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DRGATAN: Directed relation graph
attention aware network for asymmetric
drug-drug interaction prediction

Dehai Zhang,1 Zhengwu Wang,1 Di Zhao,1 and Jin Li1,2,*
SUMMARY

In scenarios involving the treatment of complex or coexisting diseases with multiple drugs, the potential
for severe adverse drug reactions in patients necessitates the identification of potential drug-drug inter-
actions (DDIs).Most existing computational methods have not taken into account the asymmetry and rela-
tion types of drug interactions caused by the relation information between drugs, which may lead to
missing information in embedded learning. Therefore, this paper proposes a directed relation graph atten-
tion aware network (DRGATAN) topredict asymmetric drug interactions.DRGATAN leverages anencoder
to learnmulti-relational role embeddings of drugs across different types of relations. The experimental re-
sults show that DRGATAN’s performance is superior to recognized advanced methods. The visualization
demonstrates the effect of utilizing asymmetric information, and the case analysis validates the reliability
of the proposed method. This study provides guidance for predicting asymmetric drug interactions.

INTRODUCTION

With the increase of complex diseases and the improvement of patient drug resistance, multi-drug combination therapy has become amain-

stream treatment method.1,2 While multi-drug therapy offers considerable therapeutic promise, the concomitant administration of multiple

drugs introduces the potential for drug-drug interactions (DDIs), wherein the activity of individual drugs may be altered, leading to potenti-

ation or attenuation of their effects.3 These unforeseen DDIs can precipitate serious adverse drug reactions (ADEs) in patients,4,5 culminating

in severe morbidity or mortality.6,7 Conversely, beneficial interactions can synergistically enhance treatment efficacy. Consequently, effective

prediction of potential adverse DDIs before drug co-administration is imperative. However, traditional biological or pharmacological

methods for detecting DDIs are laborious and resource-intensive.8,9

In recent years, researchers have proposed various techniques, among which the use of deep neural networks or graph neural networks to

predict DDIs has received widespread attention.10 For example, DeepDDI11 uses deep neural networks to predict interactions, and MR-

GNN12 uses multiple graph convolutional layers to learn drug features. META-DDIE13 mines interpretable drug substructures by employing

a neural network-based encoder-decoder framework to learn drug representations. This approach enhances performance in predicting rare

DDIs while also providing interpretability. DDIMDL14 adopts a joint deep neural network framework to learn cross-modality representations of

drug-drug pairs for predicting DDI events. DANN-DDI15 utilizes graph embedding techniques and deep attention neural networks to learn

representations of drug pairs frommultiple drug feature networks. It then employs deep neural networks to accurately predict potential DDIs.

Furthermore, graph-based learning methods have witnessed rapid development, reshaping DDI prediction into a link prediction task on DDI

networks. In general, the process of learning entity embeddings from networks often involves knowledge graph embeddingmethods, which

leverage various types of relations to generate embeddings of entities, including multi-relational embeddings. For instance, Tiresias16 har-

nesses TransH17 and HolE18 to embed drugs and their relations. The approach using graph neural networks learns entity embeddings by

aggregating information from neighboring nodes. For example, GCNMK19 uses graph convolutional networks (GCN)20 to learn the potential

topological neighborhood information of entities in DDI networks with two different types of relations. MRCGNN21 hierarchically integrates

drugmolecular structure information with DDI event graph interaction information. Leveraging relational GCN for multi-relational contrastive

learning, it captures implicit event information, thereby enhancing performance in predicting rareDDIs. In contrast, knowledgegraph embed-

ding methods22 focus on directly learning entity embeddings across multiple relations while disregarding entity neighborhood information.

In contrast to traditional methods, deep learning-based computational approaches offer the capability of conducting large-scale prelim-

inary DDI screening with advantages such as reduced time, lower costs, and enhanced accuracy.23,24 Through a comprehensive survey of ex-

isting literature25,26 and referencing relevant literature reviews, we categorize advanced computational methods into two primary groups:

those based on drug molecular structural features and those based on network structures.
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Previous methods were primarily based on drug molecular structural features,27 utilizing structural similarity, and interaction spectral

fingerprint similarity to predict potential DDIs. For instance, the HNAI framework28 incorporated four similarity features to compute drug-

drug pair similarity, while the INDI (inferring drug interactions) approach29 utilized seven distinct drug-drug similarity measures for this pur-

pose. Zhang et al.30 creatively integratedmulti-source data and drug pair similarities to predict potential DDIs. Their approach involved incor-

porating nine types of drug-related data and employing three representative methods to construct diverse prediction models utilizing varied

information, ultimately achieving high-precision performance. Subsequently, researchers shifted toward employing graph neural networks to

learn drugmolecular structural features. Asada et al.31 utilizedGCN32 to encodemolecular structures, thereby enhancingDDI extraction from

textual data. GCN-BMP33 (graph convolutional network with bond-awaremessage propagation) learns specific features and abstract features

throughGCNand attentionmechanisms to obtain paired drug representations. Additionally,MHCADDI34 solely relied on the side effect type

and molecular structure of drugs to predict adverse interactions.

Methods based on network structure primarily center on the topology of the network. These methods organize DDI data into a DDI

network, where nodes represent drugs and edges symbolize different types of interactions. Zitnik et al.35 leveraged knowledge graph embed-

ding technology and applied RESCAL36 to infer themost suitable relations between drugs in multi-relational data. KGNN37(knowledge graph

neural network) utilized a comprehensive biomedical knowledge graph (KG), encompassing enzymes, targets, and genes, to learn drug fea-

tures. Decagon38 learned associations between drug pairs and side effects by constructing multimodal graphs to glean drug features. DDI-

MDAE39 achieved unified representation of drugs by simultaneously learning multiple drug feature networks. GoGNN40 employed the inter-

action graph of molecular graphs to extract structured entity features of drug molecules. Although these advanced methods have achieved

good results, they directly utilize graph neural networks or embedding methods to learn drug entity embeddings, ignoring the inequality

caused by asymmetric interaction relations between drugs and the influence of different interaction relations on the propagation of neighbor-

hood information among drug entities. This leads to incomplete information in embedding learning.

In general, existingmethods tend to treat interacting drug pairs as having pharmacological equivalence, overlooking the pharmacological

asymmetry of drug interactions. Many biological experiments have demonstrated the pharmacological asymmetry of drug interactions. The

study byWicha et al.41 elucidated that a significant proportion of drug combinations involving antifungal and non-antifungal agents manifest

unidirectional interactions. For example, terbinafine can antagonize the action of amphotericin B via the ergosterol pathway in a unidirec-

tional manner. Asymmetric interactions can also influence the sequence of drug administration in specific scenarios. For example, adminis-

tering vincristine before cyclophosphamide has been shown to enhance anti-tumor activity, while concurrent administration does not exhibit

additive effects.42 Clinical trials involving cisplatin and 5-fluorouracil have demonstrated that different drug administration sequences yield

varied effects and risks.43 Similar strategies have been validated across various treatments, highlighting the critical importance of determining

the sequence of drug administration in multi-drug therapies. Consequently, it is imperative to develop new deep learning models capable of

predicting potential asymmetric DDIs. The insights garnered from research on asymmetric interactions can significantly enhance our under-

standing of the mechanisms underlying drug interactions and offer rational strategies for optimizing multi-drug therapies. The DGAT-DDI

method44 pioneered the prediction of asymmetric DDIs by constructing a directed DDI network and employing graph attention networks

(GAT)45 to learn asymmetric information regarding drug interactions. Similarly, MAVGAE46 leverages multimodal data and variational graph

autoencoder for predicting asymmetric DDIs. However, both approaches overlook the critical importance of modeling multi-relational infor-

mation for capturing asymmetric information effectively.

Toaddress theaforementioned issues,wehavedevisedamethodthat comprehensively incorporatesmulti-relational information,asymmetric

information, and network structure information for DDI prediction. In this paper, we propose a new framework called Directed Relation Graph

AttentionAwareNetwork,which isnotedasDRGATAN(seeFigure1).Ourapproach involvesconstructingadirectedDDInetworkbasedonasym-

metric relations.We then aim to learn the distinct role characteristics between drugs under asymmetric relations, while simultaneously capturing

the multi-relational network structure information of drugs by propagating neighbor information of drug entities across different relations.

RESULTS

Dataset

From the DrugBank 5.1.9 version, we collected DDI data on asymmetric interactions, focusing primarily on small molecule drugs approved by

the FDA (Food and Drug Administration). We have designated the collected dataset of asymmetric interactions as Asymmetric-DDI. We

filtered out small molecule drugs for which we couldn’t obtain molecular fingerprints from the original DDI data, as we required molecular

Morgan fingerprints to calculate the structural similarity profile (SSP) between drugs as the initial feature vector of drug nodes. As a result,

we gathered data on 1,876 drugs and 218,917 asymmetric interactions, spanning across 95 types of relations.

Experimental setup

The encoder of our model, DRGATAN, comprises RGAT layers and a relation-aware network. These components are utilized to capture the

source (target) role of relations and the self-role representation of drugs, respectively. We employ l = 2 RGAT layers to individually learn the

embeddings of the relation source (target). Each layer is composed of k = 16 heads for multi-head attention. We initially input the initial fea-

tures x˛R100 that have undergone dimensionality reduction through principal-component analysis (PCA), resulting in a feature vector dimen-

sion of 100. Each asymmetric interaction r ˛R is represented by a learnable matrix Wr ˛R100316. The RGAT layer’s final output is a hidden

feature vector of dimension 16. In the relation self-role embedding, the input for the relation-aware network also consists of the initial feature

vector x˛R100. The network produces an output feature vector with a dimension of 16.
2 iScience 27, 109943, June 21, 2024



Figure 1. DRGATAN model architecture

The overall structure of the model consists of an encoder (light purple dashed box) and a decoder (light pink dashed box). The relation source role embedding is

obtained by aggregating the outgoing nodes of drug i (three light pink nodes). The relation target role embedding is obtained by aggregating the incoming

nodes of drug j (three purple nodes). The relation self-role embedding of drug i is obtained by aggregating the features of neighboring nodes (gray nodes) of

drug j through a relation-aware network.
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During training, parameters are adjusted to achieve optimal performance. We set the dropout rate to 0.6 during the embedding process.

The learning rate lr is 1e--2. Each training session comprises 200 epochs, and the model is trained using the Adam optimizer.47 For the hyper-

parameters l1 and l2, they are set to l1 = 0:4 and l2 = 0:1. l1 controls the similarity of relation role embedding between constrained nodes.

l2 controls the aggressiveness and vulnerability of constrained nodes under different relation role embeddings. l1 and l2 jointly coordinate

the relation source role and invasiveness, as well as the relation target role and vulnerability.

Baseline model

The following baseline models are utilized for comparison and performance evaluation alongside our method.

DeepDDI11: it uses the SSP of drugs as input to a deep neural network (DNN) for predicting the type of interaction between drugs.

DPDDI48: extracting network structure characteristics of drugs from the DDI network throughGCN, and subsequently utilizing deep neural

networks for binary DDI prediction.

GCNMK19: using GCN to learn the features of drugs for binary DDI prediction by learning DDI graphs composed of ‘‘increase’’ and

‘‘decrease’’ interactions separately.

GoGNN40: using GNN and dual attention mechanism to learn the features of structured entity graph and entity interaction graph for DDI

prediction.

GCN-BMP33: usingGCNand attentionmechanism to learn the low-dimensional features of drug chemical structures, constructing a neural

network based on HoLE18 for DDI prediction.

DGATDDI44: use directed DDI graph construction and GAT to learn the asymmetric interaction information between drug nodes to

achieve specific direction DDI prediction.

In this study, we used 5-fold cross-validation to train the model. During each fold process, 1-fold is allocated as the test set. Subsequently,

80% of the remaining 4-folds are assigned to the training set, while the remaining 20% serves as the validation set. All experiments were con-

ducted on our Asymmetric-DDI dataset. Negative samples are generated through random sampling, encompassing instances where asym-

metric interactions do not exist between drugs and cases where the direction of asymmetric interactions is incorrect. To ensure balance in the

training data, the number of positive and negative samples is kept equal at all stages.

Experimental results

In this section, we analyze the performance of the proposed method by comparing the results with the baseline. Table 1 shows the average

and standard deviation (SD) of the six indicators obtained by 5-fold cross-validation on the Asymmetric-DDI dataset, including AUROC,

AUPRC, ACC, F1, precision, and recall. The best indicator results are highlighted in bold. From this table, we observe that DRGATAN exhibits
iScience 27, 109943, June 21, 2024 3



Table 1. Performance comparison in binary DDI prediction (%)

Model AUROC AUPRC ACC F1 PRECISION RECALL

DeepDDI11 91:90G0:15 87:55G0:29 86:79G0:11 86:95G0:12 85:73G0:40 88:21G0:51

DPDDI48 91:64G0:05 89:96G0:08 84:41G0:07 85:07G0:05 81:61G0:22 88:84G0:27

GCNMK19 95:73G0:08 95:10G0:06 90:18G0:17 90:23G0:13 89:54G0:44 90:93G0:26

GoGNN40 94:93G0:07 94:06G0:14 89:30G0:17 89:45G0:13 88:31G1:04 90:65G1:20

GCN-BMP33 88:57G0:60 84:93G0:55 81:58G0:74 82:25G0:88 79:19G1:01 85:61G2:30

DGATDDI44 96:24G0:01 95:47G0:01 90:50G0:04 90:63G0:05 89:43G0:13 91:87G0:23

OURs 98:58G0:02 98:30G0:02 95:02G0:04 95:05G0:04 94:53G0:16 95:57G0:21

Values correspond to the mean (standard deviation). The best results appear in bold.
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significantly better performance. Specifically, compared to other methods, DRGATAN has at least a 2.34% improvement in AUROC, 2.83%

improvement in AUPRC, 4.52% improvement in ACC, and 4.42% improvement in F1. These results underscore the effectiveness of our

method.

We evaluate the performance of the proposedmethodby comparing it with baselinemethods using the results obtained fromDRGATAN.

Compared with the second-best result of DGATDDI, our method has an ACC of 95.02%, which is an absolute increase of 4.52%. The reason is

that DGATDDI did not consider the information on relation types in DDI. In contrast, DRGATA not only learns the asymmetric interaction in-

formation between drugs but also integrates asymmetric relation features into drug embedding. DPDDI and GCNMK are also network struc-

ture-basedmethods. Compared with them, DRGATAN also achieved better results. For example, it improved by 10.61% in ACC and 9.98% in

F1 compared with DPDDI. While GCNMK considers two different interaction types of DDI graphs, its embedding process remains incom-

plete. Additionally, the embedding of DPDDI and GCNMK relies on network structure, underscoring the effectiveness of our method in

learning useful network structure information from a directed DDI network.

Furthermore, the methods of DeepDDI, GoGNN, and GCNBMP all incorporate drug molecular features. DRGATAN also outperformed

thesemethods. Compared with DeepDDI, our performancemay have been enhanced by incorporating network structure features and asym-

metric interaction information. Both GoGNN and GCNBMP utilize molecular structures to learn drug features. It is worth noting that GoGNN

also integrates network structure and edge features to augmentmolecular structure features. Compared with it, ACC has improved by 5.72%.

This demonstrates that DRGATAN is capable of effectively learning network structure information and asymmetric interaction information

from the directedDDI network. In summary, DRGATAN can extract rich information from the DDI network and exhibits excellent performance

in predicting non-symmetric interaction DDI.
Analysis of drug features

To investigate the impact of different initial drug features on model performance, six common drug molecular fingerprint features were ex-

tracted to analyze the model’s performance. The comparison results with different drug features are shown in Table 2, where the best result is

highlighted in bold.

The drug molecular fingerprints include MACCS, atom pair (atom pair fingerprint), ECFP4, ECFP6, RDKit (RDKit Fingerprint), and topo-

logical (topological torsion fingerprint). The number of bits for extracting different types of molecular fingerprints varies to prevent the influ-

ence of different feature dimensions on experimental results. For fairness, we adopt the same procedure as SSP and apply PCA to reduce the

feature dimensions of molecular fingerprints to 100. From the table, it can be observed that SSP features achieved the best performance

compared to the other six types of drug molecular fingerprints. The model improved by at least 0.44% on AUROC, at least 0.55% on

AUPRC, at least 0.9% on ACC, at least 0.92% on F1, at least 0.77% on PRECISION, and at least 1.27% on RECALL. We have the following
Table 2. The impact of different drug features on model performance (%)

Features AUROC AUPRC ACC F1 PRECISION RECALL

MACCS 98.47 G 0.01 98.16 G 0.01 94.80 G 0.01 94.82 G 0.01 94.45 G 0.04 95.20 G 0.05

Atom Pair 98.15 G 0.01 97.79 G 0.02 94.12 G 0.04 94.13 G 0.05 93.97 G 0.19 94.30 G 0.29

ECFP4 98.26 G 0.01 97.91 G 0.02 94.37 G 0.04 94.39 G 0.05 94.02 G 0.21 94.76 G 0.29

ECFP6 98.24 G 0.02 97.87 G 0.02 94.34 G 0.02 94.37 G 0.03 93.92 G 0.08 94.82 G 0.10

RDKit 98.33 G 0.02 98.01 G 0.03 94.55 G 0.05 94.57 G 0.05 94.18 G 0.20 94.97 G 0.24

Topological 98.14 G 0.01 97.75 G 0.01 94.17 G 0.05 94.20 G 0.06 93.76 G 0.08 94.64 G 0.18

SSP 98.58G0.02 98.30G0.02 95.02G0.04 95.05G0.04 94.53G0.16 95.57G0.21

Values correspond to the mean (standard deviation). The best results appear in bold.

4 iScience 27, 109943, June 21, 2024



Figure 2. The effect of hyperparameter l2
Analyze the influence of adjusting the l2 parameter on the equilibrium between the relation source role embedding and invasiveness, alongside the relation

target role embedding and vulnerability, on model performance.
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observations: (1) atompair and topological molecular fingerprints performed theworst compared to other drug features. This could be due to

atom pair being limited by the quality of the fingerprints influenced by the selection of atom pairs in the structure, and Topological may not

accurately describe certain structural features. On the other hand, SSP can provide a more detailed structural description reflecting crucial

structural features of drug molecules. (2) The performance of models using ECFP6, ECFP4, and RDKit fingerprints increases in that order,

but they may all be influenced by the path length parameter affecting fingerprint quality. Additionally, ECFP may not provide a rich enough

description of molecular ring structures, hence resulting in lower performance compared to SSP. (3) TheMACCS fingerprint feature achieved

suboptimal results. This could be because MACCS only considers 166 predefined structural keys and one invalid bit. For simple structure de-

scriptions like those of small molecule drugs, this concise representation is often sufficient to capture key structural features. PCA reduces its

dimensionality with less loss of feature information compared to other fingerprints. However, it may not be as flexible as SSP and may not

adapt well to variations in features across different molecules, resulting in slightly lower performance. In conclusion, the experimental results

indicate that using SSP to generate drug features yields better performance in predicting asymmetric DDIs, demonstrating superior repre-

sentational capabilities that enhance predictive accuracy.

Parameter analysis

We studied the effect of hyperparameter l2 on performance in Equation 7. The objective is to determine the optimal balance parameters

for the relationship source role embedding and invasiveness, as well as the relationship target role embedding and vulnerability, to opti-

mize the model’s performance. In the model configuration, we defined l1 + l2 = 0:5. Both jointly balance the relation source role embed-

ding with invasiveness and the relation target role embedding with vulnerability. This parameter l2 is used to constrain the invasiveness and

vulnerability of different relation role embeddings. Specifically, the model training settings remain consistent, all other parameters are

fixed, only the value of l2 is changed, l2 ˛ ½0;0:45�, and the change interval is 0.05. The results are shown in Figure 2. The figure illustrates

that as the value of l2 increases, all four indicators initially exhibit an upward trend, with the peak occurring at l2 = 0:1. Subsequently, as the

value of l2 is further increased, the four indicators exhibit a downward trend. When the performance is optimal, l2 = 0:1 is a relatively small

value, which is expected. We need to constrain the interference caused by nodes with excessively high centrality degrees on asymmetric

information. The direction of asymmetric interactions is jointly determined by the relation role embedding, invasiveness, and vulnerability in

order to achieve higher accuracy. Excessively high levels of invasiveness and vulnerability can lead to the dominance of degree centrality in

asymmetric DDI prediction, resulting in a weakening of the multi-relational role embedding effect and a subsequent decline in overall

performance.

Ablation study

Studying the effect of asymmetric interaction relations on the relation role between drug nodes with asymmetric information, as well as the

invasiveness and vulnerability of nodes, is an integral component of our method. Therefore, ablation experiments are used to study their

contribution to the prediction results. We have implemented three methods to remove key modules to verify their effectiveness. The
iScience 27, 109943, June 21, 2024 5



Table 3. Ablation experiment results (%)

Model AUROC AUPRC ACC F1

(w/o)DS 98.21 97.82 94.37 94.38

(w/o)RA 97.84 97.30 93.56 93.61

(w/o)RF 96.26 95.63 90.45 90.62

All 98.58 98.30 95.02 95.05

(w/o)DS represents the method without considering degree centrality. (w/o)RA represents the method without considering the relation-aware network structure

information of nodes. (w/o)RF represents the method without considering the feature information of asymmetrical relations.
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experimental settings here are consistent with those that achieve the best performance. The analysis is based on the indicators of AUROC,

AUPRC, ACC, and F1. Overall, the complete method outperformed all of its ablation models. The experimental results are shown in

Table 3.

In order to assess the importance of asymmetric relations on the embedding of role information in asymmetric information, we exclude

relation features (w/o) RF from consideration for asymmetric DDI prediction. We can see from the table that the complete method has an

absolute increase of 4.57% on ACC and 4.43% on F1, and its impact on the prediction results is the greatest. This result shows that the contri-

bution of asymmetric interaction relations to the difference in roles caused by relations and the contribution of asymmetric information is sig-

nificant in the embedding of relation source (target) roles. In order to investigate the impact of relation-aware network structure information,

we excluded the relation-aware network component (w/o) RA. Compared with it, the complete method has an increase of 1.46% on ACC and

1.44% on F1. This further underscores the effectiveness of network topology structural features in modeling asymmetric information, thereby

enhancing the performance of the model. To study whether the degree of nodes is invasiveness or vulnerability, we removed this component

(w/o) DS. It can be seen that the complete method has improved performance compared to it. F1 increased by 0.67%, ACC increased by

0.65%, and AUPRC increased by 0.48%. This reflects the importance of capturing how the number of neighbors under different roles of drugs

affects the degree of asymmetric interaction, all of which contribute to the influence of asymmetric information. The results suggest that intru-

siveness and fragility play a significant role in predicting asymmetric interactions in DDI.

Case study

Relation role embeddings visualization

To better understand the modeling of asymmetric information, we analyze the visualization of drug relation role embeddings and compare

and discuss the effects of attention mechanisms and relation information in modeling. Specifically, the asymmetry of the asymmetric inter-

action i/j between drug i and drug j is jointly characterized by the relation source role of i and the relation target role of j. The relation

source role embedding oi of drug i (attacker) and the relation self role embedding c j of drug j are close in the embedding space. The

relation target role embedding mj of drug j (victim) and the relation self role embedding c i of drug i are close in the embedding space.

As an example, taking Dabrafenib/Delavirdine, we employ t-SNE49 to visualize the relation role embeddings, aiming to analyze the

impact of attention mechanisms and relation information. To alleviate the impact of imbalance in the number of outgoing and incoming

nodes for drugs, we aim to select drug pairs where the number of outgoing nodes for the attacker drug is close to the number of incoming

nodes for the victim drug. Dabrafenib, as the attacker drug, has 616 outgoing interactions. Delavirdine, as the victim drug, has 628

incoming interactions.

Figure 3 displays the visualization of relation role embeddings for the drug pairDabrafenib/Delavirdine under different scenarios. In the

embedding space, the attacker dabrafenib’s relation source role (depicted as a red right triangle) and its outgoing neighbor’s relation self-

role (illustrated as green dots), as well as the victim delavirdine’s relation target role (represented by a purple left triangle) and its incoming

neighbor’s relation self-role (depicted as pink dots), are displayed. From Figure 3A, two separate and closely clustered groups can be

observed. Dabrafenib and its outgoing neighbors form a closely clustered, while delavirdine and its incoming neighbors also form a closely

clustered. Furthermore, dabrafenib and delavirdine are distantly separated from each other. This implies that DRGATAN effectively leverages

attention mechanisms and relation information to enhance the quality of relation role embeddings. From Figure 3B, it is evident that when

only ignoring relation information, dabrafenib and delavirdine are closely clustered together in space, making it challenging to differentiate

between them. Additionally, they are distinctly separated from their respective clusters. Furthermore, their respective clusters disperse into

smaller clusters. This indicates that attention mechanisms primarily concentrate on local neighborhoods. Without directional relation infor-

mation, capturing relation role embeddings with asymmetric information becomes impossible, rendering the modeling of such asymmetry

challenging. Figure 3C demonstrates the impact of ignoring attention mechanisms exclusively. Although dabrafenib and delavirdine are sit-

uated in distinct clusters, there remains a tendency for them to be in proximity to each other compared to Figure 3A. Ignoring relation infor-

mation without accounting for the significance of neighborhoods may still lead to the inability to differentiate between relation source role

embeddings and relation target role embeddings, particularly in scenarios involving numerous similar interaction relations. Figure 3D also

indirectly suggests the potential occurrence of this scenario, as evidenced by two closely situated clusters and the close clustering of dabra-

fenib and delavirdine in space. Without taking into account attention mechanisms and relation information, relation role embeddings that

solely aggregate features of neighboring nodes cannot adequately capture asymmetric information. In short, DRGATAN effectively utilizes
6 iScience 27, 109943, June 21, 2024



Figure 3. Visualize the relation roles embedding of interacting drug pairs using t-SNE

(A) (w/o)NOT represents the simultaneous consideration of attention mechanism and relation information.

(B) (w/o)REL represents the exclusion of relation information.

(C) (w/o)ATT represents the exclusion of the attention mechanism.

(D) (w/o)REA represents the exclusion of both the attention mechanism and relation information.
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attention mechanisms and relation information to learn more representative relation role embeddings, thereby enhancing its ability to cap-

ture and represent asymmetric interaction information.

Similarly, using moclobemide as an example, we conducted an analysis of the performance of relation role embeddings when individual

drugs act as attackers and victims. When moclobemide acts as the attacker drug, it has 290 outgoing interactions, whereas the victim drug, it

has 232 incoming interactions.

Figure 4 displays the relation source role of moclobemide as the attacker rug (depicted as a red right triangle) and the relation self-role of

its outgoing neighbors (represented by green dots), as well as the relation target role ofmoclobemide as the victimdrug (depicted as a purple

left triangle) and the relation self-role of its incoming neighbors (depicted as pink dots) in the embedding space. When both attention mech-

anisms and relation information are considered simultaneously, Figure 4A reveals the presence of two completely independent clusters. The

relation source role and relation target role of moclobemide are distantly separated from each other, while their corresponding relation self-

roles are closely clustered together. This observation further underscores the effectiveness of attention mechanisms and relation information

in the analysis. Similarly, when either attention mechanisms or relation information are disregarded, the relation source role of moclobemide

tends to closely cluster with the cluster containing its relation target role, thus hindering the effectivemodeling of asymmetric information. It is

worth noting that Figure 4C illustrates that without considering attentionmechanisms, the accurate capture of similarity between the relation

source role and its corresponding relation self-role is hindered. This further underscores the pivotal role of attention mechanisms in learning
iScience 27, 109943, June 21, 2024 7



Figure 4. Visualizing the relation roles embedding of individual drugs using t-SNE

(A) (w/o)NOT represents the simultaneous consideration of attention mechanism and relation information.

(B) (w/o)REL represents the exclusion of relation information.

(C) (w/o)ATT represents the exclusion of the attention mechanism.

(D) (w/o)REA represents the exclusion of both the attention mechanism and relation information.
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asymmetric information. In conclusion, the visual analysis highlights the critical role of attentionmechanisms and relation information in effec-

tively modeling asymmetric information.

Predict new asymmetric DDIs

In this section, we perform a case study to assess the effectiveness of DRGATAN in predicting the actual potential of undetected DDIs. In the

current drug dataset, many unmarked drug pairs may have undetected DDIs. We use the current data to train the model based on the trans-

duction setting andpredict the interaction between these unobserved drug pairs, which do not exist in the current data. Subsequently, a list of

DDIs is generated based on the predicted scores, arranged in descending order. For these unknown drug pairs, a higher predicted score

indicates a greater likelihood of interaction. The top 20 DDI data are selected and shown in Table 4, where the drug pairs are affected by

drug to drug, and the direction indicates whether the direction of asymmetric interaction between the two drugs is predicted correctly.

By verifying the predicted DDIs in the list with the latest version of the DrugBank (5.1.10) database, we found that 16 out of the 20 newly pre-

dicted asymmetric interactions can be confirmed. There are 13 completely correct predictions and 3 interaction directions (the second, fourth,

and thirteenth) that are predicted incorrectly. However, there are 4 newly predicted DDIs that could not be found in the new database for

validation, whichmay indicate that they have not been confirmed to exist, or that they were predicted incorrectly. According to the case study,

our DRGATAN can effectively discover asymmetric interactions between potential drugs.
8 iScience 27, 109943, June 21, 2024



Table 4. Top 20 asymmetric DDIs

Rank Drug i (attacker) Drug j (victim) Description Direction

1 Cephalexin Ramelteon Cephalexin may decrease the excretion

rate of Ramelteon which could result in

a higher serum level.

O

2 Ceftibuten Quinethazone Quinethazone may increase the excretion

rate of Ceftibuten which could result in a

lower serum level and potentially a

reduction in efficacy.

3

3 Ouabain Nedaplatin N.A. �
4 Ceftriaxone Quinethazone Quinethazone may increase the excretion rate

of Ceftriaxone which could result in a lower

serum level and potentially a reduction in efficacy.

3

5 Cephalexin Nedocromil Cephalexin may decrease the excretion rate

of Nedocromil which could result in

a higher serum level.

O

6 Thiabendazole Diazepam Thiabendazole may decrease the excretion

rate of Diazepam which could result in

a higher serum level.

O

7 Digitoxin Efinaconazole N.A. �
8 Cephalexin Megestrol acetate Cephalexin may decrease the excretion rate

of Megestrol acetate which could result

in a higher serum level.

O

9 Rifabutin Chlorambucil N.A. �
10 Zanamivir Diazepam Zanamivir may decrease the excretion rate

of Diazepam which could result in a higher

serum level.

O

11 Cephalexin Metoclopramide Cephalexin may decrease the excretion rate

of Metoclopramide which could result in

a higher serum level.

O

12 Nedocromil Diazepam Nedocromil may decrease the excretion rate

of Diazepam which could result in a higher

serum level.

O

13 Diazepam Trifluridine Trifluridine may decrease the excretion rate

of Diazepam which could result in a higher

serum level.

3

14 Ampicillin Diazepam Ampicillin may decrease the excretion rate

of Diazepam which could result in a higher serum level.

O

15 Cephalexin Ampicillin Cephalexin may decrease the excretion rate of

Ampicillin which could result in a higher serum level.

O

16 Topotecan Ropinirole N.A. �
17 Pamidronic acid Clorazepic acid Pamidronic acid may decrease the excretion

rate of Clorazepic acid which could result

in a higher serum level.

O

18 Methotrexate Flurazepam Methotrexate may decrease the excretion rate

of Flurazepam which could result in a

higher serum level.

O

19 Flutamide Diazepam Flutamide may decrease the excretion rate

of Diazepam which could result in a higher serum level.

O

20 Cephalexin Isotretinoin Cephalexin may decrease the excretion rate of

Isotretinoin which could result in a higher serum level.

O

N.A. indicates that there is no relevant description available for the given DDI at the moment. Direction indicates whether the direction of the asymmetric inter-

action is predicted correctly.
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DISCUSSION

In this paper, we introduce aDRGATANdesigned for predicting asymmetric DDIs. DRGATANeffectively learns embeddings representing the

roles of drugs as both sources and targets under various relation types. Additionally, it employs a relation-aware network to capture structural

embeddings of a multi-relation directed DDI network, thus characterizing relation self-role embeddings. These three types of role embed-

dings are combined to model asymmetric interactions comprehensively. Moreover, DRGATAN incorporates measures of invasiveness and

vulnerability of drug role embeddings based on degree centrality and the number of neighbors. In experimental evaluations, DRGATAN out-

performs baseline methods, demonstrating its efficacy in predicting asymmetric DDI tasks.

In the future, we plan to tackle the existing limitations of our approach. Specifically, we recognize that solely considering SSP drug features

and low-order neighbors may restrict the modeling of asymmetric information. To overcome this limitation, we intend to incorporate multi-

source drug information and consider path information to capture various types of asymmetric interactions among high-order nodes. Further-

more, the imbalance in asymmetric interaction data also needs to be addressed in the future to improve the model prediction accuracy.

Limitations of the study

Although the proposedmethod performed well in experiments, there are still some limitations that need to be considered. The method only

considers the asymmetric information between nodes and their first-order neighboring nodes based on directed relationships when

modeling asymmetric information, ignoring the influence of high-order nodes and their directional relationships on asymmetric information.

Path information can be introduced to capture the relationship information between high-order nodes and help themodelmore comprehen-

sively capture asymmetric information. Future research directions can focus on addressing these limitations and exploring more effective

methods to improve model performance.
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Software and algorithms

Python 3.8 Anaconda https://www.anaconda.com

RDKit 2023.3.1 RDKit https://www.rdkit.org/

Python-Geometric 2.2.0 Python-Geometric 2.2.0 https://pytorch-geometric.readthedocs.io/en/latest/

Pytorch 1.12.1 Pytorch https://pytorch.org/

DRGATAN This paper https://github.com/Wzew5Lp/DRGATAN
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jin Li (lijin@ynu.

edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. The data for drugs are available from https://www.drugbank.ca/. The data is pub-

licly accessible in https://github.com/Wzew5Lp/DRGATAN/tree/master/my_dataset.
� The source code of the DRGATAN is available at https://github.com/Wzew5Lp/DRGATAN and is publicly available as of the date of

publication.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The dataset for predicting asymmetric drug-drug interactions can be downloaded from DrugBank (https://www.drugbank.ca/).

DrugBank is a comprehensive bioinformatics and cheminformatics database developed by the University of Alberta, which combines

detailed drug data with extensive drug target information. This dataset is an online database focused on drug and drug-related infor-

mation, including a wide range of drug details such as chemical structures, pharmacological properties, pharmacokinetics, drug inter-

actions, etc. We parsed approved small molecule drugs with asymmetric interaction information as the dataset for predicting asymmetric

drug-drug interactions. After removing drugs with missing or erroneous SMILES strings, we obtained a final dataset comprising 1876

small molecule drugs and 218917 asymmetric interactions. For specific experimental details, please refer to the experimental description

in the Results section.

METHOD DETAILS

Problem definition

The definition of a multi-relational directed graph of drug interactions based on asymmetric interactions between drugs is defined as G =

fði; r; jÞji; j ˛D; r ˛Rg, where D is the set of drugs and R is the set of asymmetric interaction types (directed edge sets). Each triple ði; r; jÞ
represents an asymmetric drug interaction r between drug i and drug j. For nodes, i; j˛D; ði; jÞ represents a directed edge from i to j, that is,

an asymmetric drug interaction r. Specifically, drug i affects drug j, which can be represented by i/j. We treat asymmetric interaction as a

directed relation. Under different directed relations, the role of drugsmay change. Henceforth, we refer to i as the relation source drug and j

as the relation target drug.
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Given a known multi-relational directed graph G and the initial feature matrix X = ½x1;.; xN�˛RN3F of drugs, our main goal is to learn a

prediction function by i;j = Fði; jjP;G;XÞ, predicting whether there is an asymmetric interaction between two drugs, where by i;j represents the

probability that drug i and drug j have an asymmetric interaction of the type i/j, and P represents the model parameters of the function F.

This task is to predict whether there is an asymmetric interaction between drugs. Specifically, it predicts whether the directed edge between

drug i and drug j is i/j, j/i, or no directed edge.

Drug structure similarity features

The drug data information comes from DrugBank.50 DrugBank is a comprehensive biological database with detailed information on drugs.

Clinical data on drugs include drug-drug interactions, drug-food interactions, side effects, etc.

SMILES(Simplified Molecular Input Line Entry Specification) string51 is a specification that uses ASCII strings to explicitly describe the mo-

lecular structure. SMILES strings can be interpreted by molecular editing software and used to generate 2D molecular structures. Figure S1

shows the molecular structure of Morphine along with its corresponding SMILES string.

First, molecular fingerprints52(such asMorgan fingerprints), corresponding to 1876 smallmolecule drugs in our dataset are obtainedbased

on their SMILES string. Subsequently, the structural similarity between each drug and the remaining 1875 drugs is calculated using the Ta-

nimoto coefficient to derive the drug’s SSP feature vector. Using PCA to reduce dimensionality, the low-dimensional vector of the SSP of each

drug is obtained as the initial feature of the drug. The specific process is shown in Figure S2.

Relation role encoding

In an asymmetric interaction relation, the two drugs are not equivalent, as one drug affects the pharmacological effects of the other. We learn

two role-specific representations under asymmetric relations, namely the relation source role and the relation target role.

In the multi-relational directed graph G = fði;r;jÞji; j ˛D;r ˛Rg, two types of neighborhoods are defined for the relation source role and

relation target role of node i. One is the first-order (out-degree) outgoing neighbor of its relation source role i as an attacker. The other is the

first-order (in-degree) incoming neighbor of its relation target role i as a victim. Then, RGAT is employed to aggregate neighboring nodes and

relation information using relation graph attention mechanisms, facilitating the learning of relation source and target role embeddings. The

overall structure of RGAT is shown in Figure S3.

Use RGAT to aggregate the neighbor node information of node i through the relation graph attention mechanism. Taking i as an example

of the relation source role, the attention coefficient ai;j with its outgoing neighboring nodes under different relation r is defined as shown in

Equation 1.

ai;j =
exp

�
LeakyReLU

�
xT
i Wrqr+xT

j Wrk
r
��

P
n˛N r

oðiÞ
exp

�
LeakyReLU

�
xT
i Wrqr+xT

j Wrk
r
�� (Equation 1)

Where N
r
oðiÞ is the first-order outgoing neighbor node set of node i under the relation r ˛R. xi˛RF is the initial feature of node i. Wr ˛

RF3�F is the learnable parameter matrix for each relation r. qr ˛R
�F and kr ˛R

�F are query and key cores, respectively, which map the interme-

diate representation. LeakyReLU is a non-linear activation function. The attention coefficient ai;j aggregates different neighbor nodes j and

different relation importance information of node i under the same role information.

Finally, the relation source role embedding and the relation target role embedding are obtained through a combination of the neighbor-

hood aggregation step and the attention mechanism, defined by Equations 2 and 3.

oi = s

0
@X

r ˛R

X
j˛N r

oðiÞ
ai;jW

T
r xj

1
A (Equation 2)
mi = s

0
@X

r ˛R

X
j˛N r

mðiÞ
ai;jW

T
r xj

1
A (Equation 3)

WhereN
r
mðiÞ is the first-order incoming neighbor node set of node i under the relation r ˛R. oi ˛R

�F is the relation source role embedding of

node i. mi ˛R
�F is the relation target role embedding of node i. The process of embedding the source role and target role of the relation is

shown in Figure S4.

Relation self-role embedding encodes both chemical structure information and network structure information. For the asymmetric action

i/j, the relation self-role c i ˛RF is defined as shown in Equation 4.

c i =
1

jN ðiÞj
X
r ˛R

X
n˛N r ðiÞ

ðanMrxn + xnÞ (Equation 4)

WhereN ðiÞ is the set of all first-order neighbors of node i and j;N ðiÞ.Mr˛RF3F is the parameter matrix of the corresponding relation. an is

the updatable weight parameter for each node.
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Invasiveness and vulnerability

In social network analysis, ‘‘centrality’’ is a measure commonly used to assess the importance or influence of nodes within a network. Themost

direct measure of centrality is Degree Centrality, which indicates that a node is more important if it has a higher degree in the network.

Building on this concept, we hypothesize that in a directed DDI network, drugs with a higher number of interactions are more likely to

interact with a greater number of drugs. In short, the greater the in-degree of node i, the greater its vulnerability, and the greater the out-

degree of node i, the greater its invasiveness. We refer to these two situations as the invasiveness of the relation source role and the vulner-

ability of the relation target role.

We use degree centrality to reflect the correlation between nodes. Considering that the aggregation process of RGAT also takes into ac-

count the degree of nodes. Hence, it is combined with degree centrality to provide additional information. Define two scalars ai and vi to

represent invasiveness and vulnerability, respectively. ai represents the invasiveness of the relation source role embedding of node i. vi rep-

resents the vulnerability of the relation target role embedding of node i. Their calculation methods are shown in Equations 5 and 6.

ai =
jN oðiÞj
jDj � 1

+p (Equation 5)
vi =
jNmðiÞj
jDj � 1

+q (Equation 6)

WhereN oðiÞ is the number of first-order out-degree neighboring nodes of relation source role i.NmðiÞ is the number of first-order in-degree

neighboring nodes of relation target role i. jDj is the number of all nodes in the directedDDI network. p˛R is the last element value of oi. q˛
R is the last element value of mi.
Prediction and loss

When the influence of i on j exists, we represent the asymmetric interaction by considering i as the relation source role and j as the relation

target role as the central nodes. We obtain the possibility of asymmetric interaction from different central nodes. Finally, we obtain the final

possibility by i;j by combining these two types of possibility information through summation. Its definition is shown in Equation 7.

by i;j = s
�
l1 � �c jo

T
i + l2 � ai + l1 � �c im

T
j + l2 � vj

�
(Equation 7)

Where �c j = �WT
oc j and �ci = �WT

mci,
�WT

o ˛R
�F3F and �WT

m ˛R
�F3F are alignment matrices. oi is the relation source role embedding of node i.mj is

the relation target role embedding of node j. s is the Sigmoid function. l1 + l2 = 0:5 is used to constrain the probability value. l1 controls the

similarity of relation role embedding between constrained nodes. l2 controls the invasiveness and vulnerability of constrained nodes under

different relation role embeddings.

Our task is to determine whether there is an asymmetric interaction between drugs i and j. Given that, there exists an asymmetric inter-

action from i/j between the drug pair ði; jÞ when by i;j R 0:5.

Finally, the binary cross-entropy loss function for the overall model framework training is shown in Equation 8:

L =
1

N

X
ði;r ;jÞ˛Y

� yi;j log
�by i;j

�
�

�
1 � yi;j

�
log

�
1 � by i;j

�
(Equation 8)

Where yi;j is the ground truth label. yi;j = 1means that there is an asymmetric interaction between the nodes, and yi;j = 0means that there is no

asymmetric interaction between the nodes. Y is the set of drug pairs and their interactions.
QUANTIFICATION AND STATISTICAL ANALYSIS

We extracted six different drug molecular fingerprint features to study the performance of the DRGATAN model. These drug molecular fin-

gerprints include MACCS, Atom Pair, ECFP4, ECFP6, RDKit, and Topological Torsion Fingerprint. Among these drug molecular fingerprint

features, based on Structural Similarity Profile (SSP), achieved the best performance under the same feature conditions. Experimental results

indicate that using SSP to generate drug features has better performance in asymmetric DDI prediction tasks, with better representational

capability to improve predictive performance. We also compared the experimental results with other advanced methods, and DRGATAN

achieved satisfactory results. To demonstrate the effectiveness of relationship information and attentionmechanisms inmodeling asymmetric

information, we visualized drug feature information in different scenarios for validation. Additionally, we predicted 20 potential asymmetric

drug interactions to analyze the practical effectiveness of the model. The statistical results and their explanations are detailed in the main text

of this paper.
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