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Abstract: Functional dyspepsia (FD) is one of the most prevalent chronic functional gastrointestinal
disorders. Several distinct pathophysiological mechanisms, including gastro duodenal motor
disorders, visceral hypersensitivity, brain-gut interactions, duodenal subtle inflammation, and
genetic susceptibility, have been implicated in the pathogenesis of the disease, so far. However,
emerging evidence suggests that both quantitative and qualitative disturbances of the gastrointestinal
microbiota may also be implicated. In this context, several studies have demonstrated differences of
the commensal bacterial community between patients with FD and healthy controls, while others
have shown that intestinal dysbiosis might associate with disease’s symptoms severity. Elucidating
these complex interactions constituting the microbiota and host crosstalk, may eventually lead to the
discovery of novel, targeted therapeutic approaches that may be efficacious in treating the multiple
aspects of the disorder. In this review, we summarize the data of the latest research with focus on the
association between gut microbiota alterations and host regarding the pathogenesis of FD.
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1. Introduction

Functional dyspepsia (FD) is a frequent gastrointestinal (GI) disorder, characterized by epigastric
pain or burning, postprandial fullness, or early satiation in the absence of structural disease on
standard clinical and laboratory investigation, including upper GI endoscopy. Rome IV criteria
identify three disease subtypes according to the predominant symptom pattern: postprandial
distress syndrome (PDS), epigastric pain syndrome (EPS), and PDS-EPS overlap group, with variable
prevalence worldwide [1]. Helicobacter pylori (H. pylori)-associated dyspepsia is now recognized as
a distinct entity. The Kyoto global consensus report advocates that H. pylori-positive FD with a
sustained response (>6–12 months) to eradication therapy is referred as H. pylori-associated dyspepsia
and not FD [2]. Although a subset of FD patients (10–16%) may find symptomatic benefit after
successful eradication therapy, only a minority will eventually remain asymptomatic on the long term,
suggesting that H. pylori was not the primary cause of the dyspeptic symptoms [3,4]. Despite the
latest advancements in the field, the disease’s aetiology and pathophysiology remain elusive and
most probably multifactorial. Gastric sensorimotor abnormalities, brain–gut axis deregulation,
visceral hypersensitivity, immune activation, altered epithelial barrier permeability, psychological
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stress, genetic background, and post-infectious low-grade duodenal inflammation are listed among
the complex interactions thought to give rise to FD cardinal symptoms [4–6]. Aproximately 100
trillion commensal microorganisms residue synergistically in the human gut, including bacteria,
archaea, fungi, eukaryotes and viruses [7]. The largest population is that of bacteria with more than
100 different species, further classified into four major phyla: Gram-positive Firmicutes producing
short-chain fatty acids, Gram-negative Bacteroidetes producing hydrogen, as well as Proteobacteria
and Actionobacteria [8]. This abundant and diverse microbial ecosystem represents a key element in
maintaining the homeostasis of the host, since it acts as an effective and highly specialized barrier against
pathogens, interacts with the immune system and contributes to the fermentative process of dietary
and endogenous substrates [9]. Accumulating evidence have highlighted the potential role of gut
microbiota dysbiosis—defined as any qualitative or quantitative alteration in their composition—in the
pathogenesis of gastrointestinal and extra-gastrointestinal diseases, as well [10,11]. Dysbiosis has been
consistently shown to associate with the onset and progression of symptoms in patients with irritable
bowel syndrome (IBS), the other principal functional gastrointestinal disorder [12]. IBS frequently
develops after an episode of infectious gastroenteritis or antibiotics intake, with evidence supporting
the notion that gut microbiota composition significantly varies between IBS individuals and healthy
ones [12]. Similarly to IBS, intestinal dysbiosis is an evolving concept dictating its further evaluation
in patients with FD [5,13]. Given the fact that our treatment strategy for FD remains suboptimal,
a detailed understanding of the mechanisms that may relate to the development of the disorder is
pivotal in the search for novel therapeutic approaches [14]. The aim of this review was to present the
latest literature data concerning the potential role of gut microbiota–host crosstalk in the pathogenesis
of FD.

2. Methods and Methods

A search in PubMed database for studies published up to March 2020 in the English language
was conducted using the following key words: (“gastrointestinal microbiome”[MeSH Terms] OR
(“gastrointestinal”[All Fields] AND “microbiome”[All Fields]) OR “gastrointestinal microbiome”[All
Fields] OR (“gut”[All Fields] AND “microbiota”[All Fields]) OR “gut microbiota”[All Fields]) AND
(functional[All Fields] AND (“dyspepsia”[MeSH Terms] OR “dyspepsia”[All Fields])).

3. Role of Microbiota in FD Pathogenesis—Putative Pathophysiologic Mechanisms

Evidence from animal and clinical studies imply an intriguing role for intestinal flora in FD,
through a number of pathogenic mechanisms which include impaired gastrointestinal motility, visceral
hypersensitivity, immune activation, increased mucosal permeability, and central nervous system
disorders [10] (Figure 1).
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3.1. Abnormal Gastrointestinal Motility

Altered gastric sensorimotor function is thought to contribute to the pathophysiology of both
FD and IBS [10]. Although evident, motility alterations (delayed gastric emptying, impaired gastric
accommodation, hypersensitivity to distention), have been found to correlate poorly or not at all with
FD symptoms [15]. Gut microbiota and gastrointestinal motility seem to be inextricably linked one to
each other. On the one hand, intestinal motility disturbances can affect the number and composition of
microbial commensal flora by establishing conducive intraluminal circumstances [16], while on the other
hand the microbiota itself may pose certain impact on upper intestinal transit [17,18]. The latter can
occur as a result of the prokinetic properties of various fermentative microbial products or metabolites.
Among them, short chain fatty acids (SCFAs)—produced by dietary starches and carbohydrates
fermentation mediated by gut bacteria—and bile acids (deconjugation and dehydroxylation of bile
acids is regulated by gut bacteria) are those most well-studied, so far. More precisely, SCFAs produced
by bacteria not only modulate duodenal bicarbonate secretion in FD, but at the same time their fast
duodenal absorption may also influence luminal bacterial colonization suppression [19]. In addition,
bacterial lipopolysaccharide produced by Escherichia coli (E. coli) has been found to induce a significant
delay of gastric emptying [20], while Bifidobacterium—when used as probiotic—considerably enhances
small bowel motility [21].

3.2. Intestinal Barrier Integrity

FD patients appear to have increased intestinal permeability of the duodenal mucosa [22]. This is
thought to allow intraluminal triggers to initiate a both local and systemic immune cascade, which
leads to altered neuronal signaling, generating the dyspeptic symptoms [23]. Commensal flora have a
key twofold role: first, inducing intestinal barrier function maturation by promoting expression of
multiple epithelial tight junction proteins (i.e., claudin-3). This was shown in an experimental study
where an impaired intestinal barrier (lack of toll-like receptor adaptor protein MyD88 and claudin 3)
effectively resumed its normal function after enteral administration of probiotics promoting claudin 3
expression [24]. Similarly, probiotics were also able to mediate the up-regulation of gene and protein
expression of another significant element of tight junctions, namely zonula occludens 1 (ZO-1) [25].
Recent research also features the key role of zonulin—a precursor of haptoglobin-2—in maintaining
the homeostasis of the intestinal mucosa. Zonulin is involved in regulation both of tight and cell–cell
junctions responsible of the influx of dietary and microbial antigens via paracellular route of intestinal
absorption. These data implicate zonulin as a master regulator of intestinal permeability, linked
to the development of chronic inflammatory disorders [26]. Second, bacteria can even up-regulate
the expression of genes involved in intestinal wall protein production; administration of probiotics
resulted in altered expression levels of tight junction-related genes, including those producing
occludin [27]. Research also indicates that their metabolites can also directly—without interfering
neural pathways—mediate epithelium permeability, compromising intestinal barrier function [28]. It
should be underlined that the abovementioned conclusions mainly derive from studies investigating
the effects of probiotics on epithelial permeability; thus, may not reflect the normal situation or effect
of commensals. Given the absence of studies, their results should be seen cautiously when interpreting
these findings in the context of FD.

3.3. Immune System Activation and Low-Level Inflammation

Immune activation seen as low-grade mucosal inflammation, with duodenal mast cells and
eosinophils infiltration has been described in FD [5,29]. Evidence suggest that the fundamental
pathophysiologic event is a disturbance of gut-homing T lymphocytes population within a T-helper
type 2 (Th2) or a Th17 immune response to luminal antigens, that eventually leads to disruption of the
delicate mucosal homeostasis with dyspeptic symptom appearance [29]. Gut microbiota and their
metabolites interfere with signaling through Toll-like Receptors (TLRs—TLR2, TLR4) and precipitate
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proinflammatory cytokines production and immune reaction [30]. Furthermore, their metabolites could
also share inflammatory properties or exert direct effect on T-cell differentiation [31]. An alternative
innovative disease model might be proposed for the subset of patients developing Post-infectious
FD. Commonplace secondary to a bacterial gastroenteritis induced by ordinary pathogens, i.e.,
Campylobacter jejuni, Salmonella, E.coli, Shigella is the production of the cytolethal distending toxin
(CdtB) [12]. Antibodies produced by the host against CdtB can cross-react—potentially through a
molecular mimicry mechanism—with vinculin, a cytoplasmic cytoskeletal protein found in myenteric
ganglia and interstitial cells of Cajal (ICC), playing a crucial part in gastrointestinal tract motility and
contractility [32]. This allowed anti-CdtB and anti-vinculin circulating antibodies levels to be used as
biomarkers to differentiate IBS-Diarrhea predominant type from inflammatory bowel disease (IBD)
in different settings, with promising results [33]. Interestingly, higher serum titles of anti-CdtB were
also observed in FD patients compared to healthy controls in a recent large Australian cohort study,
indicating that a similar disease pathway might also apply for FD [34].

3.4. Disturbances in Intestinal Secretion

Intestinal secretion is partially regulated by molecules and metabolites (SCFAs and bile salts)
produced by the bacteria flora [35]. In detail, bile acids may increase chloride secretion, while SCFAs
participate in mucus, water and duodenal bicarbonate secretion [19,36]. Furthermore, serotonin,
apart from being responsible for normal GI transit, has been also shown to contribute to visceral
hypersensitivity by affecting intestinal permeability and has been associated to methane producing IBS
subjects [37]. Gut microbiota may control serotonin secretion, thus featuring an alternative putative
mechanism that might also implicated in FD pathogenesis [38].

3.5. Visceral Hypersensitivity

Although some of FD most burdensome symptoms i.e., pain, bloating, abdominal distention have
been associated to excessive visceral hypersensitivity secondary to mechanical and chemical stimuli,
evidence supporting the role of the bacterial community in this altered perception and sensation
remain scarce [4,39]. Some data from experimental animal models suggest that gut microbiota might
be implicated in the activity of central or peripheral neuronal pathways, while they could also produce
molecules (i.e., nitric oxide, γ-aminobutyric acid) affecting sensation [40]. However, further data are
needed to unveil a potential causal relationship.

3.6. Central Nervous System Factors

The functional link between gut and central nervous system (CNS) has been identified as an
essential component of the FD pathogenesis [1]. Its disorders not only refer to an abnormal central
modulation (brain to gut—activation of the hypothalamus pituitary-adrenal (HPA) axis affecting gut
permeability, motility and secretion), but also involve altered intestinal signaling (gut to brain), thus,
highlighting its bidirectional nature [23]. Gut microbiota fluctuations seem to relate with impaired
mucosal surface integrity (through effect on TLRs and/or tight junction proteins and other inflammatory
cytokines profile) [41]. The commensal bacterial community could also impress GI tract motility,
once again via effect on TLR signaling, mediated by the pacemaker activity of the interstitial cells of
Cajal [42]. It should be noted that bacteria produce metabolites (SCFAs) and neurotransmitters (gamma
aminobutyric acid—GABA) that may also encumber brain function. Intestinal dysbiosis also causes
production and release into the bloodstream of a pro-inflammatory endotoxine, lipopolysaccharide
(LPS). LPS is a potent factor influencing CNS function and also leads to production of various
other inflammatory cytokines that also affect physiological CNS activity, modulating neuropeptides
synthesis [43].
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4. Helicobacter pylori (H. pylori) and Gut Microbiota

The discovery of Helicobacter pylori (H. pylori) revolutionized our concept about gastroduodenal
pathologies and more importantly gastric cancer. Beyond its undisputed carcinogenic potential in
gastric epithelium that allocate the pathogen as class I carcinogen, it has been also evident that a mutual
interaction between H. pylori and the gastric microbiota community is present [44,45]. One of the
first studies aiming to clarify the potential differences in gastric microbiota between H. pylori-infected
and non-infected subjects, found no difference in gastric bacterial composition at phylotype level,
regardless H. pylori status [46]. However, this finding was not confirmed in studies that followed,
where an increase in Proteobacteria and decrease in Actinobacteria, Bacteroidetes, and Firmicutes among
H. pylori-positive patients was reported [47]. Another study from Mongolia using 16S rRNA gene
amplicon sequencing, found that H. pylori infected subjects had significantly lower bacterial richness as
well as Shannon and Simpson indices compared to those non-infected, while H. pylori-negative gastritis
was associated with greater enrichment of Firmicutes, Fusobacteria, Bacteroidetes and Actinobacteria at
phylum level [48]. An explanation for these striking discrepancies in microbiota composition could be
attributed to differences of the recruited populations, in terms of dietary habits and gastric cancer risk.
In this direction, a recent study detected significant differences in gastric microbiota among three distinct
populations from a Southeast Asia region (the isolated Orang Asli of Malaysia, Myanmar residents
and modern Malaysians), likely associated with the level of each population’s modernization [49].
At length, bacterial species richness and gastric microbiota diversity was more increased among less
modernized individual and could suppress H. pylori growth. On the contrary, gastric microbiota
composition varied significantly among modern participants with disparate gastric diseases. Greater
abundance of Cutibacterium acnes in patients with non-ulcerative dyspepsia compared to those with
peptic-ulcer disease was reported, suggesting that except H. pylori this particular bacterium may also
induce gastritis.

Perhaps even more interesting are the data supporting that H. pylori has the potential to alter
host metabolism, while the commensal microbiota can in fact attenuate the pathogen’s detrimental
effect [50]. In a similar manner, H. pylori eradication therapy is not only able to prevent or even reverse
gastric cancer development by interrupting the notorious atrophic gastritis - intestinal metaplasia-
cancer cascade, but has been also found to affect the host’s metabolism by successfully restoring
growth, weight and height along with increased serum acylated ghrelin level [51,52]. Of note, the most
frequently used first-line treatment in FD, i.e., proton-pump inhibitors (PPIs) seems to cause minimal
gastric microbiota alterations [53].

5. Data from Studies Evaluating Microbiota Dysbiosis in FD

As stated above, luminal dysbiosis may be involved in the pathogenesis of FD. Although the
amount of available data supporting this is not directly comparable to that of IBS, the topic is likely to
grow in importance as microbiota and imminent treatment approaches become a focal point for future
research. Table 1 summarizes data from studies investigating microbiota alterations in FD [54–59].

Correlation of dysbiosis and FD was initially investigated in a prospective cohort study, comparing
basic physiological properties of the gastric fluid (GF) and assessing the microbiota profile in 44 patients
with FD and 44 healthy participants [54]. Authors reported significantly increased GF volume in FD
patients, a finding that suggests disturbance or delayed gastric emptying. Next, using 16S rRNA gene
sequencing analysis, they showed that the overall composition of the bacterial flora is different between
the two groups. Moreover, the abundance of genus Prevotella and of Bifidobacterium/Clostridium was
higher in FD than in healthy controls, respectively. Subsequent treatment of the FD patients with the
probiotic strain of Lactobacillus gasseri OLL2716, resulted in restoration of the microbial community
composition, while the abundance of Prevotella inversely correlated with the severity of PDS symptoms.
In another comprehensive study using the same methodology, Igarashi and colleagues compared GF
microbiota synthesis between 24 patients with FD and 21 age-matched and gender-matched healthy
controls [55]. They found that bacterial composition was completely different between the two groups,
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even at the phylum level. In detail, microbiota of the FD group was characterized by increased
Bacteroidetes to Proteobacteria ratio and total absence of Acidobacteria, while in the control group the ratio
Bacteroidetes to Proteobacteria was decreased and Acidobacteria were present. As previously, treatment
with probiotic Lactobacillus gasseri OLL2716 shifted these changes in microbiota analysis of patients
with FD towards to that observed in the control group.

Table 1. Microbiota analysis studies in Functional Dyspepsia.

Ref. Population
Population
Synthesis

(FD/Controls, n)

Technique for
Microbiota

Identification
Principal Findings

Gastric fluid aspirate

Nakae et al. [54] Adult 44/44 16S rRNA gene
sequencing

Higher levels of Prevotella in FD, inverse
correlation between Prevotella abundance

and severity of PDS-FD

Igarashi et al. [55] Adult 21/21 16S rRNA gene
sequencing

Higher Bacteroidetes > Proteobacteria
abundance, absence of Acidobacteria in FD;

lower Bacteroidetes < Proteobacteria
abundance, presence of Acidobacteria

in controls

Mucosa-associated microbiota (MAM)

Zhong et al. [56] Adult 9/9 16S rRNA gene
sequencing

Streptococcus was the predominant genus
in both control and FD; inverse

relationship between abundance of
Streptococcus and Prevotella, Veillonella and
Actinomyces; negative correlation between

bacterial load and quality of life

Sterbini et al. [57] Adult 24 16S rRNA gene
pyrosequencing

Higher levels of Proteobacteria, Firmicutes,
Bacteroidetes, Fusobacteria, and

Actinobacteria; higher levels of Firmicutes
(Streptococcaceae) and Streptococcus in

treatment with proton pump inhibitors

Shanahan et al. [58] Adult 26/10 16S rRNA gene
sequencing

Negative correlation between abundance
of Veillonella and gastric emptying time

Fukui et al. [59] Adult 11/7 16S rRNA gene
sequencing

Higher levels of Firmicutes in FD
compared to healthy controls; at genus

level, higher levels of Streptococcus in FD;
Streptococcus relative abundance

positively correlated with symptoms

FD: Functional Dyspepsia; C: Controls (as defined in each study).

However, these results should be seen cautiously given that microbiota populations in
GF aspirations are susceptible to the effect of gastric acid, bile acids and pancreatic enzymes.
More importantly, these iterations were not designed to reveal information concerning the potential
region-dependent interaction of mucosa-associated microbiota (MAM) in FD [23]. To overcome these
hardships, Zhong et al. [56] in a pioneer small study assessed duodenal mucosal microbiota—using a
specifically designed encased biopsy forceps—nine patients with FD and nine matched for age, sex,
and body mass index controls. Streptococcus was the predominant genus in both groups, while the
relative abundance of Prevotella, Veillonella and Actinomyces was significantly decreased in the FD group.
Moreover, they noticed a negative correlation between duodenal mucosal bacterial load and quality of
life, while as bacterial load increased, diversity decreased.

Trying to provide a detailed characterization of the gastric MAM communities in dyspeptic
patients, Sterbini et al. [57] evaluated microbial populations of 24 patients using 16S rRNA gene
pyrosequencing. Among patients tested negative for concurrent Helicobacter pylori infection and
not receiving proton pump inhibitors, the relative abundance of Bacteroidetes and Prevotellaceae was
increased, while that of Proteobacteria was decreased. Further insights into this enigmatic interplay
between microbes and GI motility are provided by a study evaluating gastric and duodenal MAM in
26 consecutive FD patients and 10 controls [58]. Authors observed a significant negative correlation
between the relative abundance of the genus Veillonella in duodenal but not gastric mucosa with gastric
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emptying time (Spearman’s rho (r) = −0.59, p < 0.005). Correlation between FD and microbiota was also
investigated in a Japanese study, where mucosa samples from five different upper gut sites (oral cavity,
esophagus, gastric body, gastric antrum and duodenum)—using a brush during endoscopy—in 11 FD
and seven healthy subjects were collected [59]. Although the MAM α-diversity did not differ between
the two groups, β-diversity differed, with the phylum Firmicutes being increased in FD patients across
all biopsied sites. At the genus level, Streptococcus was significantly increased in FD and its relative
abundance also positively correlated with symptoms severity. Finally, at a species level the relative
abundance of OTU 90 (the most prevalent sequence of Streptococcus infantis) was positively correlated
with PDS and EPS scores.

To summarize, intestinal dysbiosis may be associated with symptom generation or exacerbation in
a subset of patients with FD through several putative mechanisms. Acknowledging the fact that current
data cannot support a direct causative process that leads to development of FD, they undoubtedly
show the way for future research that will lead to better comprehension of the microbiota role in FD.

6. Modulating Microbiota as Potential Treatment for FD

6.1. Probiotics

Probiotics are “live microorganisms which, when administered in adequate amounts, confer a
health benefit on the host” and prebiotics as “a non-digestible food ingredient that beneficially affects
the host by selectively stimulating the growth and/or the activity of one or a limited number of bacteria
in the colon” [60]. In this regard, they could represent an alternative beneficial therapy for FD, targeting
duodenal dysbiosis. Indeed, data from several individual studies have verified this hypothesis. In the
double-blind, parallel-group, placebo-controlled, randomized, controlled trial conducted by Ohtsu and
colleagues, 116 (Helicobacter pylori—negative) FD individuals were randomized to receive for a 12-week
period either a daily yoghurt containing Lactobacillus gasseri OLL2716 or placebo (fermented milk
product without L. gasseri) [61]. Authors observed similar impressions—assessed by a questionnaire
where participants rated the severity of FD and accompanying symptoms—regarding the overall effect
on gastric symptoms between the two groups (p = 0.073), but significantly higher elimination rates
for FD symptoms in the group assigned to probiotics (17.3% vs. 35.2% of placebo, p = 0.048). This
finding was observed in PDS but not in EPS subjects. However, a recent meta-analysis incorporating
data exclusively from five randomized controlled studies refutes the aforementioned results [62].
Although FD symptoms improved after overall treatment with probiotics or prebiotics vs. placebo
(relative risk (RR): 1.15 (95% CI: 1.01—1.30)), use of probiotics alone was not associated with significant
improvement in FD symptoms (RR: 1.13; 95% CI: 0.99—1.28). Moreover, the authors could not provide
any valuable input regarding the strain or species that might be more advantageous over the others.
Thus, incorporating these particular agents as therapeutic approaches seems promising but requires
further confirmation.

6.2. Antibiotics

Antibiotics have also been extensively used in treatment of gastrointestinal diseases associated with
intestinal dysbiosis (i.e., IBS) [12]. Rifaximin is a non-absorbable antibiotic with unique pharmacokinetic
properties and favorable safety profile that has established itself as an efficacious option for treating
diarrhea predominant IBS [63]. Although its exact mechanism of action is not entirely known, it
is generally considered as multimodal, including potential anti-inflammatory actions and altering
proximal small bowel microenvironment [64]. Rifaximin has been already tested in a randomized trial,
where 86 consecutive FD patients were assigned to receive rifaximin 400 mg or placebo [65]. After
eight weeks, significantly more patients who had received rifaximin experienced adequate relief of
both global dyspeptic symptoms (GDS) (78% vs. 52%), while rifaximin provided more frequently
adequate relief of belching and post-prandial fullness/bloating (PPF) at week 4. Furthermore, female
sex was associated with a more favorable response to rifaximin (adequate relief of GDS at week 4: 76%
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vs. 42%, p = 0.006; week 8: 79% vs. 47%, p = 0.008). Undoubtedly, these results may be an additional
argument for contribution of bacteria in FD, but more data are warranted before its efficacy in treating
this disorder is known.

6.3. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) has been at the spotlight during the last years, as an
innovative treatment modality that could alter the natural history and outcomes in gastrointestinal
diseases where gut dysbiosis is foreseen. By restoring gut microbial community with the use of
healthy microbiota, FMT is an established treatment for recurrent Clostridium difficile infection (CDI),
but has been lately tested also in IBS [66]. Thinking outside the box, we speculate that FMT might be a
promising future enrichment of our therapeutic armamentarium for dyspeptic patients.

7. What Lies in the Future?

Nowadays, a growing body of evidence delineates the crucial role of gut microbiota in
several physiological processes of the host, but also their implication in pathogenesis of various
diseases. In order to improve our understanding regarding these mechanisms, pioneer, well-designed
studies combining many different techniques (functional genomic, metagenomics, metabolomics,
metatranscriptomics and metaproteomics) should be pursued. They will eventually allow the transition
from simple taxonomic associations regarding abundant phyla and genera to functional phenotypes and
cause–effect studies. An issue that usually remains underrated is the fact that gut microbiota represent
a never-ending evolving community, subject to constant change in the form of several everyday factors,
i.e., diet, body mass index, and medication (antibiotics, proton pump inhibitors), able to exert certain
effect on its composition. Hence, all these individual factors as well as the significant heterogeneity in
terms of study populations enrolled, criteria used to define FD, and the technique used to evaluate
host–microbiota interactions represent additional challenges that should be addressed. Finally, it is
imperative that future studies investigating potential therapeutic interventions (i.e., probiotics) move
on from empirically administered therapies to an individualized mechanism-based diagnostic and
therapeutic management model.
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