaluated by fivefold cross-validation with ten repetitions using Weka software version
3.8.2 (https://www.cs.waikato.ac.nz/ml/weka/ (accessed on 8 April 2021)), and in this
way, the optimal (most accurate) number of metabolic features was identified.

4.6. Metabolite Annotation

Tentative identification of ionic features was made by matching monoisotopic mass
(m/z) to the values held in the human metabolome database (HMDB) (http://www.
hmdb.ca/ (accessed on 21 January 2021)) with a mass tolerance of 30 ppm. The most
probable annotations were made by matching the fragmentation pattern against the in
silico fragmentation database MetFrag built in Progenesis QI [42] with a mass tolerance of
50 ppm.
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