
Physics and Imaging in Radiation Oncology 16 (2020) 99–102

Available online 28 October 2020
2405-6316/© 2020 The Authors. Published by Elsevier B.V. on behalf of European Society of Radiotherapy & Oncology. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Short Communication 

Using prediction models to evaluate magnetic resonance image guided 
radiation therapy plans 

M. Allan Thomas a,c, Joshua Olick-Gibson a, Yabo Fu a,d, Parag J. Parikh b, Olga Green a, 
Deshan Yang a,* 

a Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63108, United States 
b Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, MI 48202, United States 
c Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030, United States 
d Department of Radiation Oncology, Emory University, Atlanta, GA 30332, United States   

A R T I C L E  I N F O   

Keywords: 
Neural network 
Adaptive radiation therapy 
Treatment plan quality 
Magnetic resonance image guidance 

A B S T R A C T   

Comprehensive analysis of daily, online adaptive plan quality and safety in magnetic resonance imaging (MRI) 
guided radiation therapy is critical to its widespread use. Artificial neural network models developed with offline 
plans created after simulation were used to analyze and compare online plans that were adapted and reoptimized 
in real time prior to treatment. Roughly one third of 60Co adapted plans were of inferior quality relative to fully 
optimized, offline plans, but MRI-linac adapted plans were essentially equivalent to offline plans. The models 
also enabled clear justification that MRI-linac plans are superior to 60Co in an overwhelming majority of cases.   

1. Introduction 

The use of daily, online adaptive magnetic resonance imaging guided 
radiation therapy (MRgRT) has grown recently across a variety of 
clinics. As a result, the potential benefits and practical difficulties of 
online adaptive MRgRT are beginning to be understood [1–7]. Devel
oping and assessing treatment planning processes and workflows for 
MRgRT remains a challenge. Daily changes in patient anatomy up to 3 
cm in magnitude are possible [8,9,10]. Adapted plans cannot be opti
mized and scrutinized with the same level of time and effort as plans 
developed offline because daily adaptive decisions are being made while 
the patient is on table [1,2]. Furthermore, using plan-specific optimi
zation parameters to create high quality offline plans at patient simu
lation can lead to subpar adapted plans with substantionally reduced 
target coverage [7],. 

Even with the growth of online adaptive MRgRT, it remains difficult 
to assess overall online adapted plan quality relative to fully optimized, 
offline plans [1,2],[11]. Because it is difficult to simulate the inherent 
complexities and timely decisions associated with MRgRT adaptive 
workflows [12], actual approved and treated plans offer the best op
portunity to assess and improve online adaptive RT. There is very 
limited previous work where real, clinically treated plans were used to 
compare online adaptive and offline MRgRT [13], or 60Co and MRI-linac 

capabilities. The main objective in this study was therefore to use arti
ficial neural network (ANN) models to analyze a wide variety of previ
ously approved and treated MRgRT plans in order to achieve two 
primary goals: 1) explore online adaptive plan variability and quality 
relative to high-quality, offline plans; and 2) compare and contrast 60Co- 
and linac-based MRgRT. 

2. Materials and methods 

2.1. Patient characteristics 

A total of 125 patients with abdominal cancers treated at our insti
tution with high biologically effective dose (BED), online adaptive 
MRgRT were used for analysis. Online adaptive MRgRT has been used 
for abdominal, lung, pelvis, and breast cancers [11], but this study 
focused on abdominal cancers for two primary reasons: 1) natural 
alignment with the benefits of MRgRT in terms of enhanced soft tissue 
contrast imaging and daily anatomy changes, and 2) abdominal cancer 
cases produced the highest percentage of plans requiring daily adapta
tion at our institution [1,2,11]. Various treatment sites were included 
such as pancreas, liver, adrenal, bile duct, etc. but most cases (67%) 
were pancreas cancer. The patients were stratified based on the type of 
MRgRT: 60Co (n = 70) or MRI-linac (n = 55). All patients were treated 
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with one of two high BED protocols as discussed in detail previously 
[14],. Overall, 781 of 975 (80%) treated plans were adapted, so a total of 
125 offline and 781 online adapted plans were included. Offline plans 
were created on the patient’s simulation image, received standard 
planning time, optimization, and checks just like traditional IMRT plans, 
and served as the starting point of plan adaptation for the first fraction. 

2.2. Treatment techniques 

Detailed descriptions of the specific workflows and treatment plan
ning methods for adaptive MRgRT using the MRIdian 60Co and MRI- 
linac systems (Viewray, Cleveland, OH) have been presented previ
ously [1,2,11],[14–17]. The following characteristics were particularly 
relevant to this work. Both offline and online adaptive plans were 
developed with OAR isotoxicity prioritized over target coverage. Essen
tially, the OAR constraints discussed in detail previously [14], were hard 
constraints that could not be exceeded, regardless of the effect on target 
coverage. Treatment plan deviations manifested mainly in changes in 
target coverage, so the % of the GTV volume receiving >=95% of the 
prescription dose (V95) was the main plan quality metric. The pre
scription dose and dose constraints for OARs were used to guide the 
plan’s optimization. The four critical OARs of stomach, duodenum, 
small bowel, and large bowel (OARCRIT) were used in nearly all plans, 
with other OARs (aorta, esophagus, spinal cord, liver, one or both kid
neys) also potentially used but with different dose constraints. The 
target used for optimization was not the PTV (5 mm isotropic expansion 
of GTV), but rather the PTVOPT (PTV minus OAR5mm). OAR5mm was 
OARCRIT expanded by a 5–8 mm isotropic margin. The majority of pa
tients (~80% in this study) had a 5 mm OAR structure expansion for 
producing PTVOPT and it was held constant for all plans for each patient. 

2.3. ANN prediction models 

ANN models to predict voxelized dose inside the GTV were devel
oped using patient anatomy/geometry information only. The model 
input variables included GTV size/shape, distance relationships between 
GTV and OARs, and patient size information [18–23]. Additional details 
of the model development and testing have been published previously 
[14],. The prediction models were developed using input variables 
extracted only from offline plans because they received normal planning 
time, attention, and analysis prior to their approval and use in patients. 
In contrast, online adaptive plans were not afforded the time to pursue 
detailed optimization, so their overall quality a priori was not known. 

A cross validation process like that described in our previous work 
[14], was used to test the ANN models and assess their accuracy and 
precision. For each iteration of the cross validation, V95 values for the 
test group of plans were determined from the 3D dose predictions and 
raw V95 prediction errors were calculated: 
ΔV95 = V95clinical − V95predicted. Then the mean error, 95% prediction 
intervals (PI, ±1.96σ), and 95% confidence intervals (CI) of the mean 
error and 95% PI were all determined as outlined in Bland-Altman 
analysis [24],. Limits of agreement (LoA) for each model were calcu
lated as the mean error ± 95% PI. In order to minimize the effect of 
potential outlier plans (plans both inferior and superior to the average) 
on the trained models, a model refinement process was also incorpo
rated [14,19,20]. Any plans with ΔV95 outside of the model LoA were 
excluded, the models were re-trained, and new prediction errors and 
model metrics were calculated. Model refinement excluded 10 out of the 
70 60Co offline plans and 5 of the 55 linac plans. The refined models 
were then used for all plan comparison analysis, with inferior, superior, 
and acceptable plans identified as described in Fig. 2. 

Two separate models were developed (60Co and linac) and both used 
the exact same types of patient anatomy and geometry input variables – 
those optimized in our previous work on ANN dose prediction models 
[14],. Adapted plan quality relative to offline plans was determined by 
inputting the parameters extracted from adapted plans into the models 

trained with offline plans. The adapted plan predictions from the offline 
model outputs were then compared to the clinical plan metric. 60Co and 
linac MRgRT were compared by inputting parameters from 60Co plans 
into the linac ANN model. Effectively, then, the model outputs reflected 
the predicted 3D dose distribution that would have been achievable had 
the 60Co plan actually been planned using the linac. 

3. Results 

Dose prediction errors for both 60Co and linac models were ~0.2 ±
3.0 Gy when averaged across all plans. Absolute dose errors were ~3.0 
± 2.0 Gy. As shown in Fig. 1, both models produced V95 predictions that 
strongly correlated with their respective clinical values, maintained 
minimal bias, and possessed precision within ±6%. In both models 
~95% of plans had ΔV95 within the LoA. As seen in Fig. 2(a), nearly one 
third (157 plans, 30%) of 60Co online adapted plans were deemed 
inferior, with clinical V95 values outside the lower prediction range of 
the ANN model. This observation strongly indicates these adapted plans 
could have achieved improved target coverage if they were developed 
and optimized offline. Larger deviations were observed as the clinical 
V95 decreased, showing that more intrinsically difficult cases tended to 
produce plans that were more inferior. The 60Co plans identified as 
inferior had statistically significantly lower mean and max OARCRIT 
doses relative to those established as adequate quality. Fig. 2(b) shows 
the overwhelmingly majority (91%) of adapted linac plans had clinical 
V95 values that fit within the prediction range of the offline model, with 
only 2% and 7% identified as inferior and superior, respectively. These 
observations demonstrate that target coverage in linac online adapted 
plans was essentially equivalent to the expectations set by the offline 
model. 

Fig. 2(c) shows that a large majority (78%) of 60Co adapted plans 
were identified as inferior to the expectations from the linac model. 
Furthermore, Table 1 shows nearly 40% of 60Co adapted plans had 
clinical V95 values > 10% lower, and roughly 7% > 20% lower, than the 
linac model predictions. Finally, Fig. 2(d) demonstrates that the median 
(mean) V95 values of the three groups of plans compared progressed 
from 77.5 (77.4) to 81.6 (81.4) to 87.9 (86.8). Although not shown 
explicitly in Fig. 2, offline 60Co plans were also deemed to be inferior to 
the expectations of the linac model in terms of target coverage, but at a 
slightly reduced rate of ~60%. 

4. Discussion 

This study used ANN prediction models, bolstered by patient- and 
plan-specific parameters, to comprehensively compare offline, online 
adapted, 60Co, and linac plans in MRgRT. Our results showed that many 
60Co online adaptive plans, roughly one third, were not able to maintain 
the same level of target coverage as offline plans. These observations 
indicate that for one third of 60Co adapted plans, a tradeoff of reduced 
target coverage relative to the benchmark established by comparable 
offline plans was required in order to ensure meeting all OAR con
straints. The statistically significantly lower mean and max OARCRIT 
dose metrics in inferior 60Co (30%) adapted plans suggest the online re- 
optimization was not able to push OAR doses sufficiently in order to 
achieve improved target coverage in all 60Co adapted plans. Unlike 60Co, 
our results showed that MRI-linac adapted plans were able to maintain 
target coverage expectations that were equivalent to offline plans with 
comparable intrinsic difficulty. These results establish that linac-based 
online adaptive MRgRT can maintain important plan quality metrics 
equivalent to offline plans that received the requisite time and attention 
to be fully optimized. This is a key observation to boost the clinical 
confidence in online plan adaptations with linac-MRgRT. Linac plans 
also outperformed 60Co plans at a rate of nearly 4 out of 5 and the 
average increase in target coverage (V95) had the plans been developed 
with the linac was ~10%. This provided further evidence that linac 
hardware was better able to produce high quality plans. 
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The details of the ViewRay MRI-linac system hardware have been 
outlined previously [25],. As discussed in a recent study [12], the 
distinction between 60Co and linac plans regarding plan quality is 
mainly due to the higher beam energy (average ~2 MV for linac; 1.25 
MV for 60Co) and the improved multi-leaf collimator design in the linac. 
Online adapted MRI-linac plans were also shown to be roughly com
parable in terms of plan quality while offering improved OAR dose 
metrics relative to original, unadapted plans [13],. Our results were in 
line with previously established key conclusions about MRgRT but also 

expanded upon them by analyzing each plan specifically and including 
intrinsic plan difficulty. 

A limitation of this study was that other plan quality metrics such as 
dose conformality and OAR dose sparing were not easy to compare 
because our models could only predict GTV dose. Future work will 
include using more advanced models to expand 3D dose predictions 
beyond the GTV to explore a more complete picture of plan compari
sons. Another limitation was that the models developed and plans 
analyzed were only from a single institution. MRgRT workflows and 

Fig. 1. Results for clinical vs. predicted V95 values 
for (a) 60Co and (b) linac offline plans. The predicted 
V95 values come from the respective ANN model 3D 
dose predictions. The R2 values of the clinical vs. 
predicted comparisons are included in (a) and (b). 
Bland-Altman plots of the V95 prediction errors are 
shown for (c) 60Co and (d) linac models. The values 
for mean bias and LoA are indicated in (c) and (d). 
The mean bias, LoA (solid line), and LoA + 95% CI 
(dotted line) are also plotted in (c) and (d) to show 
the precision of the model predictions.   

Fig. 2. Bland-Altman plots of V95 predictions for 
online adapted plans from ANN models developed 
using offline plans: (a) 60Co, (b) linac, (c) 60Co in 
linac model. The mean bias and LoA are plotted 
much like in Fig. 1. In each plot, the data points are 
defined based on their comparison to the model’s 
LoA: 1) blue circle = acceptable: ΔV95 within LoA, 
2) red square = inferior: ΔV95 < LoAlower , 3) green 
diamond = superior: ΔV95 > LoAupper . The per
centages of how many plans fell into the three cat
egories are also indicated. The entire distribution of 
V95 values as well as boxplots for each distribution 
are shown in (d): online = clinical 60Co adapted 
plans, offline = offline 60Co ANN model predictions 
for 60Co adapted plans, linac = linac ANN model 
predictions for 60Co adapted plans. The mean values 
of each distribution are shown with solid dots, the 
median values are shown as a solid line. The boxes 
show interquartile ranges of the distributions, while 
the whiskers include all values up to ± 2.7σ, with 
any outliers indicated by a + sign.   
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online adaptive planning strategies differ across various institutions. We 
are hopeful that the results presented here are deemed useful for a better 
understanding of the difficulties and capabilities of online adaptive 
MRgRT as a rapidly growing application for improved treatment of 
cancer with RT worldwide. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research was partially supported by the Agency for Healthcare 
Research and Quality (AHRQ) grant number R01-HS022888, National 
Institute of Biomedical Imaging and Bioengineering (NIBIB) grant R03- 
EB028427 and National Heart, Lung, and Blood Institute (NHLBI) grant 
R01-HL148210. 

This paper is part of a special issue that contains contributions 
originally submitted to the scientific meeting MR in RT, which was 
planned to take place 05/2020, organized by the German Research 
Center (DKFZ) in Heidelberg. We acknowledge funding by DKFZ for the 
publication costs of this special issue. 

References 

[1] Henke L, Kashani R, Robinson C, Curcuru A, DeWees T, Bradley J, et al. Phase I 
trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the 
treatment of oligometastatic or unresectable primary malignancies of the abdomen. 
Radiother Oncol 2018;126:519–26. https://doi.org/10.1016/j. 
radonc.2017.11.032. 

[2] Henke LE, Olsen JR, Contreras JA, Curcuru A, DeWees TA, Green OL, et al. 
Stereotactic MR-guided online adaptive radiation therapy (SMART) for ultracentral 
thorax malignancies: results of a phase 1 trial. Adv Radiat Oncol 2018;4:201–9. 
https://doi.org/10.1016/j.adro.2018.10.003. 

[3] Rudra S, Jiang N, Rosenberg SA, Olsen JR, Roach MC, Wan L, et al. Using adaptive 
magnetic resonance image-guided radiation therapy for treatment of inoperable 
pancreatic cancer. Cancer Med 2019;8:2123–32. https://doi.org/10.1002/ 
cam4.2100. 

[4] Bohoudi O, Bruynzeel AME, Senan S, Cuijpers JP, Slotman BJ, Lagerwaard FJ, et al. 
Fast and robust online adaptive planning in stereotactic MR-guided adaptive 
radiation therapy (SMART) for pancreatic cancer. Radiother Oncol 2017;125: 
439–44. https://doi.org/10.1016/j.radonc.2017.07.028. 

[5] El-Bared N, Portelance L, Spieler BO, Kwon D, Padgett KR, Brown KM, et al. 
Benefits and practical pitfalls of daily online adaptive MRI-guided stereotactic 
radiation therapy for pancreatic cancer. Pract Radiat Oncol 2019;9:e46–54. 
https://doi.org/10.1016/j.prro.2018.08.010. 

[6] Tyran M, Jiang N, Cao M, Raldow A, Lamb JM, Low D, et al. Retrospective 
evaluation of decision-making for pancreatic stereotactic MR-guided adaptive 
radiotherapy. Radiother Oncol 2018;129:319–25. https://doi.org/10.1016/j. 
radonc.2018.08.009. 

[7] Olberg S, Green O, Cai B, Yang D, Rodriguez V, Zhang H, et al. Optimization of 
treatment planning workflow and tumor coverage during daily adaptive magnetic 
resonance imaging guided radiation therapy of pancreatic cancer. Radiat Oncol 
2018;13:51. https://doi.org/10.1186/s13014-018-1000-7. 

[8] Chen I, Mittauer KE, Henke LE, Acharya S, Lu Y, Chen, et al. Quantification of 
interfractional gastrointestinal tract motion for pancreatic cancer radiation 
therapy. Int J Radiat Oncol Biol Phys 2016;96:E144. https://doi.org/10.1016/j. 
ijrobp.2016.06.954. 

[9] Abbas H, Chang B, Chen Z. Motion management in gastrointestinal cancers. Int J 
Radiat Oncol Biol Phys 2014;5:223–35. https://doi.org/10.3978/j.issn.2078- 
6891.2014.028. 

[10] Liu F, Erickson B, Peng C, Li XA. Characterization and management of 
interfractional anatomic changes for pancreatic cancer radiotherapy. J Med 
Imaging Radiat Sci 2012;83:e423–9. https://doi.org/10.1016/j. 
ijrobp.2011.12.073. 

[11] Fischer-Valuck BW, Henke L, Green O, Kashani R, Acharya S, Bradley JD, et al. 
Two-and-a-half year clinical experience with the world’s first magnetic resonance 
image guided radiation therapy system. Adv Radiat Oncol 2017;2:485–93. https:// 
doi.org/10.1016/j.adro.2017.05.006. 

[12] Ramey SJ, Padgett KR, Lamichhane N, Neboori HJ, Kwon D, Mellon EA, et al. 
Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer 
using MR-guided Tri- 60Co unit, MR-guided LINAC, and conventional LINAC-based 
plans. Pract Radiat Oncol 2018;8:e312–21. https://doi.org/10.1016/j. 
prro.2018.02.010. 

[13] van Timmeren JE, Chamberlain M, Krayenbuehl J, Wilke L, Ehrbar S, Bogowicz M, 
et al. Treatment plan quality during online adaptive re-planning. Radiat Oncol 
2020;15:203. https://doi.org/10.1186/s13014-020-01641-0. 

[14] Thomas MA, Fu Y, Yang D. Development and evaluation of machine learning 
models for voxel dose predictions in online adaptive magnetic resonance guided 
radiation therapy. J Appl Clin Med Phys 2020;21:60–9. https://doi.org/10.1002/ 
acm2.12884. 

[15] Li HH, Rodriguez VL, Green OL, Hu Y, Kashani R, Wooten HO, et al. Patient- 
specific quality assurance for the delivery of Co-60 intensity modulated radiation 
therapy subject to a 0.35-T lateral magnetic field. Int J Radiat Oncol Biol Phys 
2015;91:65–72. https://doi.org/10.1016/j.ijrobp.2014.09.008. 

[16] Green OL, Henke LE, Hugo GD. Practical clinical workflows for online and offline 
adaptive radiation therapy. Semin Radiat Oncol 2019;29:219–27. https://doi.org/ 
10.1016/j.semradonc.2019.02.004. 

[17] Wang Y, Mazur TR, Green O, Hu Y, Li H, Rodriguez V, et al. A GPU-accelerated 
Monte Carlo dose calculation platform and its application toward validating an 
MRI-guided radiation therapy beam model. Med Phys 2016;43:4040–52. https:// 
doi.org/10.1118/1.4953198. 

[18] Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y. Dosimetric features-driven 
machine learning model for DVH prediction in VMAT treatment planning. Med 
Phys 2019;46:857–67. https://doi.org/10.1002/mp.13334. 

[19] Shiraishi S, Tan J, Olsen LA, Moore KL. Knowledge-based prediction of plan quality 
metrics in intracranial stereotactic radiosurgery. Med Phys 2015;42:908. https:// 
doi.org/10.1118/1.4906183. 

[20] Shiraishi S, Moore KL. Knowledge-based prediction of three-dimensional dose 
distributions for external beam radiotherapy. Med Phys 2016;43:378–87. https:// 
doi.org/10.1118/1.4938583. 

[21] Campbell WG, Miften M, Olsen L, Stumpf P, Schefter T, Goodman KA, et al. Neural 
network dose models for knowledge-based planning in pancreatic SBRT. Med Phys 
2017;44:6148–58. https://doi.org/10.1002/mp.12621. 

[22] Wu B, Ricchetti F, Sanguineti G, Kazdan M, Simari P, Jacques R, et al. Data-driven 
approach to generating achievable dose-volume histogram objectives in intensity- 
modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 2011;79:1241–7. 
https://doi.org/10.1016/j.ijrobp.2010.05.026. 

[23] Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu QJ. A planning quality evaluation 
tool for prostate adaptive IMRT based on machine learning. Med Phys 2011;38: 
719–26. https://doi.org/10.1118/1.3539749. 

[24] Bland JM, Altman DG. Statistical methods for assessing agreement between two 
methods of clinical measurement. Lancet 1986;327:307–10. 

[25] Kluter S. Technical design and concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. 
Oncol. 2019:98–101. https://doi.org/10.1016/j.ctro.2019.04.007. 

Table 1 
Summary of plan comparisons based on V95 predictions for adapted plans from 
offline plan models.   

60Co Adapted 
(n = 516) 

Linac Adapted 
(n = 265) 

60Co Adapted in Linac 
(n = 516) 

ΔV95 (%): 
Mean ± σ 

− 4.0 ± 5.9 0.4 ± 2.4 − 9.4 ± 6.5 

Acceptable 
(mean ± σ) 

348 (67%) 
− 1.3 ± 2.5 

241 (91%) 
0.2 ± 1.5 

109 (21%) 
− 1.6 ± 1.4 

Inferior 
(mean ± σ) 

157 (30%) 
− 10.9 ± 4.9 

6 (2%) 
− 7.7 ± 3.2 

405 (78%) 
− 11.5 ± 5.6 

Superior 
(mean ± σ) 

11 (2%) 
8.0 ± 1.8 

18 (7%) 
5.3 ± 1.9 

2 (0%) 
4.1 ± 0.8 

ΔV95 < -10% 80 (16%) 2 (1%) 203 (39%) 
ΔV95 < -20% 7 (1%) 0 34 (7%)  
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