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The development of immunological therapies that incorporate peptide antigens
presented to T cells by MHC proteins is a long sought-after goal, particularly
for cancer, where mutated neoantigens are being explored as personalized cancer
vaccines. Although neoantigens can be identified through sequencing, bioinformatics
and mass spectrometry, identifying those which are immunogenic and able to promote
tumor rejection remains a significant challenge. Here we examined the potential of
high-resolution structural modeling followed by energetic scoring of structural features
for predicting neoantigen immunogenicity. After developing a strategy to rapidly and
accurately model nonameric peptides bound to the common class I MHC protein
HLA-A2, we trained a neural network on structural features that influence T cell receptor
(TCR) and peptide binding energies. The resulting structurally-parameterized neural
network outperformed methods that do not incorporate explicit structural or energetic
properties in predicting CD8+ T cell responses of HLA-A2 presented nonameric peptides,
while also providing insight into the underlying structural and biophysical mechanisms
governing immunogenicity. Our proof-of-concept study demonstrates the potential
for structure-based immunogenicity predictions in the development of personalized
peptide-based vaccines.
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INTRODUCTION

The development of immunological therapies that incorporate peptide antigens presented to T
cells by major histocompatibility complex (MHC) proteins is a long sought-after goal, particularly
for cancer. Although early cancer vaccine studies relying on non-mutated shared antigens were
disappointing (1), advances in sequencing and bioinformatics have led to the identification of
“neoantigens” with non-synonymous mutations that differentiate tumors from healthy tissues
[reviewed in (2)]. Vaccination using such neoantigens has in some cases led to promising outcomes
(3, 4), and neoantigens are now also being explored as ameans to improve the safety, specificity, and
efficacy of other immunotherapies. A significant challenge remains, however, in identifying those
mutated peptides that are immunogenic and can thus promote anti-tumor immune responses.

Following sequencing, potential neoantigens have been identified via bioinformatic approaches
that predict processing and presentation by MHC proteins, and more recently, via mass
spectrometry (5, 6). Mutations at anchor residues which improve the binding of a peptide
to an MHC protein have been associated with immunogenicity and tumor rejection (7–9). In
these cases, T cells not eliminated by negative selection may exist that efficiently recognize
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the neoantigen; indeed, in viruses, recent findings suggest that
for peptides presented by class I MHC proteins, peptide binding
affinity is the best predictor of immunogenicity (10). However, in
the more common instances in which mutations occur outside
of anchor residues and do not strongly impact peptide-MHC
binding, T cells that efficiently recognize the wild-type peptide
will have been deleted or otherwise tolerized. In these instances,
an immunogenic neoantigenmust possess structural and physical
properties distinct enough to promote efficient recognition by T
cells that ignore the wild-type peptide (i.e., the single mutation
must result in a peptide that is “sufficiently different” from its
wild-type counterpart to overcome self-tolerance).

However, it is becoming increasingly understood that, even
after taking tolerance mechanisms into account, not all well-
presented peptides are strongly immunogenic (11, 12), suggesting
the existence of peptide features that influence T cell recognition
independently of peptide processing and presentation. For
example, recent work suggests that immunogenic peptides are
enriched in hydrophobic (including aromatic) amino acids at
positions often contacted by T cell receptors (TCRs) (13, 14).
Efforts at incorporating features that influence T cell recognition
into neoantigen prediction tools are in development (14–18),
and these complement well-developed tools for predicting MHC
binding (19–23). The immune epitope database (IEDB) and
NetTepi servers, for example, incorporate positional enrichment
of hydrophobic amino acids into class I MHC immunogenicity
prediction tools (13, 18, 24). Other physicochemical features
that have been considered include amino acid charge and
size, wild-type and mutant sequence divergence, and sequence
entropy (15, 17).

Despite these advances, the mechanisms by which
physicochemical features of peptides influence TCR binding
have not been widely considered. For example, enrichment
in hydrophobic amino acids at potential TCR contact sites
for immunogenic peptides can be interpreted in the context
of protein biophysics: burial of exposed hydrophobic surface
promotes protein binding through the hydrophobic effect, which
is almost universally favorable, requiring only that a hydrophobic
group dock into another hydrophobic environment (25–27).
Burying charges, on the other hand, requires overcoming
energetically expensive desolvation penalties and thus high
structural precision between atoms of opposing charge (28–30).
Because of this, TCRs with architectures that permit precise
charge complementarity will occur less frequently than those
that can accommodate a hydrophobic (or aromatic) group (31).
This leads to the prediction that neoantigens whose mutations
replace centrally located, charged amino acids with hydrophobic
or aromatic amino acids will be immunogenic, as some studies
have indeed reported (32). Likewise, introduction of charges
can reduce immunogenicity, as has also been reported (33) and
commonly seen in studies of T cell specificity using peptide
libraries [e.g., (34)].

Yet for a peptide bound to an MHC protein, the impact of
features such as exposed hydrophobic surface and charges are
determined by the peptide’s conformation within the binding
groove, as well as the size and position of the various amino
acid side chains. Thus, efforts to predict peptide immunogenicity

should be strengthened by approaches that account for the
structural properties of peptide/MHC complexes (8, 16, 35).

Here, we explored how considering structurally-determined
physical features can improve efforts at predicting peptide
immunogenicity. We developed a rapid procedure for accurately
modeling large numbers of peptides bound to the common
class I MHC protein HLA-A∗0201 (HLA-A2), which was applied
to a curated dataset incorporating thousands of immunogenic,
non-immunogenic, and non-HLA-A2 binding peptides. We
included non-HLA-A2 binding peptides as we aimed to capture
both peptide binding to the MHC protein as well as TCR
binding to the peptide/MHC complex, as both contribute to
immunogenicity and both are governed by structural and
physicochemical features. Indeed, strong TCR binding can
compensate for weak peptide-MHC binding and vice versa (11,
12, 36); considering both elements together permits capturing the
impact of both. We then trained a neural network on energetic
features that are encoded not by peptide sequence, but by
the modeled three-dimensional structures of the peptide/HLA-
A2 complexes. The network recovered known features of
immunogenic peptides such as enrichment in hydrophobicity,
and, as assessed by the ability to predict CD8+ T cell responses,
against the training data outperformed other models and
prediction tools based only on sequence characteristics. Deployed
against a set of HLA-A2-presented nonameric neoantigens, the
network not only permitted predictions of immunogenicity, but
yielded testable hypotheses about how the mutations influenced
immunogenicity. From this proof-of-concept study we identify
clear avenues for improvement and scale up.

RESULTS

Development and Performance of a Rapid
Peptide/MHC Modeling Strategy
To develop a rapid structural modeling strategy, we compiled
a list of peptide/MHC structures within the Protein Data Bank
(PDB). We restricted our analysis to high resolution, HLA-
A2 structures presenting nonamers with good electron density.
We focused on nonamers as these are the most represented
in the PDB and relatively constrained in class I MHC peptide
binding grooves. Additionally, nonameric, HLA-A2 data are the
most represented in immunological databases. As we intended
to emphasize structural differences emerging from amino acid
mutations, we further narrowed our database by pairing each
peptide/HLA-A2 complex with at least one other in which
the peptide differed by only a single amino acid, either as a
substitution or transposition. Our final database contained 53
structures presenting distinct peptide epitopes (Table S1).

To simulate a realistic setting where many peptides need to
be evaluated, we prioritized modeling speed over complexity.
As has been noted previously (37), nonameric peptides bound
to class I MHC proteins adopt relatively conserved backbone
conformations. We therefore modeled each complex in our
database by threading the desired peptide sequence into our
template HLA-A2 structures, followed by Monte-Carlo-based
conformational sampling and energy minimization for side

Frontiers in Immunology | www.frontiersin.org 2 August 2019 | Volume 10 | Article 2047

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Riley et al. Structure Based Prediction of Immunogenicity

chains and the peptide backbones utilizing Rosetta (38, 39). This
approach required approximately 10min per model on 2016-
vintage CPU hardware. We considered three different templates
to compare the effect starting coordinates had onmodel accuracy:
HLA-A2 presenting the HTLV1 Tax11−19 peptide (PDF 1DUZ;
peptide sequence LLFGYPVYV) (40), the MART127−35 tumor
antigen (PDB 3QFD; peptide sequence AAGIGILTV) (41), and
a Toxoplasma gondii epitope (PDB 5FA3; peptide sequence
GLLPELPAV) (42). These three structures were chosen based on
their resolution (<1.9 Å) and variations around the nonameric
backbone conformation. The modeling procedure performed
similarly with all three templates, yielding full atom root mean
square deviations (RMSD values) between 1.86 and 2.08 Å,
and Cα RMSD values between 0.87 and 1.15 Å (Figure 1A;
Table S1). Other approaches to model peptides in class I
MHC binding grooves have incorporated docking, molecular
dynamics simulations, protein threading, or combinations of
these methods. These other methods have reported Cα or full-
atom RMSD values between model and experiment within the
approximate range of 1–2 Å (8, 16, 37, 43–50). Our approach thus
compares favorably with or even outperforms other efforts.

Of the three templates considered, the models generated
from 3QFD were the closest to the crystal structures; the
average backbone RMSD of models derived from 3QFD was
significantly lower (p = 0.0006 and 0.018 when compared
to results with the 1DUZ and 5FA3 templates, respectively)
(Figure 1A). Results from the 3QFD template were thus used for
all further comparisons and modeling efforts.

The greatest discrepancy between modeled and actual
structures was an unusual register-shifted peptide (LAGIGILTV)
which, compared to the native peptide (AAGIGILTV), left the
p1 (or “A”) pocket of the HLA-A2 molecule empty in the
crystal structure, resulting in the nonameric peptide adopting
a decameric configuration (41) (Figure 1B). Our modeling
procedure was not able to sample such dramatic conformational
shifts, and thus the model of this peptide resembled more
traditional nonameric peptide/MHC structures.

Given recent attention on the role of exposed surface features
in the immunogenicity of MHC-presented peptides, we asked
how our modeling procedure recovered peptide hydrophobic
solvent accessible surface area (hSASA). After comparing models
and structures, the Pearson correlation coefficient between
predicted and experimental hSASA was 0.66 (Figure 1C). Our
rapid modeling procedure thus provides a good approximation
of peptide structural properties within the binding groove of
HLA-A2 and the changes that occur upon mutation.

Experimental Test of the Peptide/MHC
Modeling Strategy
To further test the rapid modeling procedure, we crystallized
and determined the three-dimensional structures of three new
peptide/HLA-A2 complexes. The peptide ILNAMIAKI is a
melanoma neoantigen identified in a recent study (51). We
determined the structure of ILNAMIAKI bound to HLA-A2, as
well as those of the corresponding wild-type peptide ILNAMITKI
and another single amino acid variant, ILNAMIVKI (Table 1).

FIGURE 1 | Rapid structural modeling for peptide/HLA-A2 complexes. (A)
Modeling performance as indicated by peptide Cα and full atom (FA) RMSD
values for modeled vs. crystallized peptide/HLA-A2 complexes. Boxes
illustrate the 1st and 3rd quartiles, with a horizontal line at the median.
Whiskers show 1.5 times the interquartile range. Red stars indicate mean
values. Results for three templates (3QFD, 1DUZ, and 5FA3) are shown. The
3QFD template performed the best and was used for all further modeling
efforts. (B) Structural images of representative models and their corresponding
structures. The top shows the model of NLVPAVATV, which superimposes on
the crystal structure with a full atom RMSD of 1.08 Å. The bottom shows the
model of LAGIGILTV, which superimposes on the structure with a full atom
RMSD of 2.59 Å. For the latter case, the leucine at position 1 forces the
nonameric peptide to bind in a register-shifted decameric configuration, with
the p1 leucine in the B rather than A pocket. Our modeling procedure did not
permit such drastic conformational sampling. (C) Correlation between exposed
peptide hydrophobic surface area in the models vs. the crystallographic
structures. The two sets of data correlate with a R value of 0.66.
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TABLE 1 | X-ray data collection and refinement statistics.

ILNAMIAKI/HLA-A2 ILNAMITKI/HLA-A2 ILNAMIVKI/HLA-A2

Data collection

Resolution (Å)* 30.89–2.15 (2.23–2.15) 41.82–1.90 (1.97–1.90) 31.57–1.79 (1.84–1.79)

Space group P1 P1 P 21 21 21

Unit cell dimensions (Å) 50.68, 63.67, 75.18 58.43, 84.11, 85.36 49.56, 74.64, 122.85

Unit cell angles (◦) 81.47, 75.85, 77.23 90.01, 90.06, 90.02 90, 90, 90

Unique reflections* 47,203 (4,655) 123,624 (11,774) 42,624 (2,553)

R-merge 0.205 (0.684) 0.096 (0.290) 0.167 (0.203)

I/σ* 5.7 (1.3) 10.8 (4.3) 22.2 (2.6)

Data completeness* 97.9% (96.3%) 96.7% (92.6%) 97.6% (87%)

Refinement

R-work, R-free 0.19, 0.23 0.16, 0.19 0.17, 0.20

R-free test set 4711 (10.00%) 12476 (10.1%) 1955 (4.59%)

Wilson B-factor (Å2) 24.0 15.1 22.6

Total number of atoms 6,853 14,303 3,626

Bond lengths RMSD (Å) 0.005 0.003 0.008

Bond angles RMSD (◦) 1.02 0.661 0.927

Ramachandran (favored, allowed, outlier) 98%, 2%, 0% 98%, 2%, 0% 98%, 2%, 0%

PDB ID Code 6PTB 6PTE 6OPD

*Values in parentheses are statistics for the highest resolution shells.

We also subjected the three complexes to themodeling procedure
described above. In the structures, the peptides all adopt the
typical nonameric conformation, with a bulge initiating at Asn3
and continuing through Ile6. There are no systematic changes
in response to the differences at position 7. The sidechains of
Met5 and Lys8 extend away from the peptide backbone, with
some variations in torsion angles across the three structures (seen
as well in the multiple copies in the asymmetric units for the
structures with ILNAMITKI and ILNAMIAKI) (Figure 2A). The
models compared well with the crystallographic structures. One
discrepancy was found at the backbone of Ala4, which impacted
the geometry of the subsequent Met5 side chain. Nonetheless,
the position and extension of the Met5 side chain were
well captured, as was the similarly extended Lys8 side chain
(Figure 2B). The peptide Cα RMSD values between structures
and models were between 0.7 and 0.8 Å, and the full atom
RMSD values were between 1.7 and 2.0 Å. These values are
consistent with the results found when comparing modeled
to previously determined experimental structures (Figure 1A)
and confirm that our modeling scheme can reproduce major
structural features of peptide/HLA-A2 complexes.

Collecting a Peptide Dataset to Relate
Peptide Structural Features to CD8+ T Cell
Responses
To test whether consideration of structural features could lead to
improved immunogenicity predictions, we developed a peptide
database that contains immunogenic and non-immunogenic
peptides. We again emphasized nonameric, HLA-A2 restricted
peptides for consistency with our modeling strategy and as data
for HLA-A2-presented nonamers is most represented in various
immunological databases.

While the IEDB has records for immunogenic peptides, it
contains limited data on peptides that are poorly immunogenic
yet still well-presented by MHC proteins. To account for such

peptides, we relied on lists of peptides identified via proteomic
analyses of human HeLa cells (52, 53), yielding a dataset of
2756 nonameric, HLA-A2-presented self-peptides. While this
dataset will necessarily include peptides that would be efficiently
recognized by TCRs, we rationalized it would be dominated
by peptides that bind well to the MHC protein but are
not well-recognized (i.e., in a host, peptides that might pass
positive selection but not would not drive negative selection).
To this set of self-peptides, we added 155 well-characterized
immunogenic peptides listed in the IEDB, selected by filtering
for HLA-A2-presented human nonamers with IFN-γ ELISPOT
response frequencies of 50 or higher in order to minimize
false positives. The immunogenic peptide dataset primarily
included epitopes from viral sources, although humans and
other organisms were also represented (Table S2). The dataset
included multiple amino acid variants of various peptides,
which we rationalized would be important when aiming to
predict the immunogenicity of mutant peptides and their
wild-type counterparts.

We completed our dataset by adding 1044
HLA-A2-incompatible peptides selected from IEDB training
sets. Incorporating non-HLA-A2 binding peptides ensured that
our efforts addressed both TCR and MHC binding, as both
directly contribute to immunogenicity and are dependent upon
structure-determined energetic features. Accounting for both
TCR and MHC binding together is necessary for predicting
immunogenicity, as a peptide that binds weakly to an MHC
protein could still prove immunogenic by possessing optimal
features for TCR binding and vice versa (11, 12, 36). Moreover,
peptide mutations can influence both TCR and MHC binding
simultaneously, as seen with differential T cell recognition of
some “anchor fixed” shared tumor antigens (41, 54).

Amino acid distributions for the immunogenic, HeLa, and
HLA-A2-incompatible peptides are shown in Figure 3A. To
further ask if our dataset reflected previously noted distinctions
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FIGURE 2 | Experimental test of the peptide/MHC modeling strategy. (A) Structures of the ILNAMIAKI, ILNAMITKI, and ILNAMIVKI peptides in the binding groove of
HLA-A2 as determined by X-ray crystallography. The peptides are colored green, pink, or yellow as indicated; this color scheme is maintained throughout the figure.
The left panel shows all three structures superimposed. Peptide amino acids are indicated, with “X” used to indicate the various amino acids at position 7. The right
panel shows 2Fo-Fc electron density maps contoured at 1σ for peptides from each peptide/HLA-A2 structure. (B) Comparison of the models of each peptide/HLA-A2
complex with the crystallographic structures. For each panel, the backbone at Ala4 is highlighted with an asterisk and the Cα and full atom (FA) RMSD values for each
structure/model pair are indicated.

between immunogenic and non-immunogenic peptides, we
evaluated the hydrophobicity of the peptides in the immunogenic
and HeLa self-peptide pools. Using the Wimley-White interface
hydropathy index (55), we determined the mean hydrophobicity
for each peptide position in the two pools. Comparing the results
for the two showed that certain positions across the peptides
were statistically more likely to be more hydrophobic in the
immunogenic than the HeLa self-peptide pool, with the most
pronounced differences at positions 4, 7, and 8 (Figure 3B).
These results, including the distinctiveness of positions 4, 7, and
8, are consistent with previous observations (13, 14) and support
the conclusion that our peptide pools appropriately encompass
both immunogenic and non-immunogenic peptides.

A Neural Network to Predict
Immunogenicity From Structure-Derived
Parameters Outperforms Other
Approaches
Using our structural modeling procedure and the database
of peptides, we next constructed an artificial neural network

to predict the immunogenicity of nonameric peptides bound
to HLA-A2, relying on structural and energetic features
determined from three-dimensional models as the network
inputs. Using our rapid modeling scheme, we first generated
structural models of all 3,955 peptide/HLA-A2 complexes. To
describe the conformation-dependent physical properties of
the peptides in the binding groove, we used the 18 terms
in the Talaris2014 energy function to evaluate the energy of
each modeled peptide/HLA-A2 complex (39, 56). The terms,
listed in Table S3 and described in Alford et al. (56), account
for features such as energies of attraction, repulsion, and
solvation; energies of side chain and backbone hydrogen bonds;
and energies and probabilities of side chain and backbone
conformations. We also selected nine terms from the same
energy function for all nine positions in the peptide, choosing
terms that emphasized atomic-level features and avoiding those
descriptive of particular amino acids (e.g., tyrosine planarity).
To the nine amino-acid level terms, we also added total and
hydrophobic solvent accessible surface areas. Overall, 117 terms
that describe each modeled peptide/HLA-A2 complex were used
as network inputs.
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FIGURE 3 | Characteristics of peptides in the training set. (A) Sequence logos
of immunogenic peptides (top), HeLa self-peptides (middle), and HLA-A2
non-binding peptides (bottom). (B) Comparison of the hydrophobicity of each
peptide position in the immunogenic and self-peptide datasets (shown as the
difference between the immunogenic and self-peptide datasets) as determined
using the Wimley-White hydropathy index. Values less than zero (below
dashed line) indicate greater hydrophobicity in the immunogenic dataset.
P-values are indicated where the differences are statistically significant.

As with previous efforts in predicting immunogenicity, we
used a binary classification system for each peptide in our dataset,
classifying peptides identified from the IEDB as immunogenic
(score of 1) and the HeLa and non-HLA-A2 binding peptides
as non-immunogenic (score of 0). The network output is thus

a score, from zero to one, indicating the degree of confidence
in immunogenicity.

In developing the neural network, we used a nested 5-fold
cross-validation procedure that eliminated redundant terms. The
final model consisted of the 18 terms for the entire peptide/MHC
complex and seven for each amino acid in the peptide, yielding
81 terms for network inputs, with five hidden neurons and two
constant bias nodes (Figure 4; Table S3). The average cross-
validated area under the curve (AUC) in a receiver operating
characteristic (ROC) plot was 0.69 (the AUC values in the ROC
plots predict the probability that the neural network will more
favorably score an immunogenic peptide compared to a non-
immunogenic peptide). After training with the entire dataset, the
final neural network classified all peptides used with a total AUC
of 0.73 (Figure 5A).

To assess the added value of structural and energetic
information, we developed a control neural network trained
on the same 3,955 peptides but encoded by a sparse matrix
that considered only peptide sequence. In this head-to-
head comparison, the structurally-parameterized network
outperformed the sequence-only network (AUC of 0.73
vs. 0.61), demonstrating conclusively that incorporating
structural and energetic features improves predictions compared
to considering sequence alone. As a further control, we
developed another sequence-based network that considered
only amino acid hydropathy values. The hydropathy network
outperformed the sequence-only network (AUC of 0.64
vs. 0.61), but still did not match the performance of the
structurally-parameterized network.

For comparison to other tools, we evaluated the same
3,955 peptides with the IEDB immunogenicity and the NetTepi
immunogenicity prediction tools (13, 18, 24). IEDB classified
the peptides with an AUC of 0.58, whereas NetTepi yielded a
value of 0.54. Although not designed to predict immunogenicity,
peptide-MHC binding predictions are often used in this fashion
when assessing putative neoantigens, largely due to experience
from viral antigens (10). Consistent with earlier findings
(7), predictions using NetMHCpan 4.0 (19) did not perform
well, yielding AUC values of 0.51 in affinity mode and 0.46
in ligand-likelihood mode. Overall then, whether compared
with a simpler sequence-based neural network, a network
capturing solely amino acid hydrophobicity, existing sequence-
based immunogenicity tools, or predictions of peptide-HLA-A2
binding affinity, the structure-based network performed the best
in predicting immunogenicity.

Significance of Structure-Derived
Energetic Network Inputs for Classifying
Immunogenicity
Although interpreting the weights of inputs used within
a neural network is difficult due to the complexity and
non-linear nature of the models, the weights of structural
features used within the model can provide clues to their
contributions in the evaluation of immunogenicity. For MHC
binding, the structure-based network considered the impact
of anchor residues 2 and 9 by assessing terms such as
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FIGURE 4 | Process and architecture of the structure-based immunogenicity neural network. (A) The process begins with a peptide sequence, which is used to
generate a model of the peptide/HLA-A2 three-dimensional structure. (B) Analysis of the modeled structure yields energetic and topographical information, which are
used as inputs for the structure-based immunogenicity neural network. (C) Trained neural network architecture, with 81 structure-derived inputs shown on the left
(seven for each peptide position, 18 for the overall complex). A single hidden layer is present with five hidden neurons, along with two constant bias nodes. Black lines
give positive weights, gray lines negative weights, with line width indicating weight magnitude.

FIGURE 5 | Performance of the structure-based neural network in categorizing peptide immunogenicity. (A) Performance of the structure-based neural network
compared to control sequence-only and hydropathy-only neural networks, the IEDB and NetTepi immunogenicity prediction servers, and NetMHCpan 4.0 in evaluating
the training data as demonstrated by a receiver operating characteristic curve. The area under the curve (AUC) for each approach gives the probability that the
approach will more favorably score an immunogenic peptide than a non-immunogenic peptide. The structure-based neural network performed the best. (B) Against a
neoantigen dataset of 291 nonameric peptides not used for training the structure-based network performed less favorably but still outperformed the other approaches.

favorable van der Waals interactions at these positions in
order to quantify how compatible an epitope was with
HLA-A2. The network also focused on the interactions
surrounding peptide position 3, likely considering peptide-
MHC interactions in this tightly packed region of the HLA-A2
binding groove.

Consistent with the hypothesis that solvent exposed residues
provide information regarding peptide immunogenicity by
promoting TCR binding, the network emphasized hydrophobic
SASA. Notably, the weights for hydrophobic SASA and
hydrophobic solvation energy values at positions 5, 7, and 8
were in the top 10% of all weights in the neural network.

These positions are typically “TCR facing” in HLA-A2-presented
nonameric peptides. Indeed, in the structural models used for
evaluating the modeling, positions 5, 7, and 8 had high degrees
of solvent exposure, and crystallographic structures of TCRs
bound to nonameric peptide/HLA-A2 complexes show that these
positions on average burymore than 80% of their exposed surface
upon receptor binding (Figure S1).

One notable result from our analysis was that, excluding
the non-HLA-A2 binding peptides, the average computed
energies of the immunogenic complexes (as determined by the
Talaris2014 total energy score used in the structural modeling)
was higher than the non-immunogenic complexes. Although
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the difference was small (average of −560 Rosetta energy units
for immunogenic complexes vs. −562 for non-immunogenic
complexes), the energy reflects the entire peptide/MHC complex,
of which the peptide is only approximately 2% by mass.
Scoring only the peptides (in the context of the binding groove)
recapitulated this trend (average of 11 Rosetta energy units
for immunogenic peptides vs. 9.6 for non-immunogenic), and
the difference was statistically significant (p = 0.0017). We
believe this to be an indicator of how structure and energy
can influence the immunogenicity of neoantigens: amino acid
substitutions that impart a higher energy onto a peptide/MHC
(for example, by removing exposed charges and/or increasing
exposed hydrophobic surface area) yield ligands that have more
energy to release upon TCR binding, translating into stronger
binding affinities.

As a separate test of this hypothesis, we computed the total
and hydrophobic SASA for the models of the immunogenic and
non-immunogenic peptides (again excluding the non-HLA-A2
binding peptides). Although the difference in total SASA was
insignificant, the exposed hydrophobic solvent accessible surface
area of the immunogenic peptides was higher than the non-
immunogenic peptides (244 Å2 vs. 224 Å2; p = 9 × 10−7).
Exposing hydrophobic surface to water raises free energy via the
hydrophobic effect, with widely used estimates relating 1 Å2 of
exposed hydrophobic surface to 25–50 cal/mol in free energy
(57–59). The surface area analysis is consistent with the results
from the Rosetta scoring and supports our interpretation that
immunogenicity can arise from peptide substitutions that yield
higher energies and subsequently stronger TCR binding affinities.

Testing Performance on Data Not Used in
Training
Our structure-based neural network outperformed sequence-
based tools when classifying the training data. Ideally, large test
sets of neoantigens would be available for further evaluation.
Unfortunately, the number of well-categorized neoantigens is
still small, and further reduced by our restriction on nonamers
presented by HLA-A2. A recent survey identified ∼1,400
potential neoantigens (60), 291 of which were nonameric
peptides presented by HLA-A2 (Table S4). Of these, 17 were
reported as immunogenic. Although the numbers are small, in
evaluating these peptides, the structure-based neural network
outperformed sequence-based approaches when considering
the impact of a mutation on immunogenicity (Figure 5B).
Performance was only marginally favorable (AUC of 0.60), but
again the dataset is small, and these epitopes are not curated or
vetted to the same extent as those recorded in the IEDB.

Evaluation of Select Neoantigens and Their
Wild-Type Counterparts
To illustrate how structural information can help inform the
determination of immunogenicity and provide hypotheses for
testing and improving our approach, we examined structural
models of mutant peptides and their wild-type counterparts,
choosing select epitopes that could demonstrate the principles

encoded by our structure-based assessments as well as highlight
areas for improvement.

The LIIPFIHLI epitope was identified in a study of
heterologous T cell recognition of melanoma neoantigens, and
incorporates a cysteine to phenylalanine substitution at position
5 (32). The structural models show the position 5 side chain
to be almost fully extended, with the phenylalanine mutant
resulting in the exposure of an additional 90 Å2 of hydrophobic
surface area, which could promote stronger TCR binding due
to the hydrophobic effect (Figure 6A). The structure-based
neural network indeed predicted the mutation would improve
immunogenicity, with an increase in score of 0.14.

ALGALTVWL was identified in a study of neoantigens in
breast cancer (61). This epitope replaces an unfavorable histidine
in the primary HLA-A2 anchor residue at position 9 with a
preferred leucine, and thus improves peptide binding to the
MHC protein. Demonstrating how our approach captures not
only TCR binding to the peptide/MHC complex but also peptide
binding to MHC, the neural network correctly predicted the
leucine variant to be more immunogenic than the wild-type
peptide with the position 9 histidine, with an increase in the
immunogenicity score of 0.19. Structurally, the model predicts
the leucine at position 5 and tryptophan at position 8 to be
solvent exposed, likely responsible for forming interactions with
neoantigen-specific TCRs (Figure 6B).

QLMQLIEPA was identified in a large-scale study of
neoantigens in melanoma (62). The peptide substitutes a
glutamate for a glycine at position seven of the peptide. The
neural network predicted the mutated peptide would be less
immunogenic than the wild-type peptide, with a change in
score of −0.16. Indeed, no T cell responses were identified with
QLMQLIEPA. The modeling indicates the new glutamate would
be fully exposed (Figure 6C), which as discussed above would
likely require close charge complementarity by an incoming TCR,
consistent with the reduced likelihood of immunogenicity.

Lastly, ALIDLSSGL was identified in the same study as
QLMQLIEPA (62). The peptide incorporates a leucine to a
proline substitution at position 5 of the peptide. The neural
network predicted the neoantigen to be more immunogenic
than the wild-type peptide; however, no T cell responses were
identified with the peptide. This false positive may be due to a
conformational impact of the proline mutation: the structural
modeling predicts that bothmutant and wild-type peptides adopt
very similar pathways through the HLA-A2 binding groove,
with a minor impact on the position of Asp4 (Figure 6D).
However, a proline substitution could impact the peptide
backbone in a fashion not captured by our modeling scheme,
possibly indicating a need for more exhaustive conformational
sampling in the structural modeling as discussed below.

DISCUSSION

Identifying immunogenic peptides in cellular immunity remains
a challenge, particularly in the development of personalized
“neoantigen” vaccines based on individual tumor genomes.
Here, we tested the hypothesis that immunogenicity predictions
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FIGURE 6 | Examination of modeled structures of select neoantigens and their wild-type counterparts. (A) The neoantigen LIIPFIHLI substitutes a phenylalanine for a
cysteine at position 5. The position 5 side chain is predicted to extend from the top of a bulge in the peptide, and the mutation results in an increase in exposed
hydrophobic surface of 90 Å2. (B) The neoantigen ALGALTVWL substitutes a leucine for a histidine at position 9, “fixing” the second primary anchor residue and
improving peptide binding to HLA-A2. The leucine at position 5 and tryptophan at position 8 are predicted to extend up from the peptide backbone to form
interactions with T cell receptors. (C) The neoantigen QLMQLIEPA substitutes a glutamate for a glycine at position 7. The glutamate 7 side chain in the mutant peptide
is predicted to be fully exposed, increasing exposed charged surface area as indicated by the surface area representation for the position 7 side chain. (D) The
neoantigen ALIDLSSGL replaces a proline with a leucine at position 5 of the peptide. No conformational consequences are predicted for the mutation.

for peptides presented by class I MHC proteins could be
improved by considering features encoded by the structure
of the peptide/MHC complex, rather than by features of
the peptide amino acid sequence alone. Our hypothesis was
predicated on the notion that immunogenicity is influenced
by both peptide binding to the MHC protein as well as TCR
binding to the peptide/MHC complex. Prediction methods for
the former are well-developed, whereas prediction methods
for the latter are in their infancy. Some peptide features that
possibly promote TCR binding have been identified (13–17),
but we suggest these and other important features are best
interpreted, and ultimately predicted, by examining structures
and their physicochemical properties and energies. Identifying
these features and the magnitudes required are particularly
important for tumor neoantigens, as the bar for establishing
“difference from self” for neoantigens is higher than for antigens
from viruses or other pathogens due to the various tolerance
mechanisms that limit self-reactivity.

To explore our hypothesis, we developed a rapid and
accurate procedure for modeling the structures of nonamers
bound to the class I MHC protein HLA-A2. Our procedure
performed well-compared to previously published methods
and was suitably rapid for use with large peptide databases.
Following this, we assembled a database of immunogenic and

non-immunogenic peptides, including in the latter HLA-A2-
incompatible peptides predicted to be very weak binders. We
used the structural modeling procedure to model the nearly 4,000
peptide/HLA-A2 complexes in this database. We then trained
an artificial neural network for predicting immunogenicity that
relied on energetic features determined by the structures. As
potential terms to be incorporated, we included features such as
van der Waals interactions, hydrophobic solvation, Coulombic
potentials, hydrogen bond energies, side chain rotamer energies,
as well as solvent accessible surface areas. We designed our
approach to capture both peptide binding to the MHC protein as
well as TCR binding to the peptide/MHC, as both are determined
by structural and physicochemical features, and in determining
immunogenicity, strong TCR binding can compensate for weak
peptide-MHC binding and vice versa (11, 12, 36).

Our structural approach outperformed other prediction tools,
including comparisons with sequence-based neural networks
trained on the same peptide datasets. Our model also
outperformed publicly available immunogenicity prediction
tools, as well as predictions based on peptide-MHC binding
affinity. Beyond immunogenicity prediction, an important added
benefit of our approach is the availability of structural models to
aid in interpreting results. The utility of these models is found
when comparing results for mutant peptides and their wild-type
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counterparts, as the models can indicate the types of structural
alterations that impact TCR recognition of a mutated vs. wild-
type peptide/MHC complex. In cases in which the mutation
improves immunogenicity by enhancing peptide binding to the
MHC protein, the models still provide indications about which
peptide features may be important for TCR recognition.

A key observation that emerged from our analysis is
that, excluding non-HLA-A2 binders, immunogenic peptides
possessed higher total energies than non-immunogenic
complexes. We believe this result is an important indicator
of how structure and energy can influence immunogenicity
beyond simply enhancing peptide affinity for the MHC protein:
amino acid substitutions that impart a higher energy onto a
peptide/MHC complex yield ligands that have more energy
to release upon TCR binding, thus translating into stronger
TCR binding affinities. Higher energy would, for example, be
imparted by removing exposed charges or increasing exposed
hydrophobic surface area. Given a compatible TCR, this
high energy would be released upon binding, contributing
to a favorable TCR-peptide/MHC binding free energy,
i.e., better TCR binding affinity. From this interpretation,
neoantigens have a greater likelihood of being immunogenic
not simply when they are chemically or structurally “different”
from a corresponding wild-type peptide, but different in
ways that promote strong TCR binding. In addition to
helping explain immunogenicity, this interpretation connects
immunogenicity to well-understood physical attributes of
biomolecular recognition, and is consistent with studies on
the composition and structural properties of protein-protein
interfaces and how they differ from other protein surfaces, as
well as the properties of “hot spots” in protein-protein interfaces
(63, 64).

Although we consider our results promising, improvements
are necessary before a structural modeling/energetic scoring
methodology can be widely deployed. Our rapid modeling
procedure, while matching or even exceeding the performance of
previous approaches, did not capture all the observed structural
changes that occur in response to peptide modification. We
expect that incorporating more exhaustive conformational
sampling will yield superior models. Although this will
increase computational time, this impact will be offset
by ongoing improvements in computing hardware and
sampling methods. Growth in the number of crystallographic
structures of peptides bound to class I MHC proteins,
particularly structures of closely related peptide pairs, will
help benchmark the accuracy of structural modeling. Our
study was limited to nonamers and HLA-A2, primarily because
of the large amount of structural and immunological data
available for nonamer/HLA-A2 complexes. In the absence
of more structural data, extension to peptides of other
lengths and other HLA haplotypes will call for even more
sophisticated modeling.

Another area for methodological improvements is in
the energy functions and other terms used to evaluate
peptide/MHC models. We relied upon an energy function
and set of terms frequently used in the analysis and design
of protein structures. As with modeling procedures, more

complex means to assess protein structures and energies are
available, and these undergo regular refinements. Incorporation
of additional or more sophisticated energetic terms (e.g.,
electrostatic surface potentials, more accurate approaches to
computing solvation energies, and consideration of changes in
peptide flexibility that occur upon mutation) could thus also
be explored.

Attention should also be focused toward generating datasets
that can be used to train models aiming to predict peptide
immunogenicity (65). Epitopes with verified, strong immune
responses can be found in the IEDB as we relied upon here,
and efforts such as the Cancer Antigenic Peptide Database
aim to tabulate immunogenic neoantigens (66). However,
experimentally validated immunogenic neoantigens remain rare,
and some efforts aimed at building CTL epitope databases
prioritize peptide processing and MHC presentation over
T cell recognition (67). Additionally, prediction tools also
require knowledge of non-immunogenic epitopes, particularly
those that bind well to MHC proteins yet do not favor
TCR binding. We relied on a list of self-peptides which we
hypothesized would be dominated by such epitopes, but to
some extent would also include ones that are well-recognized
by TCRs. This would include not only self-peptides that
would drive negative selection, but as our peptide list was
derived from immortalized HeLa cells (52, 53), it also likely
includes various HPV epitopes and associated neoantigens.
The fact that we recovered previously identified positional
differences in hydrophobicity between immunogenic and non-
immunogenic peptides suggests that the influence of such
peptides in our self-dataset is small. However, a better accounting
of peptides (ideally derived from healthy tissues) which bind
well to class I MHC proteins yet do not promote strong
immunogenicity when tested across multiple T cell populations
is needed.

Lastly, our prediction efforts were centered on the ability
to elicit strong CD8+ T cell responses. Eliciting CD8+ T
cell responses remains a goal of peptide-based vaccine
efforts for both pathogens and cancer (68), and CD8+

T cell activity is associated with antitumor immunity
(69). However, additional factors will influence successful
peptide-based vaccines. A deeper understanding of the
strengths and types of responses associated with successful
antitumor immunity will further allow prediction efforts
to improve.

In conclusion, we have explored the potential for large-
scale structure-based modeling and energetic scoring for
predicting peptide immunogenicity, with an emphasis on
cancer neoantigens. Our approach outperformed other
approaches and although it is a proof-of-concept, the
avenues for improvement are clear and actionable. The
structural modeling allows for insights into immunogenicity
lacking from other approaches. Furthermore, because it
is fully atomistic, the approach can grow to incorporate
complexities not addressable via sequence considerations
alone, such as those arising from peptides incorporating
post translational modifications or non-standard
amino acids.
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MATERIALS AND METHODS

Structural Modeling of HLA-A2 Presented
Peptides
Structural modeling of peptide/HLA-A2 complexes was
performed with PyRosetta using the Talaris2014 energy
function (38, 39). The desired peptide sequence was
computationally introduced into HLA-A2, using PDB IDs
1DUZ, 3QFD, and 5FA3 as templates (40–42). This was
followed by 50 Monte Carlo-based simulated annealing
sidechain and peptide backbone minimization steps using the
LoopMover_Refine_CCD protocol, generating 10 independent
decoys per peptide from each starting template. The large
number of resulting packing operations introduced some
minor variability when scoring the models. Therefore,
the unweighted score terms for the three lowest scoring
trajectories were averaged and used for neural network
inputs. Solvent accessible surface area calculations were
performed with PyRosetta and Discovery Studio using a
1.4 Å radius probe. The modeling procedure is available as
Supplementary File 1.

Dataset Collection
Our structural database for evaluating modeling strategies
consisted of high resolution (<3.0 Å) nonameric peptide/HLA-
A2 structures within the PDB. Structures in this dataset were
selected for strong electron density as determined by visual
inspection using Coot for calculating 2Fo-Fc density maps (70).
Our final database contained 53 structures presenting different
peptide epitopes.

The neural network training set contained 3,955 nonameric
peptides collected from published sources. For self-peptides
categorized as non-immunogenic we used lists of peptides
identified via mass spectrometry analysis of human HeLa
cells transfected with soluble HLA-A2 (52, 53). HLA-A2
incompatible nonamers were obtained from IEDB training
sets (24). Immunogenic peptides were selected from IEDB
to ensure quality of data and minimize false positives by
selecting only HLA-A2-restricted nonamers with a positive
IFNγ ELISpot with a response frequency starting at 50. The
test dataset was derived from a recent review of neoantigens
(60), again selecting only nonamers presented by HLA-
A2 for evaluation, resulting in a dataset consisting of 291
candidate neoantigens.

ARTIFICIAL NEURAL NETWORK TRAINING

Two-layer feed-forward networks were trained with the
scaled conjugate gradient back-propagation trainscg tool
in MATLAB 2017b. Training and evaluation of neural
network architectures was performed using a nested 5-
fold cross-validation procedure (23). The peptides in the
training dataset were randomly split into five sets of training,
validation, and test data. The splitting was performed such
that all sets had approximately the same distribution of
non-binding, self, and immunogenic peptides. With the
binary classification of immunogenic or non-immunogenic

(with non-immunogenic incorporating self and non-binding
peptides), the training data were used to perform feed-
forward and back propagation. The validation set defined
the stopping criteria for the network training, and the test
set evaluated performance via AUC. Sets were rotated to
ensure each was used in training, validation, and testing. To
maintain an equal distribution of classifiers and eliminate
bias for non-immunogenic peptides, immunogenic peptides
in the training sets, but not testing or validation sets, were
randomly oversampled.

The structure-based neural network architecture used was
a conventional feed-forward network with an input layer
containing 80–117 neurons, one hidden layer with 1–10 neurons,
and a single neuron output layer. The neurons in the input
layer describe structural and structure-derived energetic features
of the nine amino acids in the peptide sequence, with each
amino acid represented by up to 11 neurons. The remaining
18 neurons describe global structural and structure-derived
energetic features of the entire peptide/HLA-A2 complex. The
structural and energetic features were those that comprise the
Talaris2014 energy function (39) or derived from the structure
as listed in Table S3 [described in (56)]. For each of the
five training and test sets, a series of network trainings were
performed each with a different number of hidden neurons (2,
3, 4, 6, 8, and 10) and a different number of input neurons.
Finally, a single network with the highest test performance
was selected.

For control networks that considered peptide sequence or
amino acid hydropathy values, we encoded peptide sequences
in 20 × 9 sparse matrices encoding peptide sequence or 1 ×

9 matrices containing Wimley-White hydropathy values (55)
corresponding to the amino acid at each position. These matrices
were used to train networks of the same architecture (except
they relied on 180 or 9 input nodes) subject to the same cross
validation procedure.

Protein Crystallization and Structure
Determination
Purified complexes of ILNAMIVKI, ILNAMIAKI, and
ILNAMITKI with HLA-A2 were generated by refolding
recombinant heavy chain and β2-microglobulin from bacterially-
produced inclusion bodies according to standard procedures
(71), followed by purification using anion exchange and
size-exclusion chromatography. Peptides were synthesized
commercially by AAPTEC at >90% purity. Crystals of the
ILNAMIVKI complex were grown by hanging-drop vapor
diffusion at 23◦C in 20% PEG 8000, 100mM MES pH 6.5,
200mM magnesium acetate. Crystals of the ILNAMITKI
complex were grown at 23◦C in 20% PEG 3350, 100mM
HEPES pH 7.5. Crystals of the ILNAMIAKI complex were
grown at 4◦C in 15% PEG 3350, 100mM MES pH 6.5.
Crystals were harvested and cryoprotected in ∼15% glycerol
and ∼85% mother liquor and then immediately frozen in
liquid nitrogen.

Data for the ILNAMIVKI complex were collected at the 22ID
beamline at the Advanced Photon Source at Argonne National

Frontiers in Immunology | www.frontiersin.org 11 August 2019 | Volume 10 | Article 2047

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Riley et al. Structure Based Prediction of Immunogenicity

Laboratories. Data for ILNAMITKI and ILNAMIAKI complexes
were collected at the 23ID-D beamline at the Advanced Photon
Source. For the ILNAMIVKI and ILNAMITKI structures, data
integration and scaling were performed using the HKL2000
suite. Integration and scaling of the ILNAMIAKI data were
performed with DIALS (72). The structures were solved by
molecular replacement using Phaser in PHENIX (73), with PDB
3PWL used as a search model for ILNAMIVKI and ILNAMIAKI
(74), while 1TVH was used as a search model for ILNAMITKI
(75). Peptides were deleted from search models prior to
molecular replacement. Multiple steps of restrained refinement
were performed using PHENIX Refine (76). Evaluation of
models and fitting to maps were performed using Coot (70).
MolProbity was used to evaluate structures during and after
refinement (77).
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