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Abstract: MicroRNAs (miRNAs) are 19 to 25 nucleotides non-coding RNAs known to possess important post-
transcriptional regulatory functions. Identifying targeting genes that miRNAs regulate are important for understanding 
their specific biological functions. Usually, miRNAs down-regulate target genes through binding to the complementary 
sites in the 3' untranslated region (UTR) of the targets. In part, due to the large number of miRNAs and potential targets, 
an experimental based prediction design would be extremely laborious and economically unfavorable. However, since the 
bindings of the animal miRNAs are not a perfect one-to-one match with the complementary sites of their targets, it is 
difficult to predict targets of animal miRNAs by accessing their alignment to the 3' UTRs of potential targets. 
Consequently, sophisticated computational approaches for miRNA target prediction are being considered as essential 
methods in miRNA research. 

We surveyed most of the current computational miRNA target prediction algorithms in this paper. Particularly, we 
provided a mathematical definition and formulated the problem of target prediction under the framework of statistical 
classification. Moreover, we summarized the features of miRNA-target pairs in target prediction approaches and 
discussed these approaches according to two categories, which are the rule-based and the data-driven approaches. The 
rule-based approach derives the classifier mainly on biological prior knowledge and important observations from 
biological experiments, whereas the data driven approach builds statistic models using the training data and makes 
predictions based on the models. Finally, we tested a few different algorithms on a set of experimentally validated true 
miRNA-target pairs [1] and a set of false miRNA-target pairs, derived from miRNA overexpression experiment [2]. 
Receiver Operating Characteristic (ROC) curves were drawn to show the performances of these algorithms. 
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1. INTRODUCTION 

 In classical molecular biology, the functional units in a 
genome are genes or the DNA regions that code proteins. 
The non-coding regions were considered as nonfunctional, or 
junk DNAs. However, the notion has been seriously 
challenged ever since the discovery of RNA interference 
(RNAi), a technology considered as one of the most exiting 
breakthrough in biology in the past decade and was 
accordingly awarded 2006's Nobel Prize in Physiology. 
Since then, many types of non-coding RNAs have been 
identified as important regulatory elements in mammalian 
and non-mammalian cells, and microRNAs (miRNAs) have 
drawn increasing research attention among these non-coding 
RNAs. MicroRNAs are a class of single-stranded non-coding 
RNAs with about 19 to 25 nucleotides (nts) in length, which 
are mostly known to inhibit the translation of mRNAs into 
proteins or promote repression of mRNA expression [3, 4]. 
In human, more than 500 miRNAs have been annotated in 
the miRNA registry (MirBase) [5, 6] with over 1000 
miRNAs predicted to exist. These miRNAs are believed to 
directly regulate around 30% of human protein coding genes  
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and each miRNA would mediate the expression of on 
average over 200 genes. Given these facts, miRNAs 
inevitably play important regulatory roles in many biological 
processes and diseases including cell development [7, 8], 
stress responses [9, 10], viral infection [11, 12], and cancer 
[13-15]. For example, human miR-155 has been shown to 
regulate T helper cell differentiation and mediate the T cell-
dependent antibody response [16, 17] and it has also been 
implicated in a number of cancers including Burkitt's and 
Hodgkin lymphomas, breast cancer, lung, and colon cancers 
[18-20]. Also, the miRNA cluster miR-17-92 is indicated to 
be a potential oncogene enhancing cell proliferation [21, 22] 
and has been associated with several types of cancer 
including colorectal cancer [23] and lung cancer [24]. Three 
studies [22, 25, 26] have also established that the specific 
miRNAs are expressed in most common cancers and 
demonstrated the effects of miRNAs on cancer development. 
miRNAs have also been used for the diagnosis, prognosis 
and response to treatment of cancer patients. It is foreseen 
that their role will be extended in the future to therapeutic 
approaches, in particular to identify new therapeutic targets. 
As a result, miRNA research has been very active and named 
as one of the areas to watch and make breakthrough of the 
year 2007 by the Science magazine [27]. 
 Despite their importance, the in vivo functions of most 
human miRNAs are still poorly understood. The reality is 
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manifested by the fact that only about 1000 human miRNA 
target genes have been experimentally validated, a faction of 
the potentially human gene targets. As a result, the global 
pattern of cellular functions and pathways that are affected 
by miRNAs in various diseases remains largely unknown. 
Understanding the biological functions of miRNA is 
therefore one of the main goals of current miRNA study and 
identifying regulatory targets of miRNAs is the critical first 
step. In part due to the sheer number of miRNAs and their 
potential targets, a mere experiment based prediction design 
is extremely laborious and economically unfavorable. 
Alternatively, computational target prediction methods 
coupled with high-throughput experiments can provide 
valuable clues for potential targets and more efficiently 
generate manageable hypotheses for experiments. 
 Given the importance of the topic, we provided a timely 
survey of the computational algorithms for miRNA target 
prediction in this paper. Computational target prediction 
algorithms came to exist since TargetScan [28-30] was 
proposed in 2003, which is a rule-based algorithm and still 
among the most popular algorithms nowadays. Restricted 
mainly by the availability of relevant data, early target 
prediction algorithms are largely rule-based, in which the 
target is predicted based on simple discriminative rules 
derived from important features of target recognition 
observed from experiments. The rule-based algorithms 
include TargetScan [28-30], miRanda [31-33], PITA [34], 
etc. In recent years, new data-driven prediction algorithms 
emerge along with the improving knowledge of miRNA 
target recognition and the increasing availability of various 
types of relevant data sets. Data driven algorithms rely on 
important discriminative features learned from data using 
sophisticated models. The data driven algorithms include 
MirTarget [35, 36], PicTar [37], miTarget [38], etc. We 
discussed the computational details of these algorithms and 
summarized relevant data sources in this paper. We are 
aware that there exists good surveys on miRNA target 
prediction including articles [39-44], each addressing the 
survey from a different perspective. Although their coverage 
and depth are adequate for the intended audience, they 
nevertheless lack the discussions of issues closer to the 
computation community. First, the majority focus the survey 
only on the rule-based algorithms and are short of addressing 
important advances in data driven algorithms, which also 
utilize other data types. Secondly, most of them provide little 
implication on the connections and difference among the 
different algorithms and they rarely concern the performance 
of these algorithms. As a result, it is difficult for readers to 
perceive the pros and cons of different algorithms. In light of 
the importance of the topic, the goal of this survey is to 
emphasize the computations and models of each algorithm 
and try to provide insights into the advantage and 
disadvantages of these computational miRNA target 
prediction. 
 The rest of paper is organized as follows. In section 2, the 
background of miRNA target recognition is provided and 
relevant data resources for target prediction are included. In 
section 3, the general problem of computational target 
prediction is formulated mathematically and important 
features for target prediction are enlisted and discussed. 
Then, the rule-based algorithms are surveyed in details 

followed by the thorough discussion of various data-driven 
algorithms. In section 4, the validation result of a few 
algorithms based on experimental validated targets is 
presented. Conclusion is drawn in section 5. 

2. PRINCIPLES OF miRNA TARGET RECOGNITION 
AND PREDICTION ONLINE SOURCE 

 An important initial step of analyzing miRNA to perform 
the regulatory task is to recognize its target genes. Although 
the detailed target recognition mechanism is still elusive, the 
consensus suggests that the Watson base pairing of miRNA 
with its targets' mRNAs is the key. In performing the base 
paring, the mature miRNA is first assembled into the effector 
protein complexes called miRNPs, which share many 
similarities to the RNA-induced silencing complex (RISC). 
It is also clear that all miRNAs are bound to a minimum 
effector complex that contains an Argonaute (Ago) protein. 
Once the miRNP is assembled, the miRNA guides the 
complex to its targets by the base-pairing with targets' 
mRNA. Base paring mostly occurs at the 3' untranslated 
region (UTR) of a target gene, although the paring is 
observed in a few cases to exist also in the 5' UTR and 
coding regions. The most elusive fact of target recognition is 
that the base-paring within the target mRNA is almost 
always imperfect. Regulatory effect has been observed for 
the pairing of as little as 8 base-pairs between miRNA and 
its target mRNA [45]. The lack of specificity in perfect base 
pairing creates enormous difficulty to understand the 
mechanism in target recognition. Existing research suggests 
a few distinct features about miRNA base paring. 
Particularly, the perfect pairing has been noted with much 
higher frequency in the so-called “seed” region, often 
defined as the 2nd-8th nt from the 5' end of the miRNA [30]. 
Experiments indicate the G-U wobble pairs and bulges in the 
seed region significantly interrupt the miRNA-target 
interaction [45]. However, perfect pairing is neither 
necessary nor sufficient for miRNA-target interaction as let-
7 [46] in C. elegans. Yet, the non-ideal pairing in seed region 
can be compensated by the additional complimentary at the 
3' end of the miRNA as miR-24 [47] in Homo sapiens. 
Furthermore the sequence context outside of the binding site 
regions has also been shown to impact binding as miR-199b 
[47] in Homo sapiens. Using these sophisticated yet flexible 
target recognition schemes, a miRNA is estimated to target 
on average hundreds of mRNAs. In addition, the 3' UTR of 
the target mRNA can contain multiple sites and the presence 
of multiple sites tends to increase the possibility of binding 
[30, 45]. 

Inhibition of Translation or Repression of mRNA 
Expression 

 miRNA is mostly known to down-regulate target 
mRNAs, although few recent works emerge to show its 
potential up-regulative role. Increasing evidence indicates 
that the miRNA controls two regulatory modes which 
includes inhibition of translation and repression of mRNA 
expression. The latter one can be also accomplished by three 
different mechanisms ranging from mRNA degradation to 
mRNA deadenylation to mRNA sequestration. The precise 
factors to determine regulatory mode are still poorly 
understood. Many recent evidence suggest that translational 
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repression can be considered as the primary event and any 
reduction of mRNA levels is a possible secondary effect of 
translational repression. In many cases, mRNA degradation 
cannot be accounted for the translational repression. 

Data Resource for miRNA Target Prediction 

 To predict targets computationally, various data 
including nucleotide sequences of miRNAs, 3' UTR 
sequences of mRNAs, sequence conservation, 
experimentally validated miRNA target pairs and microarray 
profile are required. Some useful databases related to 
miRNA target prediction are summarized in Table 1.  

3. EXISTING ALGORITHMS FOR MIRNA TARGET 
PREDICTION 

 The supportted organisms and websites of miRNA target 
prediction algorithms are summarized in Table 2. 

3.1. Definition and Problem Formulation 

 To systematically survey the existing algorithms for 
miRNA target prediction, we first provided the mathematical 

definition and formulated the problem of target prediction. 
For a given miRNA sequence of length K , let 

 denotes its nucleotide composition, where 

Sz
k
!  represents the nucleotide at the k th position from its 

5' end and },,,{= GCTAS . For a testing 3' UTR m  of an 
mRNA, a sequence of N  nucleotides is retrieved from the 3' 
end of the mRNA and denoted as , where 

Ss
n
!  represents the nucleotide at the n th position 

counting from the 3' of the 3'UTR. An illustration of the 
definition is given in Fig. (1). In practice, instead of using 
the sequence data directly in prediction, important features 
such as miRNA-mRNA matching pattern and free energy are 
extracted first to be used for prediction. If let x  represents a 
feature vector derived from z  and s  with 

j
x  representing 

the j th feature, then the goal of sequence-based target 
prediction is to decide if mRNA m  is a target based on x . 
From a statistical learning perspective, target prediction is 
essentially a statistical classification problem. If let 

{0,1}!y  represents the status of mRNA m , 1=y  when 

Table 1. Online Resource for miRNA Target Prediction 

Category  Website  

Genome of different species  NCBI FTP(ftp://ftp.ncbi.nih.gov/genomes/) UCSC FTP(ftp://hgdownload.cse.ucsc.edu/goldenPath/  

Homologous gene information  UCSC (http://genome.ucsc.edu/) NCBI(http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene)  

Sequence and information of miRNAs  miRBase(http://microrna.sanger.ac.uk/sequences/index.shtml)  

Experimentally validated miRNA targets  TarBase(http://diana.cslab.ece.ntua.gr/tarbase/) miRecords(http://miRecords.umn.edu/miRecords)  

Computational predicted targets  miRecords(http://miRecords.umn.edu/miRecords)  

Table 2. Support Organisms and Websites of miRNA Target Prediction Algorithms 

Name of the Program Supported Organisms Website 

TargetScanS Mammals, worms, flies http://www.targetscan.org/ 

miRanda Humans, mice, rats http://www.microrna.org/microrna/ releaseNotes.do 

PITA Humans, mice, flies, worms http://genie.weizmann.ac.il/pubs/m ir07/mir07_browse.html 

DIANA-microT Humans http://diana.cslab.ece.ntua.gr/ 

RNAhybrid Any http://bibiserv.techfak.unibielefeld.de/rnahybrid/ 

microInspector Any http://www.imbb.forth.gr/microinspector/ 

MovingTargets Flies Available on DVD by request 

Nucleus Flies N/A 

PicTar Nematodes, vertebrates, flies http://pictar.mdc-berlin.de/ 

miTarget Any http://cbit.snu.ac.kr/~miTarget/ 

mirTarget Any N/A 

rna22 Any http://cbcsrv.watson.ibm.com/rna22.html 

SVMicro Any N/A 

Targetboost Worms, flies https://demo1.interagon.com/targetboost/ 

GenMiR++ Any but require both miRNA & mRNA expression profile http://www.psi.toronto.edu/genmir/code/ 

},,{= 1 K
zzz …  

},,{= 1 N
sss …
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mRNA m  is a target and 0=y  otherwise, then the goal is 
equivalent to identify a function, or a classifier, ()f  that can 
predict y , or, )(= xfy . Depending on if training data is 
available and if f  is constructed based on statistical learning 
theory, the approaches can be categorized as either the rule-
based or the data driven. The rule-based approaches derive 
the classifier mainly based on biological prior knowledge 
and important observations from biological experiments, 
whereas the data driven approaches rely on training data and 
formal statistical learning theory. For data driven 
approaches, define )},),...(,{(= 11 TT

szszD  as a set of T  
training data samples. Naturally, the survey will be carried 
out according to this two categories. Prior to review the 
prediction algorithms, we will discuss some important 
features that have been applied in miRNA target predictions. 

3.2. Important Features in miRNA Target Prediction 

 Feature extraction is a crucial element in miRNA target 
prediction and it will affect sensitivity and specifity of the 
prediction. Many algorithms share some very critical 
features that we will discuss in the follwoing sections. Table 
3 briefly interprete the features used in different algorithms. 

3.2.1. Seed Region Match 

 In this paper, the “seed” region, which is defined as a 
sequence from the 1st to 8th nt in the 5' end of the miRNA, 
has been observed to have high degree of perfect 
complimentary to the target mRNA sequence. Therefore, 
nucleotide matching information of the miRNA-mRNA pair 
in the seed region is considered one of the most important 
features [28-30]. A depiction of the secondary structure of 
miRNA binding and seed region is shown in Fig. (2). So 
there exists a few different features extracted from the 

 
 
 
 
 
 
 
Fig. (1). An illustration of the definition of a miRNA and its target mRNA. 

Table 3. Features of miRNA Target Prediction Algorithms 

Name of the Program  Features of Different Algorithms  Approach  

 Seed Match  Free Energy  Conservation  Rule Based  

TargetScan     Rule based  

TargetScanS     Rule based  

miRanda     Rule based  

Pita      Rule based  

DIANA-microT      Rule based  

RNAhybrid      Rule based  

microInspector      Rule based  

MovingTargets      Rule based  

Nucleus      Rule based  

Pictar     Data Driven: HMM  

miTarget     Data Driven: SVM  

mirTarget     Data Driven: SVM  

rna22     Data Driven: Markov Chain  

SVMicro     Data Driven: SVM  

Targetboost     Data Driven: Boost  

GenMiR++     Data Driven: Bayesian Learning  
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matching information in the seed region and summarized in 
the following 7 different types.  

• Type 1 [29, 37, 48]: {0,1}!x  and 1=x  if there is 
perfect 

82
zz !  (Watson-Crick) match.  

• Type 2 [29, 36]: {0,1}!x  and 1=x  if there is 
perfect 

82
zz !  match with an `A' in mRNA binding 

with 
1
z .  

• Type 3 [36, 37]: {0,1}!x  and 1=x  if there is 
perfect 

72
zz !  match.  

• Type 4 [49]: {0,1}!x  and 1=x  if there is perfect 

61
zz !  Watson-Crick or G-U matches and at most 

one G-U match.  

• Type 5 [49]: {0,1}!x  and 1=x  if there is perfect 

72
zz !  Watson-Crick or G-U matches and at most 

one G-U match.  

• Type 6 [50]: {0,1}!x  and 1=x  if the number of 
perfect matches in 

81
zz !  is more than a cut-off 

value.  

• Type 7 [50]: {0,1}!x  and 1=x  if the number of 
consecutive perfect matches in 

81
zz !  is more than a 

cut-off value.  

3.2.2. Conservation 

 The miRNA is highly conserved across a wide range of 
species [45], and its targets are also shown to be conserved 
[45]. When used for target prediction, seed region 
conservation is often considered due to the importance of 
seed region. Normally, seed match conservation is defined in 
the following way [28]: when the same seed match is found 
in the 3' UTR of one species and also in an orthologous 3' 
UTR of another species, this seed match is considered to be 
conserved in this two species. 

3.2.3. Free Energy 

 Free energy refers to the minimum free energy and shows 
how strong the binding of a miRNA with its target is. 

Normally free energy is a negative real value and its unit is 
kcal/mol. The lower the free energy, the firmer the binding 
structure is and the more likely it suggests the true binding. 
The free energy of miRNA-mRNA binding is normally 
assigned by RNAfold program - Vienna RNA Package [51]. 
Since this program requires a single linear RNA sequence as 
input, 3' end of the 3' UTR sequence and the 5' end of 
miRNA sequence are connected by a linker sequence, 
“LLLLL” [38]. The L is not an RNA nucleotide, thus it does 
not match with any nucleotide. Given this single linear RNA 
sequence, Vienna RNA Package will form a structure which 
has the minimum free energy. 

3.2.4. In-Site Features 

 In addition to the seed region, important features can also 
be retrieved from other parts of 3' UTR. As showed in Fig. 
(2), the miRNA target binding site is divided into 3 regions: 
region 5 (seed region), region 3, and total region. Seed 
region stretches from 

1
z  to 

8
z , region 3 covers 

9
z  to 

20
z , 

and total region is defined from 
1
z  to 

20
z . In this three 

regions, various features can be calculated including free 
energy of the corresponding region, the number of matches, 
mismatches, G:C matches, A:U matches, G:U matches, 
mismatches, bulges in mRNA, and bulged nucleotides in 
mRNA. 

3.2.5. Accessibility Energy 

 Accessibility energy represents the open degree of the 3' 
UTR bounded by a miRNA in the thermodynamic view. The 
lower the accessibility energy is, the more likely the 3' UTR 
is to be a target. The unit of accessibility is kcal/mol. 
Accessibility ( G!! ) [34], is defined by the following 
equation:  

openduplex GGG !"!!! =            (1) 

where duplexG!  is the energy gained by the miRNA binding 

to its targets. 
openG!  is the energy required to make the target 

region accessible for miRNA binding and can be calculated 
as:  

unpairfreeopen GGG !" =            (2) 

 
 
 
 
 
 
 
 
 
 
Fig. (2). An illustration of the secondary structure of miRNA-mRNA paring. 
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where 
freeG  is the free energy of the ensemble of all 

secondary structures of the target region. 
unpairG  is the free 

energy of all target-region structures in which the target 
nucleotides are required to be unpaired.  

3.3. Rule Based Algorithm 

 Rule based algorithms generally consist of a set of rules 
to be satisfied by a testing 3' UTR. These algorithms are 
proceeded by testing the rules according to a particular order. 
In some cases, the testing order of rules is constrained by the 
causal relationship of the rules and the possible physical 
structure of the data. However, since testing a rule is 
essentially a filtering step, the order of testing the set of the 
rules will affect the performance of an algorithm. We 
discussed the following detailed rules of each algorithm 
according to the order of rules proposed in the papers. 

3.3.1. TargetScan and TargetScanS 

 Both TargetScan [28] and TargetScanS [29] are the 
algorithmic engine behind the popular TargetScan software, 
but TargetScan is an early version of TargetScanS. 
TargetScan is used to predict conserved miRNA targets in 
mammals. First of all, miRNAs conserved in multiple 
organisms and a set of candidate orthologous 3' UTR 
sequences from these organisms are prepared. TargetScan 
considers both seed match features and the free energy 
feature. TargetScan searches the 3' UTR for seed match type 
1 and disqualify the 3' UTR if no seed match can be 
identified. If the 3' UTR has seed matches and supposed that 
J  seed matches exists, TargetScan increases each one of the 
J  7mer matched region by extending the matching 
(allowing also G:U pairs) to both sides of the sequence and 
stops until a mismatch. The basepairing of the remaining part 
of the miRNA and the 35 nucleotides which are immediately 
connected to 5' of each seed match in the the 3' UTR is 
optimized by RNAfold program [51, 52] and a score Z  of 
the 3' UTR is computed. 

Z = j=1e
!G

j
/T

j

"
            (3) 

where T  is a preassigned parameter. The Z scores are 
calculated for 3'UTRs of each organism. The probing mRNA 
is predicted to be the target gene if 

c
ZZ ! (

c
Z  is a pre-

chosen threshold) for an orthologous 3'UTR of an organism. 
 TargetScan was applied to two sets of miRNAs: 79 
miRNAs that have homologs in human, mouse, and 
pufferfish and share identical sequences in human and 
mouse; 55 miRNAs that have identical sequences in human, 
mouse and pufferfish. 451 and 115 regulatory target genes 
are predicted for these two set of miRNAs, respectively. 
Statistical analysis using shuffled controls indicate that about 
30% of predicted mammalian targets are likely to be false 
positives. 11 of 15 tested targets are experimentally 
validated. The predicted regulatory targets are enriched for 
genes involved in transcriptional regulation and a broad 
range of other functions. 
 TargetScanS [29] which is a refined or “simplified” 
version of TargetScan, does not consider free energy and is 

restricted to predict miRNA targets in mammals, worms and 
flies. The features of TargetScanS are seed match type 1 or 2 
and conservation. A mRNA is predicted as a target only if 
both features are true. Results show that the false positive 
rate is reduced to 22% compared to 30% of TargetScan. 
5300 human genes (over one third of human genes) are 
predicted as conserved miRNA targets by TargetScanS. 

3.3.2. miRanda 

 miRanda [31-33] can be used to predict miRNA targets 
in humans, mice and rats. miRanda consists of two rules to 
make prediction. This two rules are nucleotide 
complementariness and binding energy. In the first step, the 
algorithm aligned miRNA and 3' UTR sequences by using 
Watson-Crick and G-U match. The scoring matrix is given in 
Table 4. Opening gap and extended gap penalty can be 
assigned by user. A weight parameter is multiplied to the 
score matrix for different regions of the miRNA to model the 
different function of 5'end and 3'end of miRNA. Multiple 
sites can be identified, each with a score reflecting the degree 
of complementary. The test proceeded to the second step 
only when the score is greater than a user-defined threshold. 
Table 4. The Scoring Matrix Used by miRanda  

  C   G   A   T   U   X 

C   -3   +5   -3   -3   -3   -1 

G   +5   -3   -3   +1   +1   -1 

A   -3   -3   -3   +5   +5   -1 

T   -3   +1   +5   -3   -3   -1 

U   -3   +1   +5   -3   -3   -1 

X   -1   -1   -1   -1   -1   -1 

 
 At the second step, Vienna package [53] is used to 
calculate binding energy for miRNA:sites duplex. 5'end of 
miRNA and 3'end of potential site are first linked into a 
single sequence by an 8-bit long linking string formed by 
character `X' to meet the input format of Vienna package. 
Secondly, the folding function of Vienna package is called to 
calculate the free energy of the artificial sequence. Because 
the characters `X' can not match any characters, the sequence 
is very likely to form a hairpin structure with an 8-bit loop 
which consists of `X'. The free energy is also calculated by 
Vienna package. A site is predicted as a real binding site 
when its free energy is less than a cut-off value. 
Additionally, conservation is used to filter out unqualified 
candidates. 
 miRanda is applied to predict human miRNA targets. 
Around 2000 putative human miRNA target are identified, 
suggesting that less than 10% of the human genes are 
regulated by miRNAs. 

3.3.3. Probability of Interaction by Target Accessibility 
(PITA) 

 PITA is used to predict miRNA targets in humans,mice, 
worms and flies. The key novelty of PITA [34] is the model 
for the miRNA-target interaction. Such interaction is based 
on the experimental observation that a strong secondary 
structure formed by 3' UTR itself will prevent the binding of 
miRNA. 
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 Based on this observation, a new thermodynamic model 
for miRNA-target interaction is defined. First of all, the seed 
match rule is seed match type 3 or 

2
z  to 

8
z  match with at 

most one G:U wobble match. A piece of mRNA sequence is 
a potential site if it follows the seed match rule. Then the 
accessibility energy, G!! , of miRNA-site interactions can 
be calculated as:  

openduplex GGG !"!!! =            (4) 

where 
duplexG!  is the energy of the miRNA binding to the 

target and 
openG!  is the energy required to make the target 

region accessible for miRNA binding and can be calculated 
as:  

unpairfreeopen GGG !" =            (5) 

where 
freeG  is the free energy of the ensemble of all 

secondary structures of the target region. 
unpairG  is the free 

energy of all target-region structures in which the target 
nucleotides are required to be unpaired. Furthermore, the 
score of a 3' UTR containing multi-sites can be calculated as  

)(=
1=

i
s

n

i

elogT !             (6) 

where n  represents the number of candidate target sites in 
the 3' UTR and 

i
s  represents the G!!  for i th site. 

3.3.4. DIANA-microT 

 “DIANA-microT” is proposed in [54] as an approach to 
predict human miRNA targets. DIANA-microT retrieves 
orthologous human and mouse 3' UTRs from mRNA 
Reference Sequences (RefSeq) database and 94 miRNAs 
conserved in human and mouse. A window of 38 nucleotides 
is slid one nucleotide at a time across a orthologous 3' UTR 
to form a set of overlapping 38-nt long segments in the 
3'UTR. DIANA-microT applies a modified dynamic 
programming algorithm to determine the minimum free 
energy for each segment with a miRNA. Then, the following 
features are examined:  

1. {0,1}1!x  and 1=
1
x  if there exists 3 consecutive 

WC matches.  

2. {0,1}2 !x  and 1=
2
x  if the free energy is lower than 

a user defined threshold.  

3. {0,1}3!x
 and 1=

3
x  if from 

1
z  to 

10
z , there are 

more than 7 WC matches or G-U matches; however, 
the number of G-U matches cannot be less than 2 and 
each of the G-U match must be surrounded by 2 WC 
matches; moreover, only one bulge is allowed, which 
must also be surrounded by the WC matches longer 
than the length of the bulge.  

4. {0,1}4 !x  and 1=
4
x  if from 

8
z  to 

15
z , there exists 

at least one loop or bulge and it should be either 2 to 
5 nucleotides long if on miRNA side or 6 to 9 
nucleotides long if on mRNA side.  

5. {0,1}5!x
 and 1=

5
x  if from 

15
z  to 

22
z , there are 

more than 5 WC or G-U matches and exists at most a 
single-nucleotide or dinucleotide bulge, provided that 
it is surrounded by two or three base-paring, 
respectively.  

 A 3' UTR is predicted as the target of a miRNA or 1=y  
only if 3' UTR has one segment for which all the features 

51
,, xx !  are equal to 1. DIANA-microT successfully 

identified all of the documented elegansC.  miRNA-target 
pairs and seven predicted mammalian miRNA targets are 
validated experimentally. 

3.3.5. RNAhybrid 

 RNAhybrid, proposed in [48], is a program that predicts 
multiple potential binding sites of miRNAs in large 3' UTRs. 
RNAhybrid utilizes seed match, free energy, and p -value of 
the free energy estimation as features. The default seed 
match feature is the seed match type 1 but user defined seed 
matches are allowed as well. Given a miRNA and a 3' UTR, 
RNA-hybrid will find all possible binding structures starting 
with the seed match in the 3' UTR and pick the structure 
which gives the minimum free energy (MFE). MFE is used 
as the second feature and its p-value is used as the third 
feature. Finally, a 3' UTR is predicted as the target of a 
miRNA ( 1=y ) if both MFE and the p-value are less than 
user defined cutoffs. RNAhybrid was applied to predict 
Drosophila miRNA targets in 3' UTRs and coding sequence. 
Most of the perviously predicted miRNA targets can be 
found by RNAhybrid. 

3.3.6. MicroInspector 

 MicroInspector is presented in [49] as a scanning 
software for detecting miRNA binding sites. MicroInspector 
program generates a list of possible target sites, sorted by 
free energy values. The prediction is based on four features. 
The first feature (

1
x ) is the seed match type 4 or 5. After 

finding the seed matches, MicroInspector extracts a 32-nt 
sequence in 3' UTR starting from the seed matches. 
Subsequently, the binding structure and free energy are 
predicted by hybridization folding algorithm [48]. The 
second feature (

2
x ) is free energy: 1=

2
x  if the free energy 

is less than a cut-off value, otherwise 0=
2
x . The third 

feature (
3
x ) is 1=

3
x  if 

2116
zz !  of the binding structure has 

less than 2 mismatches, otherwise 0=
3
x . The fourth feature 

(
4
x ) is self-complementarity: 1=

4
x  if miRNA 3' UTR has 

no self-complementarity, otherwise 0=
4
x . Then 3' UTR is 

predicted as the target of miRNA ( 1=y ) if all the features 
are true. This program successfully found all the known 
miRNA-target interactions. 

3.3.7. MovingTargets 

 MovingTargets [50] is a program that predicted miRNA 
target in Drosophila. To perform the prediction, 3' UTR 
sequences that are more than 12 nt long and at least 80% 
conserved between D. melanogaster and D. pseudoobscura 
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are obtained. If the 3' UTR is longer than 50 nt, a 50 nt long 
window will slide across the 3' UTR. The window starts 
from 5' and shifts 5 nt at a time towards the 3' end of 3' UTR. 
The binding structure is predicted by M. Zuker's DINAMelt 
Server software [55] for miRNA and each window. 
Prediction is made based on 4 features. The first feature (

1
x ) 

is free energy: 1=
1
x , if the free energy of this binding 

structure is less than a cut-off value, otherwise, 0=
1
x . The 

second feature (
2
x ) is seed match: 1=

2
x , if there exists a 

seed match type 6, otherwise, 0=
2
x . The third feature (

3
x ) 

is also a seed match: 1=
3
x , if there exists a seed match type 

7, otherwise, 0=
2
x . The fourth feature (

4
x ) is the number 

of G:U matches: 1=
4
x , if the number of G:U matches from 

1
z  to 

8
z  is less than a cut-off value, otherwise, 0=

4
x . A 

potential binding site is predicted if all the features are true. 
A 3' UTR is predicted to be a target if it has more than user 
defined number of potential binding sites. Three of predicted 
candidates were tested and all of them are experimentally 
verified. 

3.3.8. Nucleus 

 “Nucleus” [56] is a computational model for miRNA 
target site recognition in Drosophila. The process of 
prediction of Nucleus starts with finding the best weight for 
GC, AU, and GU matches ( 5=

GC
w , 2=

AU
w , 0=

GU
w ) 

based on 25 experimentally validated training set. A score 
for the seed region from 

1
z  to 

8
z  is then assigned, which is 

the weighed sum of consecutive base pairs being either GC, 
AU, or GU. The prediction is then made based on two 
features. The first feature (

1
x ) is the score of the seed: 

1=
1
x , if the score of the seed is larger than a cut-off value, 
otherwise, 0=

1
x . After finding the binding sites, a window 

of 40 bases (started from the seed region) is extracted from 
the 3' UTR and binding structure is predicted using the 
MFOLD RNA folding program [57]. The second feature 
(

2
x ) is 1=

2
x , if the free energy of the binding structure is 

less than a cut-off energy, otherwise, 0=
2
x . A 3' UTR is 

predicted as the target of a miRNA ( 1=y ) only if both 

features 
1
x  and 

2
x  are true. Nucleus was applied to a set of 

74 Drosophila melanogaster miRNAs and prediction was 
conducted among conserved 3' UTR sequences in fly 
mRNAs. It is found that many key developmental body 
patterning genes such as hairy and fushi-tarazu are likely to 
be transactionally regulated by miRNAs. 

3.4. Data Driven Algorithms 

3.4.1. PicTar 

 PicTar [37] is method that predicts miRNA targets in 
vertebrates, flies, and nematodes. Input of PicTar is a set of 
coexpressed miRNAs and sets of orthologous 3' UTRs. To 
compile the training dataset, PicTar first records the 
positions that satisfy “seed match type 1 or 3” in all 3'  
 

UTRs. Secondly, it checks whether perfect seed matches are 
conserved or not, which means the same miRNA binds to the 
overlapping aligned positions in the 3' UTRs of the 
orthologous mRNAs of all species under consideration. If 
the perfect matches are conserved, PicTar further checks if 
optimal miRNA - target binding free energy predicted by 
RNAhybrid [48] is below a cutoff value. Perfect matches 
that pass these steps are called anchors. A 3' UTR containing 
a sufficient number of anchors is considered as a candidate. 
Each candidate 3' UTR is searched separately for sites with 
perfect matches (seed match type 1 or 2) and imperfect 
matches. Insertions or mutations in the mRNA sequence of a 
perfect matches (G:U pairs are not allowed) are allowed as 
long as its free energy of binding blew a cutoff value, which 
is predicted by RNAhybrid [48]. Subsequently, sites with 
imperfect matches have to pass a free energy filter that filters 
out sites with free energy larger than two-thirds of that of 
miRNA-mRNA duplex with the perfectly match. As a result, 
most of the sites with imperfect match will be removed. Sites 
with perfect matches might also be subject to a free energy 
filter but with a larger cut-off. The remaining candidate 3' 
UTRs are used as training data set. 

 A Hidden Markov Model (HMM) is then built to model 
the fact that several different miRNAs can act together to 
repress the same gene. Particularly, it is assumed that the 3' 
UTR of a gene is generated by the HMM, whose states are 
target sites of coexpressed miRNAs plus the background 
nucleotide sequence. Given M  states reflecting the total 
number of different miRNAs that had combinatorial 
regulatory effect, a target 3' UTR sequence can be generated 
in the following way: at each step one of the states is chosen 
with transition probabilities 

i
!  for 0=i  to M , where 

0
!  is 

the transition probability of background. Depending on the 
nature of the state, a certain sequence will be emitted. When 
a miRNA target site state is chosen, the 7-mer or 8-mer 
sequence representing the binding site of the miRNA will be 
emitted. Note that the emitted binding site could be either 
perfect matching with the miRNA seed region (with the 
probability p, say p =0.8) or imperfect matching (with 
probability 1- p ). Otherwise, in the background state, one 
nucleotide will be emitted. Background is modeled with the 
Markov model of order 0. This model is then trained using 
Baum-Welch algorithm [58] based on the training data set. 

 To perform the prediction, PicTar computes the log ratio 
of the probability of the probing sequence being generated 
by this HMM model versus the probability that it is 
generated by the background process alone. This score also 
reflects the likelihood that the probing 3' UTR is targeted by 
a set of coexpressed miRNAs. The final score of the 
sequence is the average of the PicTar scores for all 
orthologous 3' UTRs that are used to define anchor sites. A 
3' UTR is predicted as the target if this final score is larger 
than a cut-off value. PicTar was applied to search targets in 
C. elegans that are conserved in 3 nematodes. The result 
shows that more than 10% of C. elegans genes are predicted 
as miRNA targets and miRNAs regulate biological processes 
through targeting genes that are functionally related to each 
other. 
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3.4.2. miTarget 

 miTarget is a machine learning based algorithm [38, 59]. 
Due to the fact that the mechanism of a miRNA binding to 
their targets is still poorly understood, the advantage of 
miTarget is that algorithm can obtain useful information 
from training data instead of using artificial rules as filters. 
To build the training data set, 152 positive targets and 83 
negative targets are collected from the literature [38]. 163 
negative targets are inferred from miRNA let-7 on mRNA 
lin-41 [60] and lin-28 [61]. A miRNA sequence and a 
potential target sequence are linked together with a linker 
sequence, “LLLLLL”, to form a binding structure by 
RNAfold program - Vienna package [53]. As showed in Fig. 
(2), the miRNA target binding site is divided into 3 regions: 
region 5 (seed region), region 3 and total region. Seed region 
stretches from 

1
z  to 

8
z , region 3 covers 

9
z  to 

20
z  and total 

region is defined from 
1
z  to 

20
z . Position-based features are 

matching status of 20 positions of the total region. Structural 
features are the numbers of matches, mismatches, G:C 
matches, A:U matches, G:U matches and other mismatches 
of these three regions. In addition, thermodynamic features 
are the free energy of these 3 regions which are also 
calculated by Vienna package [53]. Consequently, a 
miRNA-site duplex is represented as a feature vector with 41 
features. A SVM [62, 63] with RBF kernel is trained based 
on the training data and the feature vector. miTarget do not 
consider conservation information to avoid the loss of 
sensitivity, on the other hand, the false positive rate is 
increased. 

 miTarget predicted significant functions of human 
miRNA miR-1, miR-124a and miR-373 using Gene 
Ontology (GO) analysis and unveiled the importance of 
pairing positions 

4
z , 

5
z  and 

6
z  of a miRNA in a feature 

selection experiment. 

3.4.3. mirTarget 

 MirTarget is another SVM based algorithm published in 
[35, 36]. In this algorithm, microarray data [2] which 
includes two cell lines are used to generate the training data. 
A gene is defined as a positive target gene if its expression 
level is reduced, when compared with mock transfection, by 
at least 40% with a p-value 0.001< . On the contrary, a gene 
is a negative target if its gene expression level is from 95%  
to 120%  with a p-value 0.3>  in both cell lines. 

 A feature vector with 113 features is defined for a 
miRNA and target pair. 20 nucleotides around the seed in 
3'UTR are defined as local context. 3' UTR sequences from 
human genes orthologs in mouse, rat, dog, and chicken are 
analyzed to identify miRNA seed matches, and the level of 
seed conservation is recorded as seed conservation feature. 
Other features are derived as: 6 seed match type features 
including seed match 2 and type 3, 20 base position features 
including single nucleotide (A,T,C,G) and dinucleotide 
(AT,AA,TG...), 80 position features in the local context 
(each position has 4 options, 80=20*4  ), 17 additional 
position features (such as Position 11 A or U), 7 other 

features including accessibility and location of the binding 
site. Considering that some 3' UTRs have multiple sites, the 
authors also developed a scoring system to assign a score to 
the 3' UTR using the formula  

)(1*100=
1=

i

n

i

pScore !"            (7) 

where n  represents the total number of candidate target sites 
in a 3' UTR and 

i
p  represents the statistical significance p-

values for each of these candidate sites as estimated by SVM 
[64]. 
 MirTarget observed that about half of the predicted 
miRNA target sites in human are not conserved in other 
organisms. The algorithm has been validated with 
independent experimental data for its improved performance 
on predicting a large number of miRNA downregulated gene 
targets. 

3.4.4. RNA22 

 RNA22 is presented in [65] as a method for identifying 
miRNA binding sites and their corresponding 
heteroduplexes. To construct the training data, 644 mature 
miRNA sequences are analyzed to remove near-duplicate 
entries end, which end up with 354 miRNA sequences. The 
Teiresias algorithm [66] is then applied to discover patterns 
in this set of the miRNA sequences. The criterions used in 
the Teiresias algorithm for pattern searching are that a 
pattern must be longer than 4, at least 30% of the positions 
of a pattern can be specified, and each pattern has to appear 
at least twice in 354 miRNAs. An example of such pattern 
can be [AT][CG].TTTTT[CG]G..[AT], which represents all 
instances that have their first position occupied by either an 
A or T, their second position by a C or G, their third position 
by any nucleotide, their fourth position by a T, etc. 
 The frequency of any kinds of trinucleotides is then 
calculated based on the training data. A trinucleotide-
sequence is a sequence including any three nucleotides and 0 
to 20 long dots (undecided nucleotides), AC..G, 
CA....................T etc. For the calculation, a second-order 
Markov chain is assumed and the times of appearance of 
each pattern in the genomic data are counted. Let us use an 
example pattern (A..[AT].C..T...G) to explain this approach. 
Due to the Markov chain, the probability of any pattern 
appeared in this genomic data can be obtained as  

)..]...[()..]...[|.....(=).....]...[( TCATAPTCATAGTCPGTCATAP  
                         )]...[()]...[|..].([)..|.....(= CATAPCATATCATPTCGTCP  
                         )]...[()].[|..].([)..|.....(= CATAPCATTCATPTCGTCP  
                         

= P(C..T ...G |C..T )P([AT ].C..T | [AT ].C)
 

                           P(A..[AT ].C | A..[AT ])P(A..[AT ])          (8) 
which can be estimated as  
P(A..[AT ].C..T ...G) ! #(C..T ..G) / (#(C..TA)+ #(C..TC)+ #(C..TG)+ #(C..TT ))  
                         )..].([#)..].([)/(#..].([=# CCATACATTCAT +  
                          ))..].([#)..].([# TCATGCAT ++  
                        )]...[(#)]...[()/(#]...[(=# CATAAATACATA +  
                          ))]...[(#)]...[(# TATAGATA ++          (9) 
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where # represents the number of appearance in the training 
data. Patterns of higher probabilities are more significant 
patterns in this training data and therefore patterns with log-
probability lower than -38 are discarded. In the end of this 
stage, 233,554 miRNA patterns remain. It is then assumed 
that if a small piece (36 nucleotides long) 3' UTR contains a 
lot of significant patterns, this small part is very likely to be 
a binding site of miRNAs. RNA22 calls this 36 nucleotides 
long region as “target island” when it contains at least 30 
patterns. The reason for choosing 36 as the length of a target 
island is because that the binding site is usually less than 36 
nucleotides. It should be noted that these target islands are 
decided only by patterns without reference to any specific 
miRNA. 
 To predict the target of a miRNA, binding structures of 
this miRNA with target islands of candidate 3' UTR are 
formed and the folding energy is calculated by Vienna 
package [53]. Three features are considered  

1. {0,1}1!x  and 1=
1
x  if W-C pairs between miRNA 

and target island is more than a cut-off value.  

2. {0,1}2 !x  and 1=
2
x  if the number of mismatches in 

81
zz !  is lower than a cut-off value.  

3. {0,1}3!x
 and 1=

3
x  if the folding energy is lower 

than a cut-off value.  
 A binding site is predicted to be a target if all features are 
equal to 1. 
 226 targets predicted by RNA22 were tested in a 
luciferase reporter gene assay and 168 of them are observed 
to be observed miRNA-dependent repression. 

3.4.5. SVMicro 

 SVMicro [67] is the third SVM based target prediction 
algorithm. Most published miRNA target prediction 
algorithm focused on modeling the interaction between 
miRNA and targeted site but seldom worked on building 
model for interaction of miRNA and target 3' UTR. SVMicro 
is a two-stage SVM based method that models the 
mechanism of how miRNA binds to a site as well as how 
miRNA target a 3' UTR. 
 To prepare the training data, experimentally validated 
miRNA-site and miRNA-UTR pairs are obtained from 
TarBase 4.0 [1] as positive training data. Negative miRNA-
UTR pairs are extracted also from Linsley's experiment [2] 
but using up-regulated genes whose expression levels are 
greater than 1.2 fold and the p-value is greater 0.2. 
Additionally, a set of seed matching rules, which base on the 
observation of real binding structure in TarBase, are 
designed to select potential binding sites from 3' UTR 
sequence with minimal loss of real target site. 

 A vector of 111 features is designed for site-SVM to 
predict whether a site is a potential binding site of miRNA. 
To this end, first of all, seed match type, which includes 
6mer, 7mer-A1, 7mer-m1, 7mer-m8 and 8mer, is recorded as 
5 seed type features. Secondly, nucleotide matching status 
and 2-mer matching status of from 

1
z  to 

20
z  are recorded as 

39 position specified features. Thirdly, the entire binding 

structure is divided into seed region, 3'region and total 
region. Free energy and the number of matches, mismatches, 
G:U wobbles, gaps, bulges in mRNA and bulged nts in 
mRNA of each region are collected to form another 21 
regional features. Fourthly, the accessibility energy of site is 
calculated. Fifthly, the content of nucleotides and 2mers of 
the context of both side of seed are calculated as 40 context 
features. Finally, the number of homologous 3' UTRs, seed 
conservation score, site conservation score, context 
conservation score are analyzed as 4 conservation score. 
After training, a score is assigned to each site by site-SVM. 
The larger the score, the more likely the site is a real site. 

 After site prediction, 3' UTR SVM, with a 27-feature-
vector, is designed to decide whether the entire 3' UTR is a 
target of a miRNA. The length of 3' UTR and top site scores 
are collected as two features. Density and partial (within 
100nts) maximum number of potential sites as well as 
positive sites are recorded as 4 sites density features. The 
number of potential sites, positive sites and top score of all 
sites, 

72
zz !  match sites, 

71
zz !  match sites, 

82
zz !  match 

sites, 
81
zz !  match sites, and other type of site are formed as 

the remaining 21 features. 

3.4.6. TargetBoost 

 TargetBoost [68] is proposed to predict if a up to 24- nt  
long site from a 3' UTR region is a target site of a given 
miRNA in C. elegans and D. melanogaster. The central idea 
underlying TargetBoost is to find differential DNA 
nucleotide sequence patterns from training data, which can 
best discriminate true and false target sites. However, it is 
different from the other surveyed algorithms in the sense that 
it incorporate neither prior knowledge about miRNA binding 
nor energy information into the procedure of searching for 
the pattern. The classification algorithmic engine behind 
TargetBoost is the boosting genetic programming algorithm, 
or GPboost. GPboost identifies the differential patterns using 
genetic programming (GP) [69, 70] in a boosting paradigm 
and the assembles the prediction from each pattern into the 
final prediction. The feature set J

jx 1=}{  here is a set of 24- nt  
long sequence patterns, which also include gaps. The 
GPboost classifier assumes the standard form of the boosting 
classifier as  

)),((=)( :1

1=

:1 jNj

J

j

N xshsignsf !"         (10) 

where ),( :1 jN xsh  is a classifier that predicts 1 if 
N
s
:1

 

conforms to the pattern 
j
x  and -1, otherwise. 

j
!  is the 

weight on the prediction of h  based on the j th pattern 
feature. The algorithm for learning the classifier (10) from 
the training data proceeds as follows 

 The Targetboost Algorithm Set nTw
t

!1/=  and 
0=)( :10 Nsf  

 Iterate for j =1 to J   



488    Current Genomics, 2009, Vol. 10, No. 7 Yue et al. 

identify the j th feature pattern 
j
x  by  

|,),(|minarg= ,:,1

1=

ctNtt

T

tx
j lxshwx !"        (11) 

Compute 
j

!  that minimizes a loss function L   

)).,()(,(minarg= :,1:,11

1=

jNtNtjc

T

t

j xshsflL !!
!

+"#       (12) 

Set ),()(=)( :1:11:1 jNjNjNj xshsfsf !+
"

; Update tw
t
!  by 

))),(,(]/[= :1 jNjcjt xsflLfw !! .  

 To solve the minimization of (11), genetic programming 
is applied based on a set of sequence matching criterions and 
the concept of evolutionary algorithms. The loss function is 
chosen to be the exponential loss but with regularization 
introduced to account for noise or outliers and the overall 
scheme can be considered as the regularized AdaBoost. 
 The Targetboost is trained and tested on a data set 
consisting of 36 experimentally validated true target sites 
and a large number of random sequence as negative sites. 
The performance was shown to be slightly better when 
compared with two other rule-based algorithms, RNAhybrid 
and Nucleus. Examining the obtained patterns reveals the 
tendency to have near-perfect complementary at the 3' end of 
target sites, a fact consistent with the current consensus 
about miRNA target. Targetboost was also applied to search 
the target sites of 78 D. melanogaster miRNAs and the 
similarity and difference in the prediction results with 
RNAhybrid were studied. The key feature of Targetboost is 
that it is not constrained by, for instance, seed region 
complementary, which, however, can be considered to be 
both advantage and disadvantage since it has potential to 
produce more true positives but at the price of increasing 
false positives. 

3.5. Algorithm Using Expression Level Data 

 GenMiR++ [71] is a Bayesian algorithm that predicts 
targets based on expression profile of mRNA and miRNAs. 
In addition to the expression profile, a list of candidate 
targets predicted by a sequence-based algorithm such as 
TargetScan [29] needs to be provided. GenMiR++ is 
designed to further predict which candidate targets are bona 
fide functional targets. For this purpose, a Bayesian 
generative model is built to reflect assumed regulatory effect 
of miRNAs on targets. To this end, it is first assumed that 
mRNAs share a common background expression level 
within a specific tissue. Secondly, the expression level of a 
target mRNA is assumed to be down-regulated and the 
degree of down-regulation is due to the linear combinatory 
effect of the regulatory miRNAs. Now given G  candidate 
mRNAs and K  miRNAs, let 

gt
e , 

kt
v  and 

t
µ  represent the 

respective expression levels of mRNA g , miRNA k , and 
background in tissue t  and . Then these 
assumptions are formulated by the following Gaussian 
likelihood function  

),(=),,,,,|( 22

ttgtttttgtgt vBNvep !"#µ!#"$µ %       (13) 

where 1{0,1} !" K

g#  is a 1!K  vector of indicators, whose 

k th element 
gt

!  is 1 if gene g  is a target of miRNA k  and 

0, otherwise, 1!

+
"

K
R#  is a vector of some positive 

regulatory weights of the K  miRNAs, )(= gg diagB ! , 
t

!  
is a positive tissue scaling parameter accounting for the 
difference in tissue specific hybridization conditions and 
expression normalization, and 2

t
!  is the variance of the 

Gaussian model. Given the expression levels of mRNAs g  
and K  miRNAs in all T  tissues, the goal of prediction is to 
infer the values (0 or 1) of the indicators 

g
!  g! . Note that 

t
µ , ! , 

t
! , 

t
!  t!  are unknown model parameters to be 

estimated. Under a Bayesian framework, the prior 
distributions needs to be specified for all the unknowns. To 
this end, the conjugate exponential family Gaussian and 
Gamma priors are adopted, which introduced additional 
hyper-parameters !  to be estimated. For 

g
! , the prior 

distribution reflects the prediction results of the sequence-
based algorithm. Let 0,1!gkc  be an indicator such that 

1=gkc  denotes gene g  is predicted by the sequence-based 

algorithm as a target of miRNA k  and 0=gkc , otherwise. 

Then, 1=0)=|0=( gkgk cp !  since the genes not predicted 
by the sequence-based algorithm are not even in the 
candidate target list. Further, it is defined that  

!" =1)=|1=( gkgk cp          (14) 

where !  is an unknown probability to be estimated. Once 
the likelihood function and the prior are formulated, the goal 
is to obtain an estimate of 

g
!  g!  from the posterior 

distribution )&,,,|( , ktcvep kgtgtg !" . Given the high 
complexity of the model, the posterior distribution cannot be 
obtained analytically. A variational Bayesian Expectation 
Maximization (VB-EM) algorithm is proposed to 
numerically approximate the distribution. 

 GenMiR++ was applied to the expression data of 151 
human miRNAs and 16,063 mRNAs across a mixture of 88 
normal and cancerous tissue samples. A candidate list of 114 
miRNAs and 890 mRNAs were obtained using TargetScanS. 
GenMiR++ identified a total of 6,387 miRNA-target pairs 
and a subset of 1,597 target pairs for 104 human miRNAs 
with high confidence. Experimental validation was 
performed on the predicted high confidence targets of 
miRNA blet 7!  to exam its misregulation in retinoblastoma. 
Quantitative real-time PCR was performed to measure the 
mRNA abundance of the predicted let-7b targets. A list 34 
targets predicted by TargetScan was considered, among 
which 12 were predicted by GenMiR++ to be high 
confidence targets. The PCR experiments showed that 5 out 
of 12 (42%) high confidence targets were down-regulated 
whereas only 2 out of rest of 22 (99%) TargetScanS 
predictions were down-regulated. This represented an 

!
],,[=

1 Kttt
vvv …
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increase of prediction specificity but with only a little 
reduction of sensitivity. 

4. PERFORMANCE COMPARISON OF DIFFERENT 
ALGORITHMS 

 We investigated the importance of features and tested the 
performance of a few surveyed algorithm using 
experimentally validated targets. 
 In order to obtain the positive testing data, only 
experimentally validated targets are considered. Targets 
sequences are downloaded from TarBase [1], a database that 
records experimentally validated targets of several species. 
Alignment of target sequences with the respective genomes 
is performed to examine the validity of these records; a 
target is excluded if the perfect alignment cannot be 
achieved. In the genome, 118 positive miRNA-UTR pairs 
are retrieved. 
 To obtain the negative miRNA-UTR pairs, microarray 
experimental data of Linsley's study [2] is analyzed. In that 
study, multiple miRNAs are transfected in cell lines and the 
global effect of miRNA overexpression is examined by 
microarray. Two cell lines (HCT116 Dicerex5 and DLD-1 
Dicerex5) are included in the Linsley's study and global gene 

expression profiles are collected to evaluate expression 
changes due to miRNAs transfection. Probe IDs are mapped 
to RefSeq IDs with NCBI gene index files, and multiple 
probe signals for the same gene are averaged to represent the 
expression level of the gene. For a specific transfected 
miRNA, the mRNA is considered as a negative target if its 
expression is larger than 1.2 fold of that in the mock 
transfection experiment and at the same time p-values must 
be less than 0.03 in both cell lines. Nine miRNAs from the 
Linsley dataset, hsa-let-7c, hsa-miR-15a, hsa-miR-16,  
hsa-miR-17-5p, hsa-miR-192, hsa-miR-20, hsa-miR-215, 
hsa-miR-103 and hsa-miR-106b are selected for modeling, 
training and testing. Finally, 278 miRNA-UTR pairs are 
included as negative data. Sequences of all 3' UTRs are 
obtained from NCBI. All sequences of miRNAs are retrieved 
from miRBase 10.1. 

 First, we evaluated the marginal distribution of features 
in the form of histogram in both positive and negative data 
sets. Even though the marginal distributions cannot reveal 
combinatory discriminative importance of features, they 
provide information about the discriminative power of each 
individual feature. Fig. (3) shows the histograms of 12 
different features. In each sub-figure, the x  axes represents 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3). Histograms of different features. 



490    Current Genomics, 2009, Vol. 10, No. 7 Yue et al. 

the feature values and the y  axes denotes the relative 
frequency (probability). Histograms from the negative and 
positive data are represented by the black and white bars 
respectively. The names of the 12 features are labeled 
beneath each sub-figure. It is clear that all three seed match 
type features as well as the number of matches in seed region 
all have good discriminative power. The free energy and 
accessibility energy features show relatively good 
discriminative potential. However, the features including the 
number of mismatches and GU matches in the binding site 
do not appear to be important features for target prediction. 

 Next, we evaluated the Receiver Operating Characteristic 
(ROC) performance of several different algorithms of both 
rule-based and data-driven categories including targetScan, 
miRanda, Pita, SVMicro and RNAhybrid. The reasons for 
choosing these algorithms for testing are: first, they are 
representative in each categories, and secondly, softwares of 
some other algorithms are not publicly available. ROC 
performance is normally evaluated as a plot of ysensitivit  vs. 
specifity!1 , where  

)/(= FNTPTPysensitivit +         (15) 

and  

)/(= FPTNTNspecifity +          (16) 

where TP stands for true positive, TN stands for true 
negative, FN stands for False negative, and FP stands for 
False Positive. ySensitivit  is also called true positive rate, 
specifity!1  represents the false positive rate. 

 The existing algorithms targetScan, miRanda, Pita, 
SVMicro and RNAhybrid are tested on the testing data set 
and the ROC curves are shown in Fig. (4). The conservation 
in targetScan and miRanda are not considered in this test. In 
targetScan, if any potential site passes the rule of perfect 8-
mer, 7mer-m8, or 7mer-1A match for a miRNA, the whole 3' 
UTR will be predicted as the target. When the decision 

threshold for one algorithm cannot be changed such as 
TargetScan, the result of ROC curve will be a point. For all 
other algorithms, when altering the threshold, different 
sensitivity and specificity can be obtained and a complete 
curve instead of a point can be drawn. Area Under the 
Curve(AUC) of each algorithm is calculated to measure the 
performance of the algorithm. The higher the AUC, the 
better the algorithm. As can be seen, SVMicro has the 
overall best performance in term of AUC, which should be 
expected since it considers a variety of features in prediction. 
TargetScan has relatively good sensitively but produces high 
false positives. For a small false positive rate, Pita can 
achieve relatively high sensitivity than RNAhybrid. This 
could be due to the inclusion of accessibility feature in Pita. 
However, the performance of miRanda becomes comparable 
with RNAhybrid at high false positive rate. 

5. CONCLUSION 

 In this paper, we surveyed a large number of existing 
computational algorithms for miRNA target predictions. The 
survey is carried out according to the two categories of the 
target prediction algorithms - the rule-based and the data 
driven approaches. In Tables 2 and 3, we summarized the 
information of each algorithm including their supported 
organism, websites, approaches, etc. To evaluate the 
performance of a few representative algorithms, a testing 
data set including experimentally validated positive miRNA 
targets was constructed. Histograms of different features and 
ROC performance of each algorithm were evaluated. The 
histograms confirm the current consensuses on the 
importance of seed region and energy in target prediction. 
The ROC curve also reveals that utilizing more information 
makes the algorithm have better performance. 
 Despite the recent advances and the initial impact of 
these algorithms on the miRNA target research, key 
problems still exist that prevent the computational approach 
from playing more active role in target prediction. Mainly, 
these algorithms tend to produce an excessively large 
number of false positives, thus still unable to generate 
meaningful, workable hypotheses for subsequent 
experimental testing. Poor understanding of miRNA 
targeting mechanism is partially to be blamed and the rules 
derived from experimental observation are not adequately 
specific. 
 To this end, data driven algorithms hold the potential to 
uncover important features that might not be obviously 
observed. However, these approaches are limited at this 
stage mainly by the lacking of both experimentally validated 
positive and negative targets data. New emerging databases 
such as MiRecord will be essential for releasing the full 
potential of data driven algorithms. With the increasing 
experimentally validated positive and negative data, we 
expect high impact of these data on the overall research of 
computational miRNA targets prediction. Another problem 
with current algorithms is that the majority only utilizes the 
sequence information. Although increasing attention has 
been given to include microarray data with miRNA 
overexpression for target prediction, researches in this front 
are still new. In addition, data generated from the IP pull 
down of RISC [72-75] and large scale proteomic study of 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). The ROC curve of different algorithms. 
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miRNA addition and deletion [76, 77] also provides high 
quality knowledge about the direct miRNA-target 
interaction. So far, only the IP pull-down data of [75] for C. 
elegans has been investigated in [78] and the others 
especially for human has not been considered. No attempt of 
incorporating data from proteomic study has been reported. 
As a result, to further improve the performance of miRNA 
targets prediction, especially for genome-wide prediction, 
the systems biological approach that integrate multiple levels 
of relevant data as well as the pathway and networks 
information is the path to follow and will be the focus of this 
research for the years to come. 
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