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3 Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Tenon, Service de Biochimie et Hormonologie, 75020 Paris, France

Correspondence should be addressed to Jacqueline Capeau, jacqueline.capeau@inserm.fr

Received 8 August 2008; Accepted 9 October 2008

Recommended by Lawrence Serfaty

Lipodystrophy and metabolic alterations are major complications of antiretroviral therapy in HIV-infected patients. In vitro
studies using cultured murine and human adipocytes revealed that some protease inhibitors (PIs) and nucleoside reverse
transcriptase inhibitors (NRTIs) were implicated to a different extent in adipose cell dysfunction and that a chronic incubation with
some PIs decreased mRNA and protein expression of PPARγ. Defective lamin A maturation linked to PI inhibitory activity could
impede the nuclear translocation of SREBP1c, therefore, reducing PPARγ expression. Adipose cell function was partially restored
by the PPARγ agonists, thiazolidinediones. Adverse effects of PIs and NRTIs have also been reported in macrophages, a cell type
that coexists with, and modulates, adipocyte function in fat tissue. In HIV-infected patients under ART, a decreased expression
of PPARγ and of PPARγ-related genes was observed in adipose tissue, these anomalies being more severe in patients with ART-
induced lipoatrophy. Altered PPARγ expression was reversed in patients stopping PIs. Treatment of patients with agonists of PPARγ
could improve, at least partially, the subcutaneous lipoatrophy. These data indicate that decreased PPARγ expression and PPARγ-
related function, resulting from ART-induced adipose tissue toxicity, play a central role in HIV-related lipoatrophy and metabolic
consequences.

Copyright © 2009 Martine Caron et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

HIV-associated lipodystrophy (LD) is a disorder character-
ized by a selective damage of the adipose tissue resulting
in part from antiretroviral drugs [1, 2]. The LD syndrome
includes progressive subcutaneous fat loss and/or central fat
accumulation along with dyslipidemia, glucose alterations,
and insulin resistance, altogether generating cardiovascular
dysfunctions [3, 4]. Recent studies have hypothesized that
HIV itself could play a role in the LD phenotype (see
Giralt et al. [5]). However, the risk of developing fat
tissue redistribution has been related in priority to the
antiretroviral treatment (ART) and mainly to the use of two
classes of drugs, protease inhibitors (PIs) and nucleoside
reverse transcriptase inhibitors (NRTIs) [6–8]. Lipoatrophy
in the face and extremities has been linked repeatedly to

the use of stavudine (and to a lesser extend zidovudine)
among NRTIs [7, 9, 10] and increases with long-term
exposure [11]. PIs have been mainly associated with central
fat accumulation along with insulin resistance. However,
nelfinavir or indinavir can independently decrease limb fat
level in patients cotreated with NRTIs [7, 12]. Peripheral fat
loss and central fat accumulation can occur simultaneously,
though lipoatrophy may emerge as the more dominant
feature on prolonged treatments [12, 13]. Recently, a role for
the nonnucleoside analog efavirenz in lipoatrophy has been
reported but needs to be confirmed [14].

The pathogenesis of adipose cell dysfunction includes the
mitochondrial toxicity of NRTIs [15–19] and the adverse
effects of PIs and NRTIs on the adipocyte differentiation
status [17, 20–26], insulin sensitivity [27, 28], survival [17,
18, 23, 29], ability to secrete a variety of adipokines [30–33],
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and longevity [19, 34]. The oxidative stress induced by both
PIs and NRTIs at the fat cell level [19, 28, 33–35] probably
plays a major role in the setup of lipodystrophy.

Severe adipose tissue alterations have been reported
in HIV-infected patients with ART-related lipodystrophy.
Lipoatrophic adipose tissue biopsies present major histo-
logical alterations with decreased and heterogeneous size
of adipocytes, increased fibrosis, altered mitochondria, and
macrophage infiltration [1, 2, 36–38], consistent with a pro-
found remodeling of subcutaneous fat tissue. The presence of
isolated fat droplets, macrophages, and apoptotic cells in the
enlarged vascular stroma argues for a progressive destruction
of subcutaneous adipocytes [1, 2, 29, 37, 39, 40].

PPARγ is expressed in priority in adipocytes. It is also
expressed in different other cell types including macrophages
and regulates genes associated with growth, differentiation,
insulin sensitivity, inflammation, and immunity [41–46] (see
[5]). PPARγ plays an essential role in the development and
normal function of white adipocytes, where it mediates
part of the regulatory effect of dietary fatty acids on gene
expression [43, 47], regulates the differentiation program
[48] and insulin sensitivity [45]. PPARγ also controls the
production and secretion of adipokines such as leptin and
adiponectin, which are important mediators of insulin action
in peripheral tissues [42]. In brown adipocytes, PPARγ also
controls the adipogenic program and the switch from white
to brown adipocytes [49]. In macrophages, PPARγ controls
alternative activation and improves insulin resistance [50].
It plays an important role in macrophage inflammation
and cholesterol homeostasis and inhibits the production of
proinflammatory cytokines through inhibition of the NFκB
and AP-1 pathways [48, 51–54].

Loss-of-function or dominant-negative mutations in the
PPARG gene in humans (see [5]), and genetically-induced
PPARγ deficiency in mice [55, 56] are responsible for
lipodystrophic syndromes with insulin resistance, showing
the primarily involvement of PPARγ defects in adipose
tissue development and metabolic roles. Alternatively, other
causes of adipocyte differentiation defects lead to a secondary
decreased PPARγ expression and/or function, that further
contribute to adipose tissue dysfunction, as shown in vivo
in murine models [57] or in vitro [58–60].

In that setting, the implication of PPARγ in the ART
effect has been demonstrated both in vitro, in cultured
adipocytes and macrophages, and ex vivo, in adipose tissue
samples from patients, and has been confirmed by the
beneficial effects, at least partial, of the PPARγ agonists, thia-
zolidinediones. PPARγ defects, although probably secondary
to the multiple deleterious consequences of ART on adipose
tissue, play a central role in ART-related lipodystrophy and
metabolic alterations.

2. Effects of ART on PPARγ Expression and
Signaling in Cultured Adipocytes

PPARγ contributes to the setup of the differentiation pro-
gram and to insulin sensitivity. PIs and NRTIs, the two
major classes of antiretrovirals associated with lipodystrophy

in HIV-infected patients, may interfere at several steps of
PPARγ signaling in adipose cells, such as differentiation,
insulin action, oxidative stress, inflammation, and mito-
chondrial function.

A number of studies have clearly shown that the first
generation PIs, indinavir, nelfinavir, and ritonavir, used
at concentrations comparable to their Cmax in patients’
serum or at suprapharmacological concentrations, impaired
adipocyte differentiation [20, 21, 23, 25, 26, 32, 61–67]. They
were also shown to induce insulin resistance [21, 23, 27,
33, 62, 67–70] in murine and human cultured adipocytes.
This was associated with a reduced protein and mRNA
expression of PPARγ in both murine [20, 21, 25, 26, 64] and
human adipocytes [24, 66, 71, 72]. Interestingly, decreased
PPARγ expression was also observed in mature adipocytes
chronically incubated with PIs, consistent with PI-induced
adipose cell dedifferentiation.

Most PIs (nelfinavir, indinavir, saquinavir, ritonavir, and
amprenavir) were shown to acutely inhibit insulin activation
of glucose uptake in cultured adipocytes, via a direct
inhibition of the glucose transporter Glut4 [73]. Indinavir
and nelfinavir also altered the activation of proximal steps in
insulin signaling as revealed by decreased phosphorylation
of extracellular-regulated kinase (ERK) 1/2 and Akt/protein
kinase B. Accordingly, distal events in insulin signaling path-
ways, glucose transport, and lipogenesis were also affected
[21, 30, 74]. Regarding PPARγ, cell imaging studies revealed
that indinavir and nelfinavir but not amprenavir severely
decreased nuclear expression of PPARγ [21], indicating for
the first time that the transcriptional activity of PPARγ may
be defective in PI-treated cells. The beneficial effect of rosigli-
tazone [21, 23, 32] confirmed the implication of PPARγ in
PI action, and indicated that PIs act upstream of PPARγ in
its signaling cascade to alter adipocyte differentiation and
insulin sensitivity. Recent data of our laboratory further
support the implication of PPARγ in PI action by showing
that two angiotensin II-receptor blockers (telmisartan and
irbesartan), that display partial PPARγ agonist activity [75],
prevented the PI effects on lipid accumulation and insulin
response in murine and human adipocytes (Boccara F. et al.,
unpublished results).

The effect of ritonavir on insulin signaling has been
particularly studied since this commonly prescribed PI is
associated with dyslipidemia and metabolic disorders in
HIV-infected patients [67, 76, 77]. Ritonavir induced insulin
resistance in cultured adipocytes [24, 32, 64]. Another
study reported that ritonavir reduced differentiation and
insulin sensitivity in human preadipocytes and adipocytes
but surprisingly without decreasing PPARγ2 gene expression
[68]. However, the protein expression and the activation of
PPARγ have not been evaluated in this study.

The mechanism whereby PIs alter adipose cell differ-
entiation and insulin sensitivity is obviously complex and
multifactorial. Impaired SREBP-1 nuclear penetration [21,
22] may inhibit the activation of PPARγ or related adipogenic
transcription factors thus leading to defective adipogenesis
and insulin resistance. When going further into the mech-
anism of PI action, we and others demonstrated that some
PIs prevented the maturation of lamin A/C [22, 34, 78],
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a nuclear membrane protein essential for normal nuclear
membrane folding and for nuclear penetration of SREBP-1
[59, 79, 80]. Defective SREBP-1c signaling may explain the
decreased differentiation and insulin resistance of PI-treated
cells and the ability of PPARγ agonists to overcome the PI
effects on fat cell differentiation and insulin response [21].

NRTI therapy is also associated with fat tissue disease
in HIV-infected patients. In murine adipose cell lines and
primary cultured human adipocytes, stavudine and zidovu-
dine, but not other NRTIs (tenofovir, abacavir, didanosine,
and lamivudine), alter lipid storage [23, 31, 33, 81]. They
also decrease the expression and secretion of adiponectin
in cultured human and murine adipocytes [23, 32, 33,
82] and induce oxidative stress, suggesting that they could
secondarily participate to the insulin resistance setup [33].
The negative effect of NRTIs on PPARγ expression and
signaling has been reported only in a few studies. Stavudine
or zidovudine have a modest, or no effect, on adipose cell
differentiation assessed by the gene expression profile of
differentiating adipocytes [25] and by protein and mRNA
expression of adipogenic transcription factors, among them
PPARγ [20, 25, 31, 32, 82]. Altered adipocyte lipid phenotype
and insulin sensitivity resulting from NRTI treatment are
suspected to result from their mitochondrial toxicity [15–
18]. We recently reported that stavudine or zidovudine, but
not other NRTIs, triggers mitochondrial oxidative stress and
premature senescence in cultured fibroblasts and adipocytes
[19]. Stavudine also altered in human preadipocytes [72]
the expression of the PPARγ coreceptor 1-alpha (PGC1-
α) a transcriptional coactivator upregulated by thiazo-
lidinediones which controls mitochondrial function and
biogenesis, and metabolic pathways and integrates insulin
signaling and mitochondrial function [83, 84]. Stavudine
increased its expression together with mitochondria number
[72]. Thus, conversely to PIs, in vitro, thymidine analogs have
no or mild detrimental effect on PPARγ function.

The non-NRTI class of antiretrovirals has not yet, as
a class, been associated with long-term toxicity [7] even
if efavirenz was shown in one study to be associated with
lipoatrophy [14]. Very few studies report experimental in
vitro findings on the effects of the non-NRTIs efavirenz or
nevirapine on white adipose cell functions. Efavirenz but
not nevirapine induced a delayed and moderate reduction
in lipid accumulation in both murine and human cultured
adipocytes, and decreased SREBP-1c and PPARγ expression
[85].

3. Effect of ART on PPARγ Expression and
Function in Animal Models

Ritonavir was shown to increase lipogenesis [86] and to
induce insulin resistance in animal models [87]. In mouse
fat tissue, it partially inhibits the function of PPARγ as
shown by the decreased induction of PPARγ target genes
by rosiglitazone [88]. Lopinavir-ritonavir but not atazanavir
decreased by 25% the weight of peripheral inguinal fat in
mice treated for 8 weeks, while the profound epididymal
adipose tissue depot was not affected. The expressions of

SREBP-1c and of its target gene fatty acid synthase were
increased in the peripheral inguinal fat while that of PPARγ
tended to be decreased in the two depots and that of its target
gene adiponectin was not modified [89]. Even if not entirely
conclusive, these data are in favor of an altered expression
and/or function of PPARγ induced by some PIs in murine
models.

4. Effect of ART on PPARγ Expression and
Function in Patients’ Adipose Tissue

Studies performed on human adipose tissue samples studied
ex vivo concerned, at first, healthy controls treated with ART.
Mallon et al. [90] reported that a 2-week treatment with
stavudine/lamivudine or zidovudine/lamivudine resulted in
an increased expression of PGC1α and PPARα and a
decreased expression of PPARγ without any modification
in the expression of SREBP1. Altered expression of PGC1α
was correlated with upregulation of nuclear genes involved
in transcription regulation of mtRNA and oxidation of fatty
acids suggesting a central role for PGC1 in nuclear response
to mitochondrial dysfunction.

Several studies evaluated the expression of PGC1α and
PPARγ in adipose tissue from long-term ART treated HIV-
infected patients with lipodystrophy. A decreased expression
of the two factors was reported in abdominal fat from
lipodystrophic patients as compared to controls [36, 37] and
to non-lipodystrophic patients [91]. A decreased expression
of PPARδ was also found in this latter study. Accordingly,
a decreased expression of the transcription factor SREBP-
1 was also reported [36, 91, 92]. PPARγ adipose tissue
expression was found decreased in HIV-infected patients
as compared to noninfected controls by Giralt et al. [5]
but the major decrease was observed in naı̈ve versus ART-
treated patients, without differences between lipodystrophic
and nonlipodystrophic patients, arguing for a major role
for the virus itself. The expression of PGC1α was increased.
The group of D. Nolan and S. Mallal observed that the
PPARγ2 mRNA level was similar in fat from treatment-naı̈ve
patients and in patients under PI or zidovudine but lower
in patients under stavudine. However, noninfected controls
were not evaluated in that study [93]. Interestingly, adipose
tissue dysfunction appears more severe in peripheral than
in abdominal subcutaneous adipose tissue, as shown by the
decreased expression of PPARγ, C/EBPα, and adiponectin in
adipose tissue from thigh versus abdomen [94]. Therefore,
a strong alteration in PPARγ expression was found in
most studies using HIV-infected patients’ subcutaneous fat
samples.

To examine the reversibility of adipose tissue alterations
in HIV-infected patients, adipose tissue biopsies were stud-
ied before and after a 6-month interruption of ART in
the Lipostop study. Adipose tissue inflammation improved
markedly, with fewer infiltrating macrophages and fewer
TNFα- and IL6-expressing cells. mRNA expression of PPARγ
and of markers of mitochondrial function and biogenesis
(cytochrome oxidase subunit 2 and PGC1α) improved after
PI withdrawal. In patients who stopped taking stavudine
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or zidovudine, adipose tissue inflammation, mitochondrial
status, and SREBP-1 expression were improved [95]. Since
PGC1α is playing a leading role in mitochondria function
[84], this indicates that altered PGC1α and PPARγ expression
induced by some ART may be involved in mitochondria
dysfunction observed in patients’ fat [90, 95].

Decreased PPARγ expression was also strongly correlated
with increased expression of inflammatory cytokines such as
IL-6 and TNF-α and decreased expression and circulatory
levels of adiponectin which is involved in liver and muscle
insulin sensitivity [1, 36, 37, 91, 96]. These data confirm
that altered PPARγ function in adipose tissue plays a role
in overall insulin resistance associated with lipodystrophy,
as reported in genetically-determined PPARγ dysfunctions
[45]. In accordance, the study from Sutinen et al. [97]
reported the effects on adipose tissue of a 24-week treat-
ment with the PPARγ agonist rosiglitazone compared with
placebo in HIV-infected patients with lipodystrophy. The
expression of adiponectin, PPARγ, and PGC1α significantly
increased while that of IL-6 decreased. Expression of other
genes involved in lipogenesis, fatty acid metabolism, or
glucose transport, such as PPARδ, and SREBP-1, remained
unchanged. Rosiglitazone also significantly induced an
increase in serum adiponectin concentration, which was
inversely correlated with the changes in fasting serum insulin
concentration and liver fat content. Such data have led
to conduct clinical trials using thiazolidinediones to try
to reverse peripheral fat loss. Even if the results obtained
with rosiglitazone were disappointing (see [97]), possibly
due to the ongoing presence of stavudine in the ART
regimen, recent data obtained with pioglitazone are more
promising and reveal, in patients not treated with stavudine,
an improvement of peripheral fat [98] further supporting a
role for PPARγ dysfunction in lipoatrophy.

5. PPARγ Expression and Fat Hypertrophy in
HIV-Infected Patients

The lipodystrophic phenotype observed in HIV-infected
patients associates, to different extent, peripheral lipoatrophy
and fat hypertrophy in different fat depots. In particular, a
buffalo hump has been observed in a number of patients.
The group of F. Villaroya showed that buffalo humps from
HIV-infected patients displayed a brown adipose tissue
phenotype with both specific uncoupling protein 1 (UCP1)
expression and mitochondrial dysfunctions [99]. However,
there were no significant changes in the expression of other
UCP genes or of that of markers of adipogenesis including
PPARγ, PGC1α, and adiponectin relative to controls. A more
extensive analysis indicated that buffalo hump tissue does not
express a complete brown adipocyte phenotype but rather
a distorted brown-versus-white phenotype associated with
enhanced proliferation [2]. In addition, buffalo humps failed
to show increased expression of TNFα or the macrophage
marker CD68 indicating the absence of a local inflammatory
status. Since adipose tissue inflammation and the presence of
proinflammatory cytokines has been presumed to play a role
in subcutaneous fat lipoatrophy in HIV-infected patients,

this absence of inflammation could explain, at least in part,
the absence of fat loss observed in that depot.

The effect of antiretrovirals on brown adipocytes has
been evaluated in two studies. In primary culture of differ-
entiated murine brown adipocytes, neither the cell differen-
tiation nor the level of PPARγ was modified by the treatment
with a series of NRTI including stavudine and zidovudine.
By contrast, regarding the NNRTI, nevirapine increased
and efavirenz decreased brown adipocyte differentiation and
PPARγ expression. PGC1α expression was not modified by
the drugs except for its increase in response to stavudine
and nevirapine [100]. In the T37i brown adipocyte cell-line,
indinavir, stavudine, and zidovudine alone or in association
impaired PPARγ2 and UCP1 expression together with a
strong inhibition of cell differentiation and mitochondrial
functions, although the 3T3-F442A white adipocyte cell
line, studied under similar conditions, was less severely
affected [26]. Therefore, brown fat can also be a target of
antiretrovirals. Since the presence of brown adipose tissue
in normal humans has been recently reassessed [101], it
would be important to further evaluate its alterations in HIV-
infected patients under ART.

Increased visceral fat is also a characteristic feature of
HIV-related lipodystrophy. However, samples from patients
are difficult to obtain and no study, up to now, has reported
specific data obtained with HIV-infected patients’ visceral
fat. A few studies compared the effect of antiretrovirals on
adipocytes issued from subcutaneous and visceral fat from
noninfected subjects but the expression of PPARγ or PGC1
was not evaluated.

6. PPARγ and Macrophages

PPARγ plays an important role in macrophage function and
phenotype and exerts an overall anti-inflammatory function
(see [5]). Recent data have shown that adipose tissue from
obese individuals presents macrophage infiltration as well
as increased number of “M1” or “classically activated”
macrophages. Importantly, the agonists of PPARγ have been
shown to alter macrophage phenotype to “M2” or an
“alternatively activated” anti-inflammatory phenotype and
may induce macrophage specific cell death [102]. PIs could
alter PPARγ in macrophages by increasing PPARγ mRNA
expression resulting in foam cell formation [103]. In the
Lipostop study [95], we observed that stopping ART resulted
in an improvement of adipose tissue function associated
with a decreased number of M1 but not M2 macrophages
together with an increased expression of PPARγ. This can
result from modified PPARγ expression both in adipocytes
and macrophages.

7. Conclusion

In vitro and in vivo data strongly suggest that altered
PPARγ function plays a role in HIV-related lipodystrophy
as a result of a multifactorial toxicity of ART on adipose
tissue. In vitro studies investigating the effect of individual
antiretrovirals have clearly revealed that some PIs inhibit
PPARγ functions, probably at the earlier step of SREBP1c
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activation. Ex vivo studies of adipose tissue, both in healthy
volunteers and in HIV-infected patients, confirmed these
data but also point to a possible toxicity of NRTI, principally
stavudine and to a lesser extent, zidovudine. Since PPARγ is
playing a central role in adipose tissue differentiation and
function, decreased PPARγ expression could be expected
to be involved in the pathophysiology of lipodystrophy.
Importantly, both adipocytes and macrophages present in
patients’ adipose tissue can be affected at the PPARγ level.
Adipose tissue dysfunction could induce insulin resistance
and deregulate adipokine secretion with increased release
of proinflammatory cytokines and decreased adiponectin,
alterations which will impact on the liver and muscles.

Most studies in that setting evaluated the expression and
function of PPARγ and only scarce data are available for
PPARα and PPARδ.

Using thiazolidinediones to reverse fat lipoatrophy was a
logical proposition. However, trials using rosiglitazone were
disappointing, in part due to the absence of discontinuation
of stavudine. Pioglitazone was more promising and resulted
in some recovery of limb fat further arguing for a role for
PPARγ in initial fat alteration.
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