
Rineau et al., Sci. Adv. 8, eadd9620 (2022)     28 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 9

E C O L O G Y

Diversity dependence is a ubiquitous phenomenon 
across Phanerozoic oceans
Valentin Rineau1*, Jan Smyčka1, David Storch1,2

Biodiversity on Earth is shaped by abiotic perturbations and rapid diversifications. At the same time, there are 
arguments that biodiversity is bounded and regulated via biotic interactions. Evaluating the role and relative 
strength of diversity regulation is crucial for interpreting the ongoing biodiversity changes. We have analyzed 
Phanerozoic fossil record using public databases and new approaches for identifying the causal dependence of 
origination and extinction rates on environmental variables and standing diversity. While the effect of environ-
mental factors on origination and extinction rates is variable and taxon specific, the diversity dependence of the 
rates is almost universal across the studied taxa. Origination rates are dependent on instantaneous diversity levels, 
while extinction rates reveal delayed diversity dependence. Although precise mechanisms of diversity dependence 
may be complex and difficult to recover, global regulation of diversity via negative diversity dependence of lineage 
diversification seems to be a common feature of the biosphere, with profound consequences for understanding 
current biodiversity crisis.

INTRODUCTION
Understanding biodiversity dynamics, its regulation, and mechanisms 
of biodiversity maintenance is crucial for our ability to interpret 
current biodiversity changes. There has been a longstanding debate 
whether biological diversity on Earth during the Phanerozoic has 
steadily increased or whether it is bounded and regulated by biotic 
interactions (1–3). Biodiversity dynamics might have been influenced 
by abiotic factors such as environmental changes (4) or tectonics 
(5); by biotic interactions such as competition, leading to diversity 
dependence (higher diversity levels lead to decreasing origination 
or increasing extinction rates and vice versa) (6); or by a mixture of 
both abiotic and biotic effects (7). The entanglement of biotic and 
abiotic factors makes it essential to study these components togeth-
er (8). Here, we evaluate the relative strength of the factors driving 
the large-scale biodiversity dynamics (9) across different taxa.

We focus on well-sampled marine fossil datasets through the 
Phanerozoic. The immense effort to fill fossil occurrence databases 
over the past decades has allowed us to analyze more complete bio-
diversity time series corrected using subsampling (10) and recent rate 
estimator (11) methods. In contrast to macroevolutionary studies 
that have typically focused on a single explanatory factor explored 
across short periods of time, we adopted a multifactorial approach 
to (i) reveal the universality of the processes responsible for diversity 
regulation across different taxonomic groups and time scales and 
(ii) explore causal links for biotic and abiotic factors simultaneously. 
Specifically, we tested for causal relationships between diversity, ex-
tinction rate, origination rate, temperature, and surrogates for pro-
ductivity (13C) and nutrient input (87Sr/86Sr, 34S) (figs. S4 and S5 
and table S1) (12) coming from analyses on fossils and sedimentary 
rocks (13).

Diversity patterns in fossil time series may be affected by a com-
plex interplay between gradual environmental changes, rapid distur-
bances causing mass extinctions, and biotic interactions of varying 
strength, which may be modulated by the environment itself. Under 
these circumstances, recovering causal links is notoriously difficult, 
and simple correlation analyses are typically insufficient (8). For 
this reason, we have adopted two novel statistical methods, recently 
developed for decomposing these complex interactions. Specifically, 
we tested for causal linkages using convergent cross-mapping (CCM) 
(14) and conditional transfer entropy (CTE) (15). These two methods 
detect causality between time series in the sense that one time series 
can be used for forecasting another one. They do not recourse to 
particular mechanisms of diversity dependence, neither to any par-
ticular functional links between the variables. This on one hand al-
lows revealing the existence of diversity dependence and other, often 
nonlinear causal links using noisy paleontological data in nonpara-
metric manner, but on the other hand, it precludes more detailed 
insights into the particular mechanisms of diversity dependence.

CCM is a method based on the theory of dynamical systems, 
which allows one to highlight nonlinear relationships and specify the 
directionality of causal relationships (16). It reveals the temporal 
signature of the relationship, specifically whether the interactions 
are synchronous or time-delayed and how long-lasting the effects 
are. In contrast, the specificity of CTE analysis is that it measures 
the direct causal link between two variables, understood as directional 
information flow between them, while explicitly taking into account 
the potential effect of additional conditioning variables. Adding con-
ditioning variables allowed us to detect synergetic effects and to 
disentangle complex relationships because of the common driver 
effect (when a → b and a → c, spurious causal links could be detected 
between b and c) (17). Although neither of the methods provides 
the ultimate test of causality (this is virtually impossible for observa-
tional data, without experiments), their focus on information flow 
and predictability allows recovering potential causal relationships 
even in the messy paleontological data with nonlinear causal links 
and variable time delays (14, 17). Combination of both the methods 
may then illuminate the basic features of the causal structure of the 
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system even when the exact mechanisms of diversity regulation are 
difficult or even impossible to be fully recovered.

RESULTS
Nine taxonomic datasets were selected, four from the Neptune Data-
base (NDB) (diatoms, Coccolithophoridae, Foraminifera, and 
Radiolaria) (18) and five from the Paleobiology Database (PBDB) 
(https://paleobiodb.org) (Bivalvia, Gastropoda, Brachiopoda, 
Scleractinia, and a wider set of all marine metazoans). We analyzed 
the taxonomic datasets at generic rank [see (12) for sensitivity anal-
yses using other taxonomic ranks], aggregated at a global scale 
(figs. S1 to S3).

Pairwise CCM analyses (Fig. 1, Table 1, figs. S6 and S7, and data 
S1) revealed that some causal links hold consistently among the 
explored taxa. In general, biotic factors play a more important role 
than abiotic factors in determining the long-term diversity dynamics. 
Both extinction and origination rates are diversity dependent in 
almost all datasets, while abiotic factors reveal no general pattern; 
instead, they are contingent and specific to each taxon. The additional 

autoregressive vector analysis suggests that the effect of diversity on 
extinction rate is either positive or nonmonotonic but never nega-
tive (i.e., increasing diversity never leads to lower extinction rates). 
Similarly, the effect of diversity on origination rate is always either 
negative or nonmonotonic (Table 1 and figs. S8 to S15). This is in 
agreement with the idea of equilibrium dynamics, which states that 
increasing diversity leads to the decrease of diversification (origination 
minus extinction) rate (1, 9). All these effects are more pronounced 
for the Neptune datasets (Fig. 1, F to I), probably because of the shorter 
time steps and less biased sampling, and on the metazoan dataset, 
apparently because of its larger amount of sampled taxa. CCM analysis 
also revealed latency (several million years) of the effect of diversity 
on extinction rate in diatoms, radiolarians, foraminiferans, and 
coccoliths (Fig. 2), stressing the complexity of the mechanisms gen-
erating the diversity dependence.

The CCM analyses show only few significant causal links for 
scleractinian corals, bivalves, and brachiopods (Fig. 1, B to D), with 
no diversity dependence for brachiopods. It is possible that some of 
these nonconclusive results are due to the bivariate nature of the CCM 
method, not allowing the capture of more complex interactions 
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Fig. 1. Networks of causal relationships between abiotic and biotic factors for the nine taxa. Each arrow corresponds to a significant effect detected by the pairwise 
CCM analysis. The intensity of arrow colors corresponds to the intensity of the causality, expressed as cross-map skill in CCM (correlation between empirical and predicted 
values). Causal relationships between biotic variables (the rates and diversity) show the strongest effects, with diversity dependence of both rates as the key feature of 
diversity dynamics in most taxa. (A) Gastropoda, (B) Bivalvia, (C) Brachipoda, (D) Scleractinia, (E) Metazoa, (F) diatoms, (G) Foraminifera, (H) Coccolithophoridae, and 
(I) Radiolaria. E, extinction rate; D, diversity; O, origination rate; T, temperature; C, 13C; S, 87Sr/86Sr; Sf, 34S. (A) to (D) represent time series from the PBDB, except metazoans (E), 
which are in a separate box; (F) to (I) correspond to data taken from the NDB.

https://paleobiodb.org
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Table 1. Synthetic table showing significance and direction of causal relationships affecting extinction and origination rates using CCMand CTE 
(○). (●) Gray cells highlight results significant in both CCM and CTE. Each cell includes the sign of the relationships between variables using additional 
information given by autoregressive vectors (CCM and CTE methods being unable to give directionality): +, positive relationship; −, negative relationship. No 
sign is given when the resulting model is more complex (e.g., nonmonotonic models cannot be characterized solely by a sign). In the case of nonambiguous 
results, diversity dependence of origination rates is always negative, while diversity dependence of extinction rates is always positive. Gas., Gastropoda; Biv., 
Bivalvia; Bra., Brachiopoda; Scl., Scleractinia; Met., Metazoa; Dia., diatoms; For., Foraminifera; Coc., Coccolithophorida; Rad., Radiolaria. 

Causal 
relationship

Gas. Biv. Bra. Scl. Met. Dia. For. Coc. Rad.

Diversity → 
extinction ●+ ●○ ○+ ●○ ●○+ ●○+ ●○+ ●○ ●○

Diversity → 
origination ●− ○ ○− ○ ●○− ●○ ●○ ●○− ●○−

Temperature 
→ extinction ● ○ ○ ○ ○−

Temperature 
→ origination ●+ + ● ○ ●○ ○ ●○ ●○

Carbon → 
extinction + ●○+ ○ ○ + ○ ●

Carbon → 
origination − ●○ + ○ ○+ ● ● ●+ ○

Strontium → 
extinction + ●○− ○ ●○ ●○ ●○ +

Strontium → 
origination + ○ ○ ○+ ○ ○ ○ ○

Sulfur → 
extinction ●○ ○− ● ○ ○ ○ ○ ○

Sulfur → 
origination ○ + ○ ○ ○− ○
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Fig. 2. Temporal signatures of causal relationships affecting the biodiversity dynamics. (A) Comparison of causality analyses (CCM) of diversity dependence with or 
without lag. Blue squares indicate increasing cross-map skill with increasing lag, and yellow squares correspond to decreasing values with increasing lag. In contrast to 
the origination rate that reveals immediate response to diversity change, the extinction rate responds to changing diversity levels more strongly with a lag. (B) Mean of 
the strength of relationships (CCM) between the biotic variables (diversity and the origination and extinction rates) across diatoms, Coccolithophoridae, Foraminifera, and 
Radiolaria, tested with various lags (in Ma). The strength of these relationships remains high for the first 7 Ma, highlighting long-lasting effects (gray arrow).
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between the variables. In this respect, the CTE analysis that allows 
for mutual conditioning between multiple causal links may be more 
informative. We performed CTE analyses of the effect of diversity 
on origination and extinction rates while conditioning environmental 
variables and then the reverse, i.e., the analyses comprising the ef-
fect of environmental variables on the rates while conditioning the 
effect of diversity. The results are largely congruent with the results 
of CCM analyses, as they support the dominant role of biotic factors 
in diversity dynamics, revealing especially strong effect of diversity 
on origination rates [Fig. 3 and figs. S16 and S17; see (12) and 
figs. S18 to S24 for sensitivity analyses]. CTE analyses were able to 
capture the signal of diversity dependence also for taxa showing 
nonconclusive results in the CCM analyses.

DISCUSSION
Venditti et al. (19) has suggested that the major evolutionary pat-
terns are determined by rare stochastic events and unpredictable 
environmentally driven crises and opportunities, rather than by bi-
otic interactions. Our results suggest that, on the contrary, there has 
been a persistent regulation of biodiversity in Phanerozoic oceans 
by biotic processes. This finding is robust enough across our data-
sets, so that it is unlikely to be generated by statistical artifacts. At the 
same time, it complements previous studies showing that bounded 
models may represent appropriate characterization of diversity dy-
namics even when diversity fluctuates and, for most of the history, 
is out of equilibrium (4, 6). The evidence of diversity dependence of 
extinction and origination rates in most explored taxa (Table 1) is 
congruent with the hypothesis of a carrying capacity of the environ-
ment for diversity (20). However, such a carrying capacity does not 
necessarily represent a hard ceiling, but a dynamic equilibrium be-
tween diversity-dependent extinction and origination rates that can be 
modulated by environmental factors themselves. Carrying capacity 
would then be an emergent property of biotic interactions independent 

of particular histories of different evolutionary lineages, and its level 
is set by environmental properties affecting the rates (20, 21).

We show that biodiversity dynamics may be diversity dependent 
but, simultaneously, can be affected by environmental changes. The 
carrying capacity (diversity equilibrium) may thus change itself in 
time. This has potentially important implications for analytical tests 
of diversity regulation. Because the environment has not been con-
stant during the Phanerozoic and the functional form of diversity 
dependence is not known, the use of simple logistic models (or any 
models based on a priori–chosen functional forms of causal links) 
(1, 4) may not be appropriate. The reason is that these models are 
able to reveal only a specific form of diversity regulation, constrained by 
the model structure. In contrast, our methods cover a broad class of 
possible diversity regulation mechanisms, allowing the detection of 
nonlinearities, simultaneous effects of multiple variables, and time - 
varying effects. However, this generality is achieved at the expense 
of an inevitable agnosticism as to the exact mechanisms and func-
tional properties of respective processes. In other words, CCM and 
CTE analyses do not allow us to identify a particular mechanism 
generating paleontological diversity time series and its parametric 
values. Instead, they only show that a subset of these mechanisms 
that comprises diversity dependence is more likely than a subset 
without diversity dependence.

Further analyses of paleobiodiversity that would compare various 
spatial, temporal, or taxonomic scales and take into account a broad 
list of possible particular mechanisms would enable better under-
standing of the exact processes responsible for diversity regulation. 
Process-based approaches also have potential to control for various 
statistical artifacts that might, even if slightly, distort the presented 
information flow analyses [such as the regression to the mean sensu 
(22); see Materials and Methods for detailed discussion). To explore 
biodiversity dynamics in paleontological series in a mechanistic and 
parametric manner, we need further development of quantitative 
theories of biodiversity dynamics applicable to large spatial and tem-
poral scales (20, 23), coupled with analytical tools able to deal with 
noise, various biases, and artifacts that are inherently present in 
paleontological time series (3, 10, 24).

Diversity dependence of extinction and origination rates may be 
mediated by several classes of mechanisms. One possibility is that it 
is due to changing abundances of individual species (23). Increasing 
diversity at the global scale results, if not complemented with an equal 
increase of available resources, in a decrease in average species 
abundance. This is predicted to affect extinction rates because the 
probability of extinction increases with decreasing population size. 
Origination rate may be also affected by diversity-dependent species 
population abundances if species with smaller populations have lower 
probability to speciate (20, 21). In addition, if origination rates are 
linked to niche differentiation (24), then they may decrease with in-
creasing diversity because of niche filling. These two possibilities—
diversity dependence mediated by changing species abundances and 
by changing niche availability—are not exclusive, as niche availability 
and niche filling almost certainly affect abundances. Therefore, spe-
cies abundance may represent a mediator of diversity dependence 
regardless of the exact role of species niches.

CTE revealed that diversity affects the origination rate more 
often than the extinction rate (Fig. 3). This has already been demon-
strated for smaller taxonomic groups (25, 26), but here, we show 
that it is a common pattern across multiple phylogenetically distant 
taxa (Fig. 2A). This may have been influenced by a non-negligible 

Diversity → extinction rate
Diversity → origination rate

Fig. 3. Differential strength of diversity dependence of origination (blue) and 
extinction (red) rates while accounting for fluctuations of environmental variables 
using CTE. Each bar (means ± SD) represents the mean of four CTE analyses with 
different conditioning variables: Tdiversity→extinction|temperature, Tdiversity→extinction|13C, 
Tdiversity→extinction|87Sr/86Sr, and Tdiversity→extinction|34S. Only radiolarians show non-
significant (ns) values relative to a null model without diversity dependence (13). 
nats, natural unit of information.
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proportion of undetected taxa because of ephemeral speciation that 
can blur the distinction between origination and extinction (27). If 
diversity-dependent extinction comprises mostly incipient taxa that 
were not able to reach sufficiently large abundances to leave imprints 
in the paleontological record, then it would be reflected in our anal-
yses by the apparent diversity dependence of origination rates. 
Moreover, in contrast to origination rates, diversity dependence of 
extinction rates revealed substantial time delay (Fig. 2A and figs. 
S6 and S7). As discussed above, diversity-related extinction may be 
driven by shrinking population sizes because of increasing compe-
tition for resources. Because extinction of small populations is a 
probabilistic process, it may take a long time. In contrast, speciation 
may be relatively fast if it is promoted by an increase of population 
and range size after a decrease of diversity. Our finding that diversi-
ty regulation might be common during the whole Phanerozoic has 
profound consequences on understanding the current biodiversity 
crisis. First, if global diversity is bounded and regulated by universal 
diversity dependence mediated by resource and/or niche availability, 
then any human-driven effects on the resource base and habitat 
availability may have profound effects on the maintenance of future 
biodiversity on Earth. Second, our analyses revealed long-lasting ef-
fects of diversity on origination and especially extinction rates. The 
likely reason for this prolonged effect is that global-scale dynamics 
results from a complex array of microevolutionary processes that 
have long-term consequences (22). These long-term responses are 
consistent with the finding that the rebound from an extinction event, 
such as the one we are experiencing today, would globally extend for 
the duration of a geological period (28). A marked increase in ex-
tinction rate in the oceans as we are currently experiencing could thus 
influence global diversity dynamics for the next several million years.

MATERIALS AND METHODS
Fossil occurrence databases and data cleaning
The taxa were selected on the basis of the following criteria: high 
abundance and good preservation in the fossil record, sufficient 
time extent, and ease of identification. Nine taxonomic datasets 
were retained following these criteria. Four were extracted from the 
NDB version 30/07/2020 (18) and five from the PBDB version 
24/08/2020 (https://paleobiodb.org).

From the NDB, our analyses were conducted on Foraminifera 
[157,960 occurrences; 123 to 0 million years (Ma)], Coccolithophoridae 
(280,935 occurrences; 150 to 0 Ma), diatoms (114,745 occurrences; 
46 to 0 Ma), and Radiolaria (116,529 occurrences; 64 to 0 Ma) (fig. 
S1). From the PBDB, our analyses were conducted on Scleractinia 
(32,420 occurrences; 242 to 0 Ma), Brachiopoda (137,695 occurrences; 
477.7 to 0 Ma), Bivalvia (144,507 occurrences; 425.6 to 0 Ma), and 
Gastropoda (108,153 occurrences; 470 to 0 Ma) (fig. S2). The last 
taxonomic dataset was generated to handle all metazoans (705,129 
occurrences; 477.7 to 0 Ma). For Scleractinia, the taxonomic dataset 
was not extracted directly from the PBDB; instead, we used a corrected 
PBDB dataset (29) extracted using the R package divDyn 0.8.0 (30).

All the analyses were conducted at the genus level. All occur-
rences of taxa without known generic affiliation have been deleted. 
For PBDB taxonomic datasets, the following criteria have been ap-
plied: lump taxa by genus (only one record is reported for each 
occurrence of a given genus in a given collection); regular taxa only 
(deletion of ichnotaxa and form taxa); worldwide; exclusion of 
occurrences with “aff.,” “ex. Gr.,” “sensu lato,” and “informal”; 

question marks; or quotation marks. We also removed all nonmarine 
taxa using the command envtype=!terr,lacust,fluvial,terrother) to 
analyze taxa coming from ecologically homogeneous environments 
and avoid major fluctuations of potentially inhabitable areas, for 
example, with the vertebrate land invasion.

For PBDB, the records are dated using the ages of the geological 
time scale (e.g., Pleistocene from 2.7 to 0 Ma corresponds to one 
time bin). For NDB for which occurrences have absolute ages, we 
tested various bin sizes. First, we tested all bin sizes from 0.1 to 1 Ma 
with 0.1-Ma increment, and then we tested bin sizes from 1 to 10 Ma 
with 1-Ma increment. We kept equal bin sizes of 1 Ma to avoid 
empty bins while keeping the highest temporal resolution.

Diversity and turnover rates estimate
Diversity curves were computed using the R package divDyn (30) 
using the shareholder quorum subsampling (SQS) (31), which gives 
the best results when evenness is low (32). SQS is an interpolation 
method that computes how many taxa are expected to be found given 
a fixed coverage q of the underlying occurrence distribution. SQS 
deals with the heterogeneity of the fossil record by estimating the 
diversity of samples with similar levels of sample completeness. We 
kept the highest q while avoiding empty bins for each taxon (table 
S1). The curve was constructed using sampled-in-bin values (i.e., 
sample-in-bin measure of raw taxonomic diversity that does not ex-
trapolate when there are Lazarus taxa present, with occurrences be-
fore and after, but not inside a bin). We corrected the sampled-in-bin 
values by using the three-timer method [corrected sampled-in-bin 
(cSIB) hereafter] (28), which detects sampling variations, and log- 
transformed the data.

We used the “second for third” method (2f3) to accurately compute 
origination and extinction rates (11). 2f3 is an accurate estimator 
except when turnover rates are very high or if sampling is very poor, 
which is not the case here because of the spatial and temporal range 
of the analyses and because we selected only well-sampled marine 
taxa. The 2f3 method computes the extinction rate (E2f3) on a bin i1 as

  E2f3 =    s  1   −  s  3   ─  t  2   − p    

with s1 as the number of taxa sampled in i0 and i1 but not after, s3 as 
the number of taxa sampled in i0 and i3 but not i1 and i2, t2 as the 
number of two-timers (taxa sampled in i0 and i1), and p the number 
of part-timers (taxa sampled in i0 and i2 but not i1). The 2f3 method 
can be corrected if specific counts are too small (11, 28). Last, the 
rate is computed as log(1/(1 − E2f3)). We also estimated the rates 
using boundary crossers (22), per capita rates (33), and gap filler 
(34), which always gave very similar results. We computed all rates 
using divDyn (30).

Stationarity of the time series is a prerequisite of both the CCM 
and CTE methods to remove spurious relationships (17, 35). We per-
formed Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (36) and aug-
mented Dickey–Fuller (37) tests to analyze whether the generated time 
series are stationary or not. The trends were then removed using the 
LOESS method (fig. S3). The span of the smoothing function was 
determined using the ADF and KPSS tests (table S1). This procedure 
was applied for each time series and for each taxonomic dataset because 
of series-specific time ranges and bin sizes. Last, we performed an 
ordered quantile transformation on diversity, origination rate, and 
extinction rate time series to suppress variance changes over time (38) 
and normalized it to zero mean and unit SD before the analyses.

https://paleobiodb.org
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Paleoenvironmental surrogate datasets
Four paleoenvironmental surrogate datasets have been used in our 
study (fig. S4). The first one was temperature reconstructed through 
the Phanerozoic using 18O and latitudinal belt reconstruction using 
geological evidence (39). The three other paleoenvironmental time 
series used were 13C, 87Sr/86Sr, and 34S isotopic ratios, following 
Cárdenas and Harries (13). 13C reflects variations in not only pri-
mary productivity and burial of organic matter (photosynthetic 
reduction of CO2 in organic matter) but also weathering, hydro-
thermal degassing, clathrates, and volcanism (40–42). Here, we used 
the 13C time series as an environmental proxy of oceanic produc-
tivity. The dataset was taken from the recent compilation made for 
the Geological Time Scale 2016 (43). The 87Sr/86Sr time series is a 
proxy of nutrient input from the weathering of continental rocks. It 
is taken from McArthur et al. (44). 34S reflects nutrient input from 
recycling of organic material in ocean sediments. This time series is 
taken from Prokoph et al. (45). The four paleoenvironmental 
datasets were first smoothed using LOESS method (smoothing span 
parameter = 0.01) and bin-averaged to the same time bins as for the 
diversity data. The span was determined to get the most precise time 
series while smoothing fluctuations inside each bin. For all curves, 
the ages were calibrated to the Geological Time Scale 2016 (43) fol-
lowing the procedure of Wei and Peleo-Alampay (46). Then, specific 
detrending (table S1), ordered quantile transformation, and nor-
malization to zero mean and unit SD were performed on all paleo-
environmental time series same as in the case of diversity time series 
(fig. S4E). We then checked that the four paleoenvironmental time 
series were not excessively correlated to each other (fig. S5).

Bivariate causality analyses using CCM
The CCM (14) is a nonparametric method for inferring causal relation-
ships between variables directly from the data by generating empirical 
models in the form of dynamic systems. It can perform analyses with 
uneven data, such as time series computed from PBDB, but requires 
stationarity (17). The CCM allows one to distinguish causality from 
spurious correlation, based on the inference of predictability. Spe-
cifically, CCM uses the concept of causality in the sense of the study by 
Sugihara et al. (14), which says that, in the framework of dynamical 
systems, if a variable x (the source variable) has an influence on an-
other variable y (the target variable), then y can be used to recon-
struct the states of x, i.e., the information about the source must be 
recorded in the target (47). The cross-map skill  is the measure of 
the strength of causality between pairs of variables. It is calculated 
by a Pearson correlation between the observed and predicted values. 
If the causality is unidirectional, e.g., x → y, then the dynamical sys-
tem modeled from y is efficient in predicting the values of x but not 
the reverse. If a causal relationship links two given variables, then  
should increase and converge by increasing the size of the subsamples 
of the time series used for the reconstruction. CCM analyses have 
been repeatedly used for paleontological time series (48–50).

For each taxonomic dataset, 18 bivariate CCM analyses were 
performed (Fig. 1 and Table 1). All biotic-to-biotic relationships be-
tween diversity, extinction rate, and origination rate were tested. For 
environmental-to-biotic causality relationships, we tested the effect of 
each of the four environmental variables (temperature, 13C, 87Sr/86Sr, 
and 34S) on each of the three biotic variables (diversity, extinction 
rate, and origination rate). To perform simplex projection and CCM 
analyses, we used the R package rEDM 0.7.5. This package implements 
time delays with CCM that identifies a causal relationship from x to 

y by testing for different time lags. Time delay analyses can be per-
formed with different lags to identify the best informative time lags 
in terms of cross-map skill (16). For PBDB taxonomic datasets, 
bivariate analyses were performed with all lags between 0 and 5 
(Fig. 2A and fig. S6). For taxonomic datasets coming from the NDB, 
all bivariate analyses were performed with all lags between 0 and 15 
(Fig. 2, A and B, and fig. S7). To assess significance of the results, we 
compared the results with 1000 randomly generated time series 
using the Ebisuzaki method (51). The Ebisuzaki method allows 
generating time series by randomizing the phases of a Fourier 
transform, preserving the power spectra of the original time series. 
Alternatively, we also assessed the significance of the results using 
1000 randomly reshuffled surrogate time series, but this method 
gave less conservative results than the Ebisuzaki method. Kendall 
correlation tests were also performed to assess convergence of the 
results with increasing sample size (52). Results were considered 
significant when P < 0.05.

To explore the signs of the relationships between significantly 
linked variables, we performed additional analyses. The first was a 
lagged cross-correlation (figs. S8 to S15). The second set of analyses 
aimed to fit a vector autoregression model for pairs of variables using 
an Akaike information criterion (AIC) to retain the adequately lagged 
variables (Table 1). Here, the sign of the causation is given by the 
coefficient of each lagged explanatory variable. However, several 
coefficients for various lags concerning the same explanatory variable 
may occur, which thus precludes straightforward interpretation. 
For both cross-correlations and vector autoregressions analyses, the 
bivariate analyses and the number of minimum and maximum lags 
were the same as for CCM.

CTE for testing drivers of the rates of extinction 
and origination
In addition to bivariate CCM analyses, we used the CTE to control 
for spurious causal relationships caused by other variables (17). 
Similar to CCM, CTE infers causality from predictability using sta-
tionary time series (15, 17). CTE is a measure of information transfer 
between a source variable (the causal variable) and a target variable 
while conditioning a third variable. Unlike CCM, CTE allows for 
modeling simultaneous causal effects of multiple variables, can be 
used for causality partitioning, and can be used specifically for ex-
tracting the net effect of one causal relationship in a system where 
multiple causal links take place. Within the information theory frame-
work (53, 54), the transfer entropy approach (55, 56) is a method to 
compute a nonsymmetric measure of causality, the information 
transfer, from one variable to another.

When computing the transfer entropy between a source variable 
x and a target variable y, an additional variable z can lead to spuri-
ous causation signals if only simple bivariate analyses are carried 
out between x and y. Common driver effects lead to spurious infor-
mation flow from x to y caused by the information flow of a third 
variable z on x and y (i.e., z → x and z → y instead of x → y). Simi-
larly, cascade effects appear where we actually have x → z → y in-
stead of x → y. These cases can be distinguished by conditioning on 
z, which allows the direct information flow from y to x to be com-
puted. CTE has been applied to paleontological and geological time 
series analyses to test for causality and/or to detect common driver 
effects (3, 48, 57, 58).

We used the CTE to test the effect of various potential causal 
variables on rates of origination and extinction while accounting for 
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the potential interplay with other variables (Fig. 3 and Table 1). We 
performed a CTE analysis for each taxonomic dataset and for each 
environmental time series. Thus, for each taxonomic dataset, we used 
four sets of time series: diversity, extinction rates, origination rates, 
and temperature; diversity, extinction rates, origination rates, and 
carbon; diversity, extinction rates, origination rates, and strontium; 
and diversity, extinction rates, origination rates, and sulfur. For each 
set of each taxonomic dataset, we analyzed, using CTE, the follow-
ing relationships: diversity → extinction rate, diversity → origina-
tion rate, temperature/carbon/strontium/sulfur → origination rate, 
and temperature/carbon/strontium/sulfur → extinction rate, while 
accounting for the effect of other time series from the set taken as 
conditional variables.

CTE analyses were performed using the Python 3 toolkit IDTxl 
(59). This library implements the CTE with a selection of variables 
and source lags using an algorithm to infer the minimum set of se-
lected source and target variables with specific lag. Potential source 
and target variables with specific lags are iteratively added to the set 
of selected sources and target to optimize a criterion of uncertainty 
reduction, quantified as conditional mutual information (53), and 
stop when uncertainty cannot be lower. In our analyses, any vari-
able present in the set of time series (a to d; see above) could be used 
under these criteria. Moreover, several statistical tests (15) are 
implemented in IDTxl to assess statistical significance, including a 
false discovery rate correction (60) to control for false positives. As 
IDTxl allows enforcing the inclusion of specific variables in the con-
ditioning set of the CTE analysis, we forced the inclusion of a vari-
able’s informative (i.e., with positive cross-map skill) lags detected 
using lagged CCM analyses (figs. S6 and S7 and data S1) while 
allowing the algorithm to detect and include other informative lags 
in the analysis. For the analysis of diversity dependence, we enforced 
the use of environmental time series informative lags, and we en-
forced the use of diversity informative lags when analyzing the in-
teraction between environmental variables and the origination and 
extinction rates. The candidate target and source sets were set with 
a lag of between 0 and 5 time bins for every time series of the PBDB 
analyses and between 0 and 15 time bins for the NDB analyses. We 
explored several sets of parameters of enforced variables (without 
enforcing anything; with all variables enforced; and with all source 
and target variables with a lag of 0, then with lag of 1, then with a lag 
of 0 and 1) to ensure the consistency of the results. The information 
transfer values (expressing the strength of the relationships) were 
always similar, and only the number of significant results varied. 
Analyses were performed by using both the Gaussian estimator, 
equivalent to Granger causality when used for transfer entropy 
estimation (61), and the Kraskov-Stögbauer-Grassberger (KGS) 
estimator for linear and nonlinear data (62). We retained only the 
results from the analyses that used the Gaussian estimator (fig. S16), 
as the time series were too short to obtain reliable results with the 
KGS estimator, which generally requests more data. The use of 
the Gaussian estimator is made under the assumption that the set 
of time series is jointly Gaussian, i.e., their joint distribution is a 
multivariate normal distribution. We checked this assumption for 
each set of time series corresponding to a taxonomic dataset using 
Henze-Zirkler’s tests. Last, for each analysis, a joint transfer entropy 
of all selected sources to the target was calculated by IDTxl (fig. S17) 
using an omnibus test (15). The joint transfer entropy test takes all 
the variables together to quantify a global amount of information 
transfer.

Parametric null model
We simulated fossil occurrence datasets using a null birth-death 
model to meet two objectives: (i) to show the significance of our 
results compared to a simplistic but biologically interpretable model 
without diversity dependence and (ii) to show that regression to the 
mean (10, 28, 63) is not likely to distort the results obtained by the 
analyses presented here (see the “Effect of the regression to the mean” 
section for details). We ran the null model simulations 100 times 
across discrete time axis with 100 time bins, roughly corresponding 
to our empirical series that range between 42 (Scleractinia) and 153 
(Coccolitophoridae) time bins. In every time bin , the number of 
genera going extinct in time bin  + 1 was drawn from a binomial 
distribution with the number of trials equal to the total richness in 
time bin  and the probability of success equal to per-genus extinc-
tion rate. The number of genera originating in  + 1 was generated 
in similar way, with the probability of success equal to per-genus 
origination rate. The per-genus origination and extinction rates were 
kept constant across the time bins. We used a value of 0.1 for both 
origination and extinction, roughly corresponding to the origina-
tion (0.05 to 0.26 per time bin) and extinction (0.03 to 0.20 per time 
bin) rates in our empirical datasets. We also performed simulations 
with stochastic origination an extinction rates using a  distribu-
tion ( = 10,  = 90), which gave similar results. The initial number 
of species in the simulations was 5000. The simulated series were 
then subsampled to 0.1 and 0.5 proportion of genera in every time 
bin. The null model simulations were processed with the same ana-
lytical pipelines as the real-world data, resulting in the cross-map 
skills and CTEs based on CCM and CTE analyses, respectively. All 
simulations were performed in R, and the code used for running 
simulations and filtering (data S1) is available in the Data and 
materials availability statement.

Overall, the results of our analyses of diversity dependence are 
almost all significant relatively to those obtained with the null model 
described here (fig. S18). This constitutes additional evidence that 
our results significantly differ not only from nonparametric null 
approaches such as Ebisuzaki time series or reshuffling presented 
above but also from a parametric null model, albeit simplistic one.

Effect of the regression to the mean
We assessed whether the regression to the mean (10, 28, 63) might 
cause important biases in our results. We proceed in two ways, con-
cluding that the reported results of CCM and CTE analyses are very 
likely not driven by this artifact.

First, we explored the temporal patterns of link strengths in the 
CCM analyses. The regression to the mean is known to generate 
artificial linkage between diversity and origination or extinction 
rates, which has the strongest effect when comparing neighboring 
time bins (i.e., the immediate effect), and the strength of the effect is 
predicted to uniformly decrease with the time lag (22). This pattern 
is exactly opposite to the comparison of immediate and lagged ef-
fects of diversity on extinction rates presented in Fig. 2A. Moreover, 
Fig. 2B and figs. S6 and S7 suggest that the effect of diversity on both 
the rates does not uniformly decrease with time lag but instead is 
generally comparable for time lags between 0 and 6 and only then 
sharply drops. This evidence suggests that, although the regression 
to the mean may play a certain role in the presented CCM results, 
the core part of the results, including the strong effect of diversity 
on the rates with large time lags, is extremely unlikely to result from 
this artifact.
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In addition to this evidence, we also explored the effect of regres-
sion to the mean using the null birth-death model described above. 
The effect of regression to the mean should increase with stronger 
censoring of the data from the generating diversification process (64). 
We thus simulated the fossil occurrences with different sampling 
probabilities P = 1, P = 0.5, and P = 0.1 and analyzed them with the 
same pipeline as the real-world data. If our analytical workflow was 
strongly biased by the regression to the mean, then the obtained 
cross-map skills and CTEs should be highest for the most censored 
simulations (P = 0.1). However, the simulation results show the op-
posite pattern (fig. S19). This suggests that our analytical workflow 
of LOESS detrending of the time series followed by CCM and CTE 
analyses is not vulnerable to the regression to the mean artifact, at 
least under the birth-death model used for these simulations.

Sensitivity analyses
We ran a set of analyses to test the sensitivity of our results to the 
choices of data cleaning and taxonomic rank. To evaluate the sensitivity of 
our results to fossilization biases, we produced sensitivity analyses 
for PBDB datasets by excluding occurrences with specific taphonomic 
parameters, such as occurrences with soft tissue or original aragonite, 
occurrences of fossils replaced with silica, and occurrences coming 
from unlithified or poorly lithified and sieved deposits. The results 
were similar to those of the main analyses, confirming the robust-
ness of our results.

The analyses shown in the Materials and Methods section used 
data detrended using a LOESS smoothing function, removing long-term 
trends and making time series stationary. To determine the impact 
of detrending strategies, we performed other CCM analyses on the 
nondetrended time series (fig. S20) and on the time series that were 
detrended by differencing (fig. S21) that removes not only the long-
term trends but also the autocorrelation. The differencing in first 
order or second order was determined visually for each time series 
by looking at the autocorrelation plots. The results are generally 
more significant, with higher cross-map skills, when the time series 
are not detrended, suggesting that detrending is a conservative 
choice. We also performed CTE analyses with alternative detrend-
ing strategies (fig. S22). They show that the diversity dependence of 
the origination rates is stronger than that of the extinction rates 
regardless of the type or absence of detrending. The diversity de-
pendence is present regardless of the method (CCM and CTE) and 
regardless of the type of detrending.

To check the robustness of our choice to work with data aggre-
gated by genera, we performed CTE analyses on the effect of diversity 
on extinction and origination rates (while conditioning on environ-
mental proxies) using different taxonomic ranks. The results using 
families, genera, and species are shown for each environmental proxy 
taken as a conditioning variable (figs. S23 and S24). For the PBDB 
analyses at the family level, we used the familial attributions in the 
database. For the NDB analyses, we used the familial determinations 
of the PBDB. Quorum values used for species and families are given 
in table S1. Comparison of the results shows a high variance of the 
results using species, which is not present at the genus or at the family 
level, probably because of the high turnover at this taxonomic level 
that affects diversity, origination, and extinction rate calculations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.add9620
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