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ABSTRACT
Soft tissue sarcomas are a group of rare and aggressive connective tissue neoplasms for which curative 
therapeutic opportunities are limited in advanced phase. Clinical trials assessing immunotherapy in these 
tumors have so far reported limited efficacy. The objective of this study is to provide a description of the 
immunologic landscape of sarcomas to guide the next clinical trials of immunotherapy in these diseases. 
The gene expression profile of 93 immune checkpoint (ICP) and membrane markers (MM) of immune cells 
was analyzed in a series of 253 soft tissue sarcoma (synovial sarcoma, myxoid liposarcoma, sarcoma with 
complex genomic and GIST) using Agilent Whole Human Genome Microarrays. The unsupervised hier-
archical clustering of gene expression level was found able to properly group patients according to the 
histological subgroup of sarcoma, indicating that each sarcoma subgroup is associated with a specific 
immune signature defined by its gene expression pattern. Using the prognostic impact of CIBERSORT 
signature on metastatic-free survival in each subgroup, specific target could be proposed for each of the 
four groups: Treg through ICOS and GITR in GIST, M0 macrophages in all four sarcoma subtypes, OX40 in 
SS, CD40 in GIST and SS. The immune landscape of sarcoma was found to be as heterogeneous as the 
histotypes and molecular subtypes, but strongly correlated to the histotype. Histotype adapted immu-
notherapeutic approaches in each sarcoma subtypes must be considered in view of these results, 
consistently with the already reported specific response of histotypes of ICPs.
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Introduction

Soft tissue sarcomas (STS) are a group of rare and aggressive 
connective tissue neoplasms with limited curative therapeutic 
opportunities in advanced phase. Sarcoma is a heterogeneous 
group of different diseases in terms of histological subtypes and 
molecular alterations, natural history, prognosis and variable 
drugs sensitivity. Histological classification includes more than 
150 different sarcoma subtypes, while molecular characteriza-
tion further increases nosologic fragmentation and the com-
plexity of this classification.1 STS are classically divided into 
sarcoma with complex genomic profile (SCG) and sarcoma 
driven by a specific genomic abnormality (translocation, muta-
tion, amplification).

A large body of clinical and biological observations supports 
the relevance of the use of immunotherapy in sarcoma but 
their heterogeneity for histological and molecular subtypes 
has limited generalized approaches of immunotherapy in 
these tumors. Single-agent PD-1/PD-L1 antibodies (Ab) have 
limited efficacy in unselected series of sarcomas included in 
phase II clinical trials.2–4 Response rates are consistently low, 

with a median progression-free survival (PFS) of 3 months or 
less, and virtually no long-term PFS. Combination of anti- 
CTLA-4 with PD-1/or PD-L1 Ab may provide higher response 
rates and PFS but at the cost of higher toxicity. Biomarkers are 
lacking in these clinical trials.5 Somewhat unexpectedly, immu-
notherapy provides higher tumor control rates in Alveolar Soft 
Part Sarcoma (ASPS) and chordoma than other sarcoma 
types.6,7

Biomarkers of response in other cancer types than sarcoma, 
such as mutational load, infiltrating immune cells, PD-L1 
expression, and ploidy have however been identified in subsets 
of sarcomas.2,8 Translocation-driven sarcomas harbor specific 
immunogenic potential: fusion breakpoint sequences asso-
ciated with synovial sarcoma (SS), clear cell sarcoma, desmo-
plastic small round cell tumor and Ewing sarcoma may serve as 
tumor-specific neo-antigen.9 Therefore, sarcoma patient selec-
tion for immunotherapy with anti-PD1 is challenging and may 
be based on histotypes classification, somatic mutations, 
immune infiltrates and possibly other markers. The explora-
tion of other ICP in therapy should also benefit from 
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a systematic analysis of the expression of the different ICP in 
each tumor type.

A better description of the immune landscape of sarcomas is 
therefore needed to promote the rational development of immu-
notherapy in these tumors. To study inter- and intra-tumor 
immunologic heterogeneity across the different subtypes, high 
throughput transcriptomic data of a series including different 
sarcoma subtypes were analyzed: 1/by expression levels of 93 
genes related to immune checkpoint (ICP) and membrane mar-
kers (MM) of immune cells and 2/using the LM22 CIBERSORT 
signature to distinguish prognostic subgroup. These results 
show that immune landscape strongly correlated to histotype 
and molecular subtypes, and identifies specific ICP associated 
with individual sarcoma histotypes.

Results

Population characteristics

This study included a total of 253 localized STS and gastro-
intestinal stromal tumor (GIST); 85 were STS with complex 
genetics (SCG), 60 gastrointestinal stromal tumors (GIST), 58 
synovial sarcomas (SS) and 50 myxoïd liposarcoma (MLPS), 
the two later being contributing to classical “translocation- 
related sarcoma” with specific fusion transcripts. The group 
of 85 SCG includes 30 undifferentiated pleomorphic sarcoma 
(UPS) (35%), 24 leiomyosarcoma (LMS)(28%), 11 dedifferen-
tiated liposarcoma (DDLPS)(13%), 7 myxofibrosarcoma (8%), 
6 pleomorphic rhabdomyosarcoma (7%), 4 pleomorphic lipo-
sarcoma (5%), 3 adult fibrosarcoma (4%). Table 1 summarizes 
the tumor characteristics (localization, size, and grade) and the 
disease outcome (local or metastatic relapse).

As expected, the distribution of tumor localization is related 
to histological subtypes. Tumor size was above 5 cm in the 
majority of cases. After a median follow-up of more than 3 y, 
36 (15%) of patients had presented a local relapse and 86 (34%) 
a metastatic recurrence.

Immune landscape discriminates sarcoma histological 
subtypes

Fifty of the 93 ICP/MM genes (54%) had consistently low 
expression levels regardless of the sarcoma subgroups (e.g. 
GITRL, CCR9, FoxP3, N2DL1) while some others had con-
sistently high levels of overexpression (e.g. CD4, HVEM, 
CSF-1R, TNFR1). However, the majority of genes were 
differentially expressed in the four sarcoma subgroups 
allowing the unsupervised analysis to match with histologi-
cal subtypes cluster.

Indeed, an unsupervised hierarchical clustering of the gene 
expression level of the 93 ICP/MM was applied to the 253 
sarcoma to correlate expression level of ICP/MM genes and 
sarcoma subgroups (Figure 1). The pattern of gene expression 
yielded a regrouping of the sarcoma samples matching closely 
their histological subtypes. In addition, two groups of MLPS 
(including 10 and 33 samples in the left and right groups, 
respectively) and two groups of GIST (including 21 and 29 
samples in the left and right groups, respectively) were identi-
fied by the clustering analysis. The role of several clinical 
(tumor location, Armed Forces Institute of Pathology (AFIP) 
classification) and biological (mutation location according to 
KIT or PDGFR gene and exon location, genomic index) criteria 
on the partition in two groups of GIST was tested. None of 
these criteria led to different representations in these two sub- 
groups of GIST. The unsupervised clustering was also applied 
to the 85 SCG did not distinguish the different histotypes 
included in this group.

To confirm the specificity of gene expression signature 
according to sarcoma subgroup, the t-SNE technique was 
applied for dimensionality reduction (Figure 2). Dimensions 
1, 2 and 3 represented nonlinear gene groups for which the 
correlation value was the most powerful to discriminate the 
four sarcoma subgroups. Conversely, for the specific group of 
SCG, this unsupervised deconvolution method led to 
a correlation value of each gene for each four sarcoma 

Table 1. Clinical characteristics of patients among the different cohorts.

Cohort SCG GIST SS MLPS All

Cases number 85 (34%) 60 (23%) 58 (23%) 50 (20%) 253 (100%)
Tumor site 

● Extremities
● Head and neck
● Internal trunk
● Trunk wall

59 (69%) 
0 

11 (13%) 
15 (18%)

0 
0 

60 (100%) 
0

41 (71%) 
5 (9%) 

0 
12 (20%)

46 (92%) 
0 

1 (2%) 
3 (6%)

146 (58%) 
5 (2%) 

72 (28%) 
30 (12%)

Tumor size 

● ≤5 cm
● >5 cm

16 (19%) 
69 (81%)

29 (48%) 
31 (52%)

UNK 3 
16 (28%) 
39 (67%)

4 (8%) 
46 (92%)

UNK 3 
65 (25%) 

185 (73%)

Grade 
(FNCLCC or AFIP)

UNK: 1 (1%) 
I: 0 

II: 25 (29%) 
III: 59 (70%)

Very low: 13 (22%) 
Low: 16 (27%) 

Intermediate: 14 (23%) 
High: 17 (28%)

I: 0 
II: 7 (12%) 

III: 51 (88%)

I: 27 (54%) 
II: 21 (42%) 
III: 2 (4%)

NA

Follow-up, years median [95% CI] 3.23 [2.14–4.02] 3.63 [2.93–4.43] 3.05 [2.45–3.33] 3.84 [1.38–5.08] 3.23 [2.93–3.60]
Local relapse 18 (21%) 6 (10%) 9 (16%) 3 (6%) 36 (14%)
Metastatic relapse 36 (42%) 15 (25%) 28 (48%) 7 (14%) 86 (34%)

CI: Confidence Interval, NA: Not Applicable, UNK: UNKnown.
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subgroups. The t-SNE analysis failed to discriminate the dif-
ferent histological subtypes included in the group of SCG 
(DDLPS, LMS, UPS and others), possibly due to an under-
representation of each subtype (Supplementary Figure S1).

Altogether, these results indicate that each of the four sar-
coma subgroups (GIST, SS, MLPS, SCG) is associated with 
a specific immune signature defined by its ICP gene expression 
pattern.

Gene expression pattern of each sarcoma subtype

The differential expression of each gene across sarcoma sub-
groups is presented in Figure 3. Number values of data repre-
sented in Figure 3 are reported in Supplementary Table S1.

Expression level of each of the 93 ICP/MM genes was 
determined for the 253 sarcoma cases included in the study 
using either the 25 and 75 percentile of samples included in 
each sarcoma subtype and the Z-score that gives a numerical 
measurement of each value’s relationship to the mean in the 
group of values. The significance represents the heterogeneity 
of each gene expression level across the four subgroups.

We observed genes with 1) homogeneous expression pat-
terns across the four groups, 2) heterogeneous patterns of 
expression across the four groups, and also 3) genes with 
different expression patterns within a given group.

As examples of the first group, LAG3 was highly expressed 
in all four subgroups (mean range between 10.91 and 11.73) 
whereas ULBP1 (N2DL1) was poorly expressed (mean range 
between 3.065 and 3.13). For the second group, with a high 
variability of gene expression of ICP/MM across the four 
sarcoma subgroups, the following examples can be presented: 
CD68 is highly expressed in SCG (mean 13.255) and moder-
ately expressed in SS (mean 9.53); CSF1 is moderately 
expressed in SCG (mean 7.405) and poorly expressed in SS 
(mean 3.705). Across all sarcoma subtypes, the highest levels of 
expression were reported for monocytes/macrophages MM 
genes (CSF-1R, CD163, CD68, FCGR3A (CD16a)), the highest 
expression levels being observed in the SCG subgroup. The 
lowest levels of genes expression were reported for TNFSF18 
(GITRL), KIR2DL2 (CD158b), KIR2DS1 (CD158H), ULBP1 
(N2DL1), and FoxP3. In general, SS had a consistently low 
level of expression for all ICPs (mean 6.36 for all ICP/MM); 

Figure 1. Unsupervised clustering analysis of the 93 ICP/MM gene expression signature for all 253 sarcoma samples. Heat map of the full signature for all samples. 
Sarcoma (in columns) are labeled by their histological subgroup. Genes belonging to the signature (in rows) are labeled by their biological relevance. (TNF: tumor 
necrosis factor, DR: death receptor, Cytotox: cytotoxic T cell, ICP: immune checkpoint, Mono: monocyte, Macro: macrophage, NK: natural killer and Neutro: neutrophil.).
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conversely, the highest expression was in general reported for 
GIST (mean 7.96 for all ICP/MM) and SCG (8.20 for all ICP/ 
MM). This was for instance the case for ENTPD1 (CD39) or 
FAS. As examples for the third group of genes, the expression 
level of IDO1 is homogeneous within the GIST group (high) 
and heterogeneous within the SCG or SS groups, and the 
expression level of CD70 (OX40L) is homogeneous within the 
GIST group and heterogeneous within the MLPS or SS groups.

Together, these results report an important heterogeneity of 
expression of each of the 93 ICP/MM genes across sarcoma 
subgroups, and across patients within the same tumor 
subgroup.

Prognostic value of individual genes

The prognostic impact of each ICP/MM (above vs under mean 
value) for metastasis-free survival (MFS) was then explored in 
the four sarcoma subgroups.

No ICP/MM demonstrated a significant prognostic impact 
in all four sarcoma subgroups. Some ICP/MM gene had 
a similar positive prognostic across two groups (e.g. positive 
impact of TNFRSF5 (CD40) in GIST and SS). Other may be 
associated with a higher risk of relapse in one sarcoma group, 
and the opposite in another (e.g. LTA (Lymphotoxin alpha) 
expression has a positive impact in GIST and a negative one in 
SS). Some of these ICP are targets for therapeutic antibodies in 
development: among these, the following ICP was associated 
with negative prognostic impact in GIST (ICOSL, TNFRSF4/ 
OX40, TNFSF18/GITRL) or SS (TNFRSF4/OX40). CD40 is 
associated with good prognosis in GIST and SS and CD40 
agonists are under development.

CIBERSORT signature and prognostic impact

CIBERSORT for Cell type Identification By Estimating Relative 
Subsets Of known RNA Transcripts is a signature providing an 
estimation of the distribution of immune cell populations 
based on their transcriptomic profile. It consists of an in silico 
approach for characterizing 22 immune cell populations of 
interest based on a bulk transcriptome deconvolution using 
a pre-defined signature of 547 genes.11 It reports proportions of 
immune cell infiltrates within samples and not absolute values. 
Comparing CIBERSORT profile from a sample or histological 
subtype to another one reflects the impact of the higher or 
lower representation of an immune cell type rather than global 
immunologic potential. This signature was not found corre-
lated to histotypes, tumor site, tumor grade, CINSARC signa-
ture or metastatic relapse. Results of CIBERSORT distribution 
in the whole cohort are reported as Supplementary Figure S2.

The representation of immune cell populations and their 
prognostic impact was then studied in the four sarcoma sub-
groups and presented in Figure 4. Four specific immune cell 
populations were found associated with outcome in the four 
sarcoma subgroups.

1) Activated NK cell signature was differentially expressed 
across sarcoma subtypes (highest significance) with the 
highest gene expression observed in GIST.

2) M0-macrophages were associated with poor prognosis in 
the three other sarcoma subgroups. Of great interest in SS, 
MLPS and SCG, we compared the prognosis impact of the 
M0-macrophage signature with the gold standard histo-
logical FNCLCC grade,11 GIST not being included in this 
analysis as in this STS entity AFIP grade is used in place of 
FNCLCC grade. As shown in Figure 5, for the group of 
137 cases including these three entities, the high M0- 
macrophage signature associated with a poorer MFS 
(HR = 2.98; p = 1.28 10–4), outperforming the histopatho-
logical FNCLCC grade 3 (HR = 2.15; p = 1.99 10−2).

3) The presence of resting mast cells signature was asso-
ciated with longer MFS in SS (p = 1.16 10−2) whereas 
activated mast cells signature was associated with poor 
prognosis in GIST (p = 2.78 10–4).

4) Finally, naïve B cells signature was associated with a poor 
prognosis in SS (p = 2.84 10−3).

Discussion

The results presented in this work show that the immune 
infiltrate profile of human sarcoma is different in the distinct 
sarcoma histotypes, that individual ICP expression profile 
may have different prognostic values for metastatic-free sur-
vival, and that cell infiltrates predicted by the Cibersort tool 
are different across the four groups and have different pre-
dictive values.

Sarcoma remains heterogeneous in terms of immune 
landscape, but this heterogeneity is matching the genomic 
alteration of sarcoma subtypes. These results also show the 
important of immune infiltrate for sarcoma prognosis, and 
strongly confirm that one-size-fits all approach for the 

Figure 2. Correlation of ICP/MM genes expression with histological sarcoma 
subtype with t-SNE. t-SNE analysis processing a non-linear dimension reduction 
of the signature for all samples. Points are sarcomas highlighted in colors for each 
histological subtype (Dim: dimension).

4 A. DUFRESNE ET AL.



manipulation of immune system for sarcoma treatment is 
unlikely to succeed for new ICP inhibitors development, 
while providing possible guidance for the selection of sub-
types for new ICPs.

Even if beneficial to a small proportion of patients with 
advanced sarcoma, targeting PD1 pathway is most often ineffi-
cient and predictive factors of response to immunotherapy must 
be identified and tested prospectively in the clinic. From the 

Figure 3. Expression level of the 93 ICP/MM genes across each sarcoma subtype. - The gene expression value is displayed by bars representing the 25 and 75 percentile 
of expression level for each ICP/MM. Each sarcoma subtype is shown (green: GIST; blue: MLPS; red: SCG; orange: SS).- The Z-score is averaged for each gene within each 
sarcoma subgroup (red corresponding to the highest expression and blue the lowest one; from 2 to −2, respectively).- The significance displays the relationship 
between expression values across histological subtype given by multiple Bonferroni-adjusted ANOVA, ranked from high significance (top) to non-significant (bottom). 
Vertical dashed line indicates significance threshold (p = .05), 84 genes out of 93 (90%) are differentially expressed in the different subtypes.- The prognosis represents 
the impact of an ICP/MM gene expression on MFS. A positive prognostic impact (high expression correlated with longer MFS) and is represented in green. A negative 
impact (high expression correlated with shorter MFS) and is represented in red.- CT and FDA highlight genes whose protein is targeted in a Clinical Trial or by a Food and 
Drug Administration approved agent.10
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clinical trials data reported so far, exploring the efficacy of 
immunotherapy in sarcoma, few responses in the most common 
subtypes (UPS, DDLPS, LMS, GIST) and frequent responses in 
very rare subtypes (angiosarcoma, ASPS, chordoma) were 
reported. No consistent biomarkers have been identified so far 
across sarcoma histotypes: it remains challenging to know if the 
selection of patients that could benefit from immunotherapy 
should be based on sarcoma histotypes or biomarkers.

Few studies identified biomarkers of response to immu-
notherapy in sarcoma. Correlation between somatic mutations 
load and sensitivity to immunotherapy is well documented for 
a variety of cancers,12 but a high mutational burden is rarely 
observed in sarcoma.13 PD-L1 expression in sarcoma as reported 
in the literature is, for instance, complex to interpret, owing to 
the wide range of technologies used for these studies (protein 

expression by immunohistochemistry (IHC), gene expression 
level) and a high heterogeneity and reduced size of many series 
based on histological subtypes.10,14-17 It can however be con-
cluded that sarcoma tumor cells generally express low levels of 
PD-L1, and PD-L1 expression is more frequently observed on 
lymphocytes or monocytes infiltrating the tumor.

Immune infiltrates are well documented to be correlated 
with response to immunotherapy in melanoma 18 and 
carcinoma.19 Few series have assessed the presence of immune 
infiltrates in sarcoma, showing a wide variety of infiltrating 
immune cells, varying across and within histotypes. GIST is 
among the best described sarcoma in this perspective, with 
macrophages, T cell and NK cell infiltrates predicting response 
to TKIs.20–23 Recently, re-interpretation of the SARC028 
results through immune-based classification suggests a higher 

Figure 4. Immune population defined by CIBERSORT signature and their relevance across sarcoma subtypes. - The expression value is displayed by bars representing the 
25 and 75 percentile of expression level for each immune cell population. Each sarcoma subtype is shown (green: GIST; blue: MLPS; red: SCG; orange: SS).- The Z-score is 
averaged for each gene within each sarcoma subgroup (red corresponding to the highest expression and blue the lowest one; from 2 to −2, respectively).- The 
significance displays the relationship between expression values across histological subtype given by multiple Bonferroni-adjusted ANOVA, ranked from high 
significance (top) to non-significant (bottom). Vertical dashed line indicates significance threshold (p = .05), 16 immune cell populations out of 22 are differentially 
expressed in the different subtypes.- The prognosis represents the impact of an immune cell population on MFS. A positive prognostic impact (high expression 
correlated with longer MFS) and is represented in green. A negative impact (high expression correlated with shorter MFS) and is represented in red.

Figure 5. Kaplan-Meier analysis of metastasis-free survival according to M0-macrophage signature in the group of 137 sarcoma including SCG, MLPS and SS 
(unadjusted p).
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response rate to Pembrolizumab in a subgroup SCG enriched 
in immune cells and tertiary lymphoid structures (TLS).24 This 
biomarker is currently tested prospectively (Pembrosarc clin-
ical trial; NCT02406781).

Still, a more accurate description of the immune landscape 
of sarcoma remains needed to guide further clinical trials with 
novel ICP blockers and to appropriately select patients more 
likely to benefit from different immune strategies. The present 
results provide a large overview of ICPs and immune cell MM 
gene expression in different subgroups of STS which may, 
therefore, contribute to guiding the development of immu-
notherapy in sarcoma. All four subgroups of sarcoma studied 
(GIST, SCG, MLPS and SS) display specific immune landscape, 
as demonstrated in the unsupervised hierarchical clustering 
analysis and t-SNE analysis. The translocation-related sar-
coma, MLPS and SS, shares some similarities (low gene expres-
sion of CD39/ENTPD1, CD73/NT5E, PD-L1/PDCD1LG1 or 
PD-L2/PDCD1LG2, for example) but also show distinct 
expression patterns (e. g. CD28 or IDO1 expression exclusively 
in MLPS and not in SS). This outlines the variability of ICP and 
MM gene expression across sarcoma subgroups and also across 
patients belonging to the same sarcoma subgroup.

The analysis of 93 ICP/MM gene expression and 
CIBERSORT signature as prognostic factors for the different 
subgroups also emphasizes the specificity of each sarcoma sub-
type. Bonferroni correction was applied to this analysis to dis-
criminate genes most likely to be relevant. The prognostic 
significance of few ICPs/MM and some immune cell popula-
tions is reported, and is found different across the different 
subgroups. Interestingly, the same immune population may 
have an opposite prognostic impact according to the subgroups.

Interaction between ICOS and its ligand B7H2 (ICOSL) has 
been described to stimulate the expansion of immunosuppres-
sive Treg in breast 25 and ovarian 26 tumors. In GIST, our data 
highlighted high expression levels for ICOS gene and its ligand 
that is correlated with a poor prognosis. The poor prognosis of 
Treg has previously been reported in a cohort of various STS.27 

Thus, targeting Treg expansion through anti-ICOS antagonists 
as currently developed in clinics (MEDI-570 NCT025250791) 
may be an interesting strategy in GIST. Of note, in contrast to 
most ICP, B7H2 (ICOSL) was expressed at the highest level in 
SS. In this context, it is surprising to note a low expression of 
FoxP3 gene across all sarcoma subtypes. This low level of 
FoxP3 expression had never been reported.

Interestingly, Tnfrsf18 (GITR) is expressed in all four sub-
types studied and the gene expression of its ligand is associated 
with a poor prognosis in GIST. Several anti-GITR antibodies 
are currently assessed alone or in combination with other 
immunotherapies in advanced malignancies (e.g. 
NCT01239134, NCT03277352) and thus, should be further 
explored in GIST.

A radically different immune profile from the three other 
subgroups is observed for SS. The high CD8 level detected in SS 
in our study is in contradiction with low T-cell infiltration in SS 
without prognosis impact, reported by Pollack et al.27 LTA 
gene expression correlates with poor prognosis in SS and 
good prognosis in GIST. Sorbye et al. reported that IHC detec-
tion of CD20 + B cells positively impacts disease-specific sur-
vival in non-GIST STS 28 but when focusing specifically on SS, 

peritumoral B cell detection appears of poor prognosis value, 
a result consistent with our observations.

Co-detection of CD8, MS4A1 (CD20), and LTA could 
reflect the presence of TLS structures close to lymphoid orga-
nization promoting the differentiation of effector and memory 
B and T cells directly within the tumor environment.29 This 
suggests that in SS, the detection of TLS will rather predict 
a poor survival as recently described for DDLPS 15 in contrast 
to the favorable prognosis reported in lung 30 and breast 31 

carcinoma.
The role of mast cells present in tumor micro-environment 

as driving or inhibiting cancer progression is still controversial. 
Their positive prognostic impact has been established in 
tumors like colon, breast or biliary tract cancers and, interest-
ingly, associated with a higher sensitivity to chemotherapy.32 

Our results show that the detection of resting mast cells signa-
ture is associated with a longer MFS in SS. This is in agreement 
with a study reporting that the amount of mast cells was 
a significant predictor of the disease-free interval and the over-
all survival of SS patients.33 Mast cells may contribute to the 
immunosuppressive tumor microenvironment via mobiliza-
tion of and interaction with MDSC and Treg.

Interestingly, M0-macrophage signature correlated with 
poor MFS prognosis in all four sarcoma subgroups, more 
significantly than the gold standard FNCLCC histological 
grade. This negative prognostic impact has been previously 
reported in other tumor types like lung34 or breast35 cancers. 
M2-macrophages characterized either using CD163 gene or the 
Cibersort M2-Macrophage signature did not correlate with 
prognosis in the different entities of sarcoma. This contrasts 
with results obtained in other solid tumors36 and a recent study 
reporting the poor prognosis of M2-macrophages on a small SS 
cohort (n = 39) based on CD163 detection by IHC.37 This M0- 
macrophage signature may reflect either new monocytes 
recruited in tumor environment possibly via CCL2/CCR2 
pathway to differentiate into M1- or M2-macrophages accord-
ing to the tumor milieu or an uncommitted precursor of 
resident macrophages. Targeting CSF-1 receptor to restore 
the differentiation mechanism of M0-macrophages into den-
dritic cells could be an interesting therapeutic approach.38

Analyzing the individual role of each cell types remains 
therefore challenging. The exact role of individual cell type 
requires further analysis. However, taking together the indivi-
dual genes and CIBERSORT analyses, and consistently with 
the literature, we can propose that new strategy in the devel-
opment of immunotherapy in sarcoma could be represented by 
Treg targeting through ICOS antagonist and GITR antibody in 
GIST, targeting M0 macrophages differentiation through CSF- 
1 receptor in all four sarcoma subtypes, OX40 inhibition in SS, 
CD40 agonists in GIST and SS.

This work has two main limitations:

1) A confirmation of these results on an independent data 
set would be of interest.

2) Moreover, it would have been interesting to explore 
further series both for RNA expression the protein 
level by IHC on tumor sections. Unfortunately, forma-
lin-fixed tumor blocks are no longer available for such 
a study.
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However, few markers are currently validated to decipher M0- 
from M2-macrophages. Based on Cibersort signature, proteins 
such as MARCO, CSF-1, MMP9, CCL7 or CXCL5 could be 
evaluated but no validated tools were available. CD163 and 
CD68 are classically used to discriminate M1 and M2 TAM. 
While CD68 is expressed on all three states, CD163 expression 
is supposed to be restricted to M2-macrophages.

Sarcomas are heterogeneous diseases in terms of histotypes, 
molecular subtypes, and now also, in terms of immune MM, ICP 
genes expression and infiltrating immune populations, as shown 
in this paper. As in the past with other systemic treatments, a one- 
size-fit all approach of immunotherapy in all sarcoma histotypes is 
less likely to succeed. The present results provide additional data 
for rationally develop new ICP inhibitors in specific sarcoma 
subtypes, in conjunction with mutational load, presence of TLS, 
and aneuploidy as potential predictive factors. Validation of prog-
nostic and predictive indicators among identified protein and 
immune population of interest warrants further investigation 
alongside therapeutic assessment. To achieve such a complex 
and ambitious goal, cooperative strategies for each individual 
histotype, at a worldwide level are essential.

Materials & methods

Patient samples

All patients included in this study had STS and were managed 
in expert centers of the French Sarcoma Group (FSG) between 
July 1991 and November 2011. Approval of the patients to 
participate in the study was obtained according to the French 
national laws and European laws at the time of study initiation. 
The CNIL (“Commission Nationale Informatique et Liberté” 
or French Data Protection Authority) authorization for the 
study is referenced as CNIL No. 909510 obtained on 
5 February 2010. Tumor samples were obtained from the 
frozen tissue of the primary tumor. Each case was reviewed 
by the group of pathologists associated with the FSG, members 
of the RRePPs network. The pathological diagnosis was con-
firmed according to the World Health Organization classifica-
tions based on histology, immunohistochemistry and 
molecular genetics when needed (molecular biology for GIST, 
FISH for MLPS and SS, for example).1 Histological grading was 
established according to the Fédération Nationale des Centers 
de Lutte Contre le Cancer (FNCLCC) system,39 whereas GIST 
grading was established according to the AFIP system.40 The 
cellularity of the samples was not available, as well as the ratio 
between cancer and immune cells.

Clinical characteristics of patients, of tumors and disease 
outcome were extracted from the Conticabase and Conticagist 
databases (European databases for STS and GIST, respec-
tively). With respect to regulatory procedures, these databases 
received authorizations from the Advisory Committee on 
Information Processing in Material Research in the Field of 
Health (CCTIRS) and the CNIL (CCTIRS obtained 9 Sept 2010 
and CNIL No. 910390 15 Jul 2013). These databases include 
only patients for whom the entire management, from initial 
biopsy to follow-up was performed in one of the NETSARC 
centers.41 Expression data are available as indicated in 
a previous study published by our group42 and can be 

accessible together with clinical annotations into the ATG- 
Sarc database (http://atg-sarc.sarcomabcb.org/).

Total RNA was extracted from frozen tumor samples by using 
the miRNeasy Mini Kit (Qiagen, Germantown, MD) and was 
purified by using the RNeasy Min Elute TM Cleanup Kit 
(Qiagen), according to the manufacturer’s instructions. RNA qual-
ity was checked on an Agilent 2100 bioanalyzer (Agilent 
Technologies). Gene expression analysis was carried out by using 
Agilent Whole Human 44 K Genome Oligo Array (Agilent 
Technologies), according to the manufacturer’s protocol.

Gene expression

A list of 93 genes of ICP and cell MM representative for 
immune landscape was established (the name of the protein 
is indicated in parenthesis if different from that of the gene):

- ICP: TIGIT, CD226 (DNAM1), PVR (CD155), CD28, 
CD80 (B7.1), CD86 (B7.2), CTLA4, ICOS, ICOSLG (B7H2), 
PDCD1 (PD-1), PDCD1LG1 (PD-L1), PDCD1LG2 (PD-L2), 
TNFRSF14 (HVEM), BTLA, C10orf54 (B7H5/VISTA), 
TNFRSF4 (OX40), TNFSF4 (OX40L), TNFRSF9 (CD137), 
TNFSF9 (CD137L), HAVCR2 (TIM3), LGALS9 (GAL9), 
LAG3, TNFRSF5 (CD40), TNFSF5 (CD40L), TNFSF7 (CD70/ 
CD27LG), TNFRSF7 (CD27), VTCN1 (B7H4), Tnfrsf18 
(GITR), TNFSF18 (GITRL), IDO (IDO1), NT5E (CD73), 
ENTPD1 (CD39) and CD96.

- Natural Killers (NK) cell markers: NCAM1 (CD56), 
NCR3 (NKp30), NCR1 (NKP46), MICA (MIC-A), MICB 
(MIC-B), ULBP1 (N2DL1), ULBP2 (N2DL2), ULBP3 
(N2DL3), KLRC1 (NKG2A), LILRB1 (ILT2/CD85J), LILRB2 
(ILT4/CD85D), KIR2DS1 (CD158H), KIR2DS2 (CD158J), 
KIR2DS4(CD158I), KIR3DL1 (CD158Z), KIR2DL2 (CD158b) 
and KLRK1 (NKG2D).

- Monocytes/macrophages markers: IL34, CSF1, CSF1R, 
CD163, CD68, FCGR3A (CD16a), FCGR3B (CD16b), IL6 and 
RASGRP1 (IL10), CD47, ARG1, TGFbéta, CD206 and INOS.

- Neutrophil markers: FUT4 (CD15) and MPO.
- Cytotoxic/Th1: CD3d, CD3e, CD3g, CD247 (=CD3zeta), 

LCK, CD4, CD8, IFNg and Granzyme.
- TNF-family Death receptors: TNFRSF1A (TNFR1), 

TNFRSF1B (TNFR2), TNFRSF10A (TRAILR1), TNFRSF10B 
(TRAILR2), FASL, FAS, TNF and TNFSF10 (TRAIL).

- Others: JAM3 (JAM-C), IL17A, CCR10, SELPLG (CLA), 
MS4A1 (CD20), FoxP3, LTB (Lymphotoxin beta), LTA 
(Lymphotoxin alpha), Lymphotoxine-beta R (LTbR) and 
TNFSF14 (LIGHT).

This list was generated on the basis of current scientific 
knowledge to explore i) key markers of immune popula-
tions, ii) positive and negative immune checkpoint mole-
cules of CD28 and TNF family, iii) known druggable targets 
and iv) molecules involved in immunoregulation and 
immunosuppression.

CIBERSORT is a method designated to characterize the cell 
composition of complex tissues from their gene expression 
profile.43 A leukocyte signature matrix, called LM22, was 
designed and validated to assess the feasibility of leukocyte 
deconvolution from bulk tumors. It contains 547 genes that 
distinguish 22 human hematopoietic cell phenotypes, includ-
ing naïve and memory B cells, plasma cells, seven T cell types 
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(CD8T cells, naïve CD4T cells, resting memory CD4T cells, 
activated memory CD4T cells, follicular helper T cells, regula-
tory T cells, γδ T cells), resting and activated natural killer 
(NK) cells, monocytes, macrophages (M0 macrophages, M1 
macrophages, M2 macrophages), resting and activated dendri-
tic cells (DC), resting and activated mast cells, eosinophils and 
neutrophils. This method has been successfully validated by 
flow cytometry and used to determine the infiltration of 
immune cells in various malignant tumors (e.g. breast cancer 
and colon cancer). CIBERSORT outperforms previous decon-
volution methods with respect to noise, unknown mixture 
content, and closely related cell types, in statistically estimating 
relative proportions of cell subsets from expression profiles of 
complex tissues (for example, bulk tumors). The prognostic 
impact of LM22 was established across 39 malignancies.11 The 
expression level of genes included in the signature of each 
immune cell population was studied as well as the prognosis 
impact of such a population on MFS.

Statistics

Gene expression of ICP and MM of immune cells were ana-
lyzed and their distribution correlated to pathological diagno-
sis. Their prognostic value on MFS was studied.

Gene expression analyses were performed using Agilent 
Whole Human Genome Microarrays (4x44K) according to 
manufacturer’s protocol. All microarray results were simulta-
neously normalized with the quantile method. For each gene, 
we selected the probe that maximizes the inter-quartile range 
value (higher expression dispersion) to reflect gene expression. 
Gene expression level was considered as low for values below 4, 
moderate between 4 and 10 and high above 10.

MFS was estimated using the Kaplan–Meier method from the 
date of the original diagnosis of the localized tumor to the date of the 
occurrence of first metastases or the latest follow-up. Significances are 
given by log-rank tests, where p below 0.05 was considered as 
a significant survival difference between risk-groups after Benjamin- 
Hochberg adjustment; hazard ratios (HR) were given by Cox regres-
sions. Clustering and heat map analyses were performed using 
Euclidean distance and Ward’s method. The t-Distributed 
Stochastic Neighbor Embedding (t-SNE) technique was applied for 
dimensionality reduction as an unsupervised method to identify 
samples with similar transcriptomic patterns. It was performed 
with a complexity value set to 15 for all cohorts and 3 dimensions 
were kept to display 3D scatterplots. Z-scores represent numbers of 
standard deviations from the global mean. For each gene, we aver-
aged z-scores belonging to the different histological subtypes. An 
ANOVA test was performed for each gene. Secondarily, all p-values 
were adjusted with the Bonferroni correction. These statistics were 
performed using R (v3.4.2) with survival (v2.41.3) and Rtsne (v0.13) 
packages (R Foundation for Statistical Computing, Vienna, Austria). 
We submitted expression data into CIBERSORT website interface 
(https://cibersort.stanford.edu/) using predefined LM22 immunolo-
gical signature composed of 547 genes.
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