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Background: Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a
new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct

drug specific response networks in cancer.

Results: The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously
highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for

patients prescribed the drug.

Conclusions: Predictions based on proteins from the in-vitro derived netwaorks significantly outperformed
predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug

response networks.
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Background
While several large scale efforts have recently focused on
profiling the genome and transcriptome of cancer patients
[1, 2], it is obviously much harder to test a large number
of potential perturbations (gene knock downs, different
drugs) for such individuals. Instead, recent efforts aimed
at inferring cellular response networks that are activated
by such perturbations have utilized in vitro cell lines.
Such cell lines have now been derived for several differ-
ent types of cancer [3—7] and these have been extensively
used to study potential treatments and mutants. A recent
example of such large scale cell line based project is
the Library of Integrated Network-Based Cellular Signa-
tures (LINCS) [8] a NIH-sponsored project that aims to
characterize gene expression changes and other cellular
processes under various perturbations, for the purpose of
gaining better insight into biological networks.

While the tens of thousands of LINCS expression
experiments provide valuable information regarding the
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response of specific cell lines to drugs, modeling the sig-
naling and regulatory response networks using this data
remains a challenge. Such models are critical if we intend
to use the experimental results to improve the diagno-
sis and prognosis analysis of individuals. While cell lines
and patient expression are likely to be different due to
several technical issues [9], the underlying networks acti-
vated by the drugs are likely to be similar and so the ability
to reconstruct these networks opens the door for using
these drug specific experiments to tailor treatments to
individuals.

Over the last decade several methods have been devel-
oped for reconstructing molecular response networks
[10-13]. These methods often combine general interac-
tion and sequence data with condition specific data to
model pathways that are activated as part of the bio-
logical process being studied. While such methods have
been successful in many cases, they face the same set
of challenges that many other high throughput analysis
methods face: the need to fit a large number of param-
eters using relatively few data samples. In the context of
network reconstruction these parameters correspond to
the presence of a specific protein (node) or an edge in
the network [14], the direction of edges that are used
[15, 16], the impact of an edge on a protein etc. Since the
number of parameters is often greater than the effective
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number of input values this can lead to overfitting even
when analyzing relatively large datasets for a specific
condition [17, 18].

So far, most modeling methods are applied to recon-
struct networks for a single condition/cell type at a time.
One possible direction to overcome the data scarcity
problem is to utilize datasets from other, similar, condi-
tions when trying to reconstruct networks for a specific
condition. Consider for example the task of reconstruct-
ing drug response networks in prostate cancer cell lines.
Assume that in addition to the prostate cancer data we
also have response data from breast cancer cell lines. Since
breast cancer is likely utilizing some of the same pathways
active in prostate cancer cell lines, at least some of the
response is shared between the two cell types. Similarly,
it is likely that we would observe at least some overlap
in the activated regulatory modules between these cancer
cell types. Indeed, such common expression activation has
been widely observed in practice. For example, early work
in yeast indicated that several genes are responding in a
similar way to different types of stresses [19]. Similarly, we
and others have shown that immune response to similar
viruses (for example, different variants of flu) activates a
large overlapping set of genes [13, 20], again supporting
the idea of joint analysis of such data.

Given these similarities, a possible strategy to model
response networks is to develop methods that can com-
bine information across cell types while still generat-
ing cell type specific networks. Methods that attempt
to perform such joint analysis are often referred to as
multi-task learning algorithms [21] and have been applied
to a number of different computational biology prob-
lems, most notably protein classification [22] and GWAS
analysis [23, 24]. More recently, we have introduced
MT-SDREM [13], the first multi-task method for learn-
ing dynamic regulatory networks for multiple immune
responses. MT-SDREM combines a graph orientation
method with Hidden Markov models (HMMs) to simul-
taneously reconstruct networks for several flu variants.
However, while MT-SDREM was shown to successfully
reconstruct these flu response networks, it suffers from a
number of problems that limit its usability and effective-
ness. First and foremost, MT-SDREM requires as input
time series gene expression data. This obviously greatly
limits its usability since most gene expression data is static
[25]. In addition, MT-SDREM is actually optimizing two
separate target functions (one for the HMM and the other
for a graph orientation problem) making it very hard to
converge to a joint (locally) optimal solution. Finally, MT-
SDREM requires users to specify the set of sources (start-
ing points for the reconstructed pathways). While such
sources are known in some cases (for example, for flu)
there are many cases in which they are either not known
or not fully known which again limits its usability. Other
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work such as [26] focuses on multi-task learning of sub-
networks in a protein interaction network, using somatic
mutation data, expression data, and proteomic data, iden-
tifying common pathways between breast cancer patients.
However, this method does not directly identify regu-
latory relationships, such as those linking transcription
factors to differentially expressed genes, and it is diffi-
cult to identify de novo pathways due to the limitations of
physical protein interaction networks.

To address these issues we developed a new multi-task
learning framework to reconstruct signaling and regula-
tory networks that are activated in drug response experi-
ments. We used our method to integrate a large number of
gene expression experiments across multiple cancer types
from LINCS to reconstruct drug response networks. By
simultaneously analyzing several types of cancers for each
drug we were able to improve upon networks constructed
by analyzing each cancer type separately and upon the
analysis of gene expression alone. Additional analysis of
these networks identifies both, key proteins joint between
cancer cell types as well as cancer type specific proteins.
Finally, we used the top genes identified by our method for
specific cancer drugs to predict patient response to that
drug. As we show, by focusing on the networks activated
in the vitro studies we were able to greatly improve patient
survival predictions following treatment with a specific
drug when compared to using known cancer genes.

Results

We developed a new Multi-Task (MT) learning formula-
tion for integrating expression experiments across differ-
ent types of drugs administered to cancer cell lines (Fig. 1).
The goal of the method is to recover the pathways that
are activated following treatment with a specific drug. To
identify such pathways we define a target function that
aims to explain the observed differentially expressed (DE)
genes following treatment with the drug using paths that
connect sources (potential drug targets) and DE genes in
the network. Sources are either proteins that are known to
directly interact with the drugs or proteins whose knock-
out leads to expression profiles that are very similar to
those observed for the specific drug treatment of the
same cell (Methods). DE genes are selected separately for
each drug / cell line combination. Following our assump-
tion that most drugs activate the same pathways across
different tissues / cancer types, the joint (MT) learn-
ing framework is used to constrain the set of paths in
the resulting networks by encouraging compact solutions
that are shared across the different tasks (cancer types).
We developed a greedy algorithm for learning and infer-
ence in this model. Thus, while the learning is performed
simultaneously for all types of cancer, we still obtain a spe-
cific network for each of the different cancer types. Next,
we rank the top proteins in each of the cancer specific
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Fig. 1 Overview of the multi-task learning method. RNA-Seq data from drug response experiments in different cell lines or cancer types (top) is used
to select pathways linking source proteins to DE genes in general protein-protein and protein-DNA interaction networks (second row).
Reconstructed networks are constrained by encouraging pathways that are shared across different cancer types leading to a general network (third
row) that captures the common pathways activated during the response. In addition to the general network, cell type specific networks are also
identified (bottom) and these can help identify tissue specific proteins and explain differences in response of certain cancer types when treated with
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networks based on the number of selected paths that go
through them (Methods) and analyze their relevance to
the tissue and cancer with which they are associated by
the MT analysis.

Data and cell types

To test our method and to apply it to study drug response
in cancer cell lines we used data from the LINCS con-
sortium. One instance of the LINCS project is the L1000
(LDS-1191) dataset, which consists of Luminex gene
expression data for 978 landmark genes (which have
been selected based on the ability to infer expression
values for all other genes from this set, see http://www.
lincsproject.org/LINCS/data). These genes were profiled
in multiple cell lines following treatment by several chem-
ical reagents. Here we focus on experiments related to
12 known cancer drugs in 8 different types of cells. As

mentioned above, we also used this data to determine
sources for drugs and targets for TFs. Overall we have
used more than 11,000 expression experiments for recon-
structing the networks presented below.

As for cell types, we selected cell types based on over-
lap with drugs of interest and the availability of expres-
sion data from gene knockouts and administration of
these drugs. In LINCS there are 52 breast cancer cell
lines, 8 prostate cancer cell lines and 56 melanoma cell
lines; we therefore tested our method using cell lines
from breast cancer (MCF?7), prostate cancer (PC3, VCAP)
and melanoma (A375), as well as a non cancer cell line
(HA1E) and data from primary tissue experiments. For
drugs, we studied drugs that are used to treat multiple
tumor types (methotrexate, clofarabine, idarubicin, pacli-
taxel, bicalutamide, bortezomib) as well as drugs that
have been developed to specifically treat prostate cancer
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(disulfiram, docetaxel, ketoconazole, vinblastine, doxoru-
bicin, metformin).

Evaluation and comparison of the multi-task learning
framework

We first tested our method by comparing its ability to
correctly recover cancer related genes and pathways with
results from the commonly used single task analysis for
the same input data. For this we ran our method both in
the multi-task setting and in a single task setting which
uses the same objective function without the multi-task
regularization terms (last term of Eq. 2). We have also
compared the network based analysis results (both multi
and single tasks) with the standard DE gene analysis meth-
ods that is commonly used, both for each experiment
on its own and for a joint ranked list of DE genes [27].
For these comparisons, we ran our multi-task learning
method on three separate sets of cells:

1. Normal (non-cancer) cells: A normal cell line
(HA1E) and data from primary tissue (NPC). These
were used as control experiments.

2. Different cancer cell lines: A breast cancer (MCF?7)
and a prostate cancer (PC3) cell line.

3. Two different prostate cancer cell lines: PC3 and
VCARP which should be the most similar in their
responses.

To reduce the effects of highly connected nodes in the
network that tend to appear as top ranking genes for all
drugs / cells we filtered the resulting set of top ranked
genes for each run (both in the multi-task and the single
tasks) to remove genes that appear in the top 100 for a
random set of 20 non cancer drugs (Additional file 1). For
the cancer cells we also performed the DE gene analysis
using the z-scores derived by LINCS. We used a number
of complimentary datasets for validation: the cancer gene
census (CGC), GO, and MSIGDB genesets (Methods).

The results are summarized in Table 1 (see Additional
file 1 results for complete tables with a breakdown for
each of the drugs). For each set of cells we present the
average overlap with validation genes/genesets across the
six drugs. We also evaluate the gene rankings produced
by our multi-task framework using the normalized dis-
counted cumulative gain (nDCG) measure [28, 29], with
results shown in Additional file 1: Figure S7 and described
in Additional file 1: “‘NDCG Measure” section. We see that
these results are comparable to those in Table 1.

As can be seen in Table 1, comparing the results for
the three analyses, we see that overall using the network
structure improves upon methods that are only using gene
expression data. Within the network reconstruction com-
parisons, the multi-task formulation performs better than
selecting genes by differential expression alone in 8 of the
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Table 1 Comparison of different gene and network analysis
methods for the reconstruction of drug response networks

Control MT Cell1 Cell2 MT-Diff Diff-Cell1  Diff-Cell2
CGC 1333 85 866 633 4.66 6.5
GO 7233 3366 415 4766 43.16 29.5
Oncogenic 766 3 333 1033 10.33 4.83

Breast & Prostate
CGC 1466 833 10 266 333 1.83
GO 775 7066 6483 1816 2566 1833
Oncogenic 866 433 516 266 2.5 2.5

Prostate
CGC 15 1016 1033 333 2.33 3.83
GO 8233 8583 8866 23 26.83 18.5
Oncogenic 1 833 766 3 45 3.16

Values for each gene set and learning method denote the average number of
genes (across six drugs) selected by each method which are also contained in the
corresponding validation set. MT: multi-task, Cell 1, Cell 2: single task analysis (cell
type based) for the two cells. “Diff” columns show genes selected only by differential
expression (DE); MT-Diff: DE set for the two cell types, selecting genes that are
differentially expressed in both cells, Diff-Cell1/2: cell type specific DE set

9 validation sets, and the single validation set in which dif-
ferentially expressed genes outperform multi-task genes is
oncogenic gene sets in non-cancer cells. Genes selected
by the multi-task formulation likewise outperform those
selected by the single-task formulation in 8 of the 9 vali-
dation sets/cell types studied. This increased performance
holds true even for the normal cell lines and a possible
reason may be the fact that these are all cancer drugs
and so the pathways triggered by them are likely similar
between the two non cancer cell lines as well. However,
the performance is clearly better overall for cancer cell
lines when compared to non cancer cell lines (in terms
of the number of relevant genes and sets identified) and
within the two cancer cell line sets, the performance for
the prostate set is the best for two of three validation sets
(CGC and oncogenic gene sets). This result agrees well
with our assumptions regarding the advantages of multi-
task learning. The more similar the tasks (in this case the
same cancer type vs. two different types of cancer) the
more likely it is that the pathways activated by the differ-
ent drugs should be the same. Thus, the results in Table 1
validate both the usefulness of multi-task learning and its
ability to correctly identify relevant cancer genes in drugs
response experiments.

Shared pathways in cancer drug responses

We next applied the multi-task learning framework to
characterize the response of cancer cell lines to gen-
eral cancer drugs. For this, we used three different cell
types: melanoma (A375) breast (MCF7) and prostate can-
cer (PC3). As before, in Table 2 we observe that for the
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Table 2 Results for breast cancer, prostate cancer and melanoma

MTL Breast Prostate Melanoma
CGC 28.66 2233 22.66 21.16
GO 222 179.66 209.66 189.66
Oncogenic 14.16 9.3 14.83 4

Values for each gene set and learning method denote the average number of
genes (across six drugs) selected by each method which are also contained in the
corresponding validation set

three metrics described above (averaged across six drugs),
multi-task learning performs better than single-task, in
all but one case (prostate cancer, when comparing to the
MSIGDB oncogenic genesets).

In order to visualize our results for this analysis, we
have merged the pathways across drugs and cell types in
order to represent them as one network (Additional file 1).
Our network representation (Fig. 2) consists of sources
(labeled in red), intermediate nodes (labeled in cyan) and
transcription factors (labeled in green). Several impor-
tant genes in the network are known cancer regulators
or targets. These include TP53, a tumor suppressor pro-
tein involved in DNA repair and apoptosis which is known
to be significantly mutated in all three cancer types [30].
As determined by our reconstructed network, TP53 has
been shown to interact with BRCA1 [31], which is one of
the TFs that were significantly prevalent in the pathways
of two of the tumor types (breast and prostate cancer).
BRCAI is involved in regulating cell cycle control and
DNA repair and is known to pose a hereditary risk for
breast cancer. ATM, another gene that we identified as sig-
nificant, is a serine / threonine kinase known to activate
important DNA-repair genes upon double-strand DNA
breaks. This tumor-suppressor gene is known to be signif-
icantly mutated and deactivated in CLL [32]. A study has
also shown that it is a risk allele for breast cancer [33].

Overall, we observe a convergence process in cancer
drug response pathways for the cell lines being stud-
ied. While most sources identified by multi-task learning
using these three types of cells tend to be cell type spe-
cific (i.e. different direct targets for the different types of
cells), the down stream pathways that are activated are
much more similar among these cell types. Specifically,
unlike sources, most signaling and TF proteins are shared
between two, or all three cell types. This may result from
the target function maximized by the MT method which
encourages common pathways between the different cell
lines. However, the fact that such pathways are identified
may also indicate that while different drugs target differ-
ent proteins, their down stream effects are shared between
the different cancer types.

Cell type specific genes
The above discussion has focused on pathways and genes
that are common to the different cell types. We next
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performed an analysis to rank genes by tissue specificity
(Additional file 1). Such genes may be of interest since they
may explain why some drugs work on a subset of cancer
types but not on the rest. Since the inclusion of cell type
specific genes in the network is penalized by the objec-
tive function (because they are only used for one cell type)
those that are still selected need to be able to explain key
aspects of the cell type specific response to warrant their
inclusion.

Table 3 presents several of the top cell type specific
genes for each of the cell lines we tested. Interestingly,
many of the top-ranked genes have been implicated in
their respective tissue types. HDAC3 (ranked 2nd for
breast cancer) is a histone deacetylase (HDAC), a family
of enzymes that regulates gene expression by interact-
ing with histones. These enzymes have been shown to be
associated with estrogen receptor (ER) [34], and HDAC
inhibitors have been shown to be effective in the treat-
ment of breast cancer. MED1 (4th, breast cancer) has been
shown interact with ER in alpha-positive breast cancer
tumors [35]. GNAS (5th) was identified as a breast cancer
driver [36].

For prostate cancer, PDGFRB (1st) is a growth fac-
tor whose signaling inhibition has been shown to induce
apoptosis in metastatic prostate cancer cells [37]. The 5th
ranked genes, CTBP1, was shown to inhibit proliferation
in prostate cancer cell lines, suggesting a potential role as
an oncogene [38].

In the case of melanoma, our top ranked gene was
XRCCS, which is involved in double-strand break repair
of DNA has been shown to be upregulated in metastatic
melanoma patients with significantly worse prognosis
[39]. Another high-ranked gene, ZFP36 (2nd) inhibits
proliferation of A375 melanoma cell lines when main-
tained at high levels [40].

Figure 3 presents the prostate cancer specific pathways
we obtained. In this figure we combine genes from Table 3
(labeled as ellipses) with other genes in the prostate-
specific network (labeled as squares). Several of these
pathways end in known cancer genes including TP53
and MYC.

Survival analysis using gene sets from the multi-task
framework

So far we have focused on the analysis of in vitro data.
However, a major question with respect to this data is
how well such cell line based studies can inform us about
in-vivo drug response. To address this question we com-
bined the LINCS data and the results we obtained with
data from The Cancer Genome Atlas (TCGA) [41]. TCGA
contains gene expression and clinical data for 11,159
patients with several different types of cancer. Several of
these patients were treated with drugs that were also pro-
filed by LINCS and so we tested whether information
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Fig. 2 A merged network for the output of multi-task learning using data from breast cancer (lightest shade), prostate cancer (medium shade), and
melanoma (darkest shade). Top nodes (red shades): Sources. These proteins are either known to interact with the drugs we tested or determined to
be sources using the correlation analysis between drug expression response and KO response as described in Methods. Middle nodes (blue shades):
Signaling proteins. These proteins are determined to belong to key pathways connecting sources and TFs. Bottom nodes (green shades): TFs. These
proteins regulate a large subset of the DE genes in the different cell types following treatment with the drugs being tested. Note that while sources
tend to be cell type specific, most signaling and TF proteins are shared between two or all three cell types indicating that several of the response
pathways may be shared between the different cancer types
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Table 3 Recurrent Genes for Breast Cancer, Prostate Cancer and
Melanoma

Tumor type Gene Potential role
Breast cancer MEDT [35] Co-activator with Her2 of estrogen
receptor (ER) in @-positive tumors.
HDAC3 [34] Histone deacetylase involved in the
oncogenic tumorigenesis of breast
cancer.
WEET [63] Inhibition of WEET causes increased
cell death in breast cell lines
GNAS [36] GNAS locus identified as a driver in
20q amplified breast cancer
CDKN1B [64] Associated with increased breast
cancer risks
APP [65] Androgen-induced gene that
promotes proliferation activity of
breast cancer cells.
Prostate cancer  PTPNG6 [66] Tumoral Prostate Shows Different
Expression Pattern
PDGFRB [37] Blockade of PDGF signaling induced
apoptosis in metastatic PCa cells.
TAB2 [67] Deletion of MAP3K7 at 6q12-22 is
associated with early PSA recurrence
SQSTM1 [68] PCa cell lines have high p62/SQSTM1
levels required for cell survival
COPS2 [69] Alien interacts with the human
androgen receptor and inhibits
prostate cancer cell growth
CTBP1 [38] Dysregulated expression of CTBP1

plays an important role in prostate
cancer progression

In vitro IFN-g and TRAIL/Apo2L
combination treatment had more
potent apoptotic effects

Melanoma TNFRSF10A [70]

ZFP36 [40] Loss of TTP represents a key event
in the establishment of melanomas

PRKCD [71] Overexpression in BL6 murine
melanoma cells inhibits the
proliferative capacity in vivo

TLET [72] Diagnostic Immunohistochemical
Marker for Synovial Sarcoma

XRCC5 [39] One of only two DNA repair and

replication proteins which are
prognostic for melanoma

extracted by our MT method from the LINCS data can
be used to improve predictions regarding the way indi-
viduals would respond to specific drugs. Specifically, we
have focused on three commonly prescribed drugs: pacli-
taxel, docetaxel, and doxorubicin which, combined were
used by 1455 (13%) patients from TCGA (Additional file 1:
Table S12). Note that other drugs studied in this multi-
task framework were prescribed to too few patients to
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analyze in this way: methotrexate was the next most fre-
quently prescribed medication, given to only 50 patients,
and metformin was given to only 1 patient, as opposed
to hundreds of patients given paclitaxel, docetaxel, and
doxorubicin. For this analysis we downloaded mRNA
expression data for these patients and used the expres-
sion values of the genes to learn a Cox regression model
for predicting the 5 year survival of patients treated with
each of these drugs. We compared five, equal sized, sets
of genes for each of the drugs: (1) Top ranked genes
from the multi-task learning method for that drug. Since
we evaluate patients with several different types of can-
cer, for this analysis we combined the top ranked genes
across all tissues into a single unordered gene set, and fit
a model relating patient survival to expression of all genes
in that set (Additional file 1). (2) Randomly sampled sub-
sets of known general cancer genes from the COSMIC
cancer gene census [42], and (3) Random sets of genes
selected from all genes present in the expression data. (4)
Genes selected by a single-task learning method applied
to the same inputs as this multi-task method. (5) Genes
selected by an elastic net Cox regression model, from all
available genes in the gene expression data, with hyperpa-
rameter A chosen to select at least as many genes as are
present in the multi-task learning set for that drug. Addi-
tionally, we perform a separate Cox regression fit using
genes in set 1 (identified by our multi-task method) but
also including cancer/tissue type as a covariate, to evalu-
ate the added effect of tissue type on prediction of patient
survival. Since the multi-task gene set size is dependent
on the specific drug (Additional file 1: Table S13), we
evaluate the COSMIC, “all’; and single-task gene sets by
randomly sampling subsets of genes equal in size to the
multi-task gene set for each drug, and repeat this random
sampling 100 times. Thus, for these sets we can also obtain
confidence intervals.

We fit Cox regression models for each drug and gene set
(multi-task, COSMIC subsets, elastic net selections, “all”
subsets), relating the expression of these genes to the sur-
vival data for patients who were prescribed that drug. We
perform an overall 80%/20% train/test split, and fit Cox
models to the training set samples. We use the Cox model
for each gene set to predict risk for both training and vali-
dation set samples, and use the median risk for training set
samples as a threshold to divide the validation set samples
into two groups, and compute P-values for the difference
in survival between the two patient groups. For gene sets
in which we randomly sample a subset of available genes
(COSMIC, “all; and single-task genes), we repeat this
procedure 100 times, producing the P-value confidence
intervals shown in Fig. 4. As expected, cancer specific
genes from COSMIC are better at predicting survival
when compared to random genes. However, drug specific
genes identified by our method are significantly better
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prostate-specific genes

1]

Fig. 3 Tissue-specific pathways for prostate cancer. Tissue-specific prostate genes are shown as ellipses and other genes interacting with them are
shown as squares. Red, sources, cyan, intermediate nodes, green, target nodes. CUL2 (ranked 14th) and PTPNTT (ranked 30th) were also on our list of
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than random selections from gene sets (COSMIC and “all”
genes), and even outperform a survival-based gene selec-
tion using all 24,237 genes. In Additional file 1: Figure S1,
we also see that inclusion of tissue type as a covariate does
not consistently improve survival performance. Note that
the patients included in our analysis were all those pre-
scribed the drug and so represent several different types
of cancer. Additionally, Fig. 5 shows Kaplan-Meier sur-
vival curves for these divisions of patients by each Cox

model; plots for the multi-task genes for each drug are
produced from the single Cox model described above.
Plots for COSMIC, random, and single-task genes use
Cox models from all 100 random samples of the appro-
priate gene sets; the overall threshold for the training set
samples is chosen as a median-of medians: the median
training set risk is computed for each of the 100 random
samples of genes, and the overall threshold is the median
of those values across training sets. The computed risk
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Fig. 4 P-values for survival models fit using mRNA expression of genes in four sets: genes identified by the multi-task learning method for each drug,
COSMIC cancer genes, all genes present in mRNA expression data, and single-task genes. For COSMIC, all genes, and single-task genes, 100 random
subsets of available genes are chosen; each random subset contains the same number of genes as the multi-task set for a specific drug. Models are
fit to a random training set chosen from 80% of patients, risk scores are calculated for training set and validation set samples, and the median risk in
the training set is used as a threshold to divide validation set samples into two groups. P-values are computed from the difference in survival
between the two groups of validation set samples. a shows results for paclitaxel, b shows docetaxel, € shows doxorubicin
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Fig. 5 Kaplan-Meier survival curves for the survival analysis described in “Survival analysis using gene sets from the multi-task framework” section
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for each validation set sample is likewise computed as the
median risk for that patient across the 100 Cox models,
and the overall training set threshold is used to split the
validation set samples. We see that despite the repeated
sampling of other gene sets, genes selected by our multi-
task method produce a better stratification of survival in
validation set samples. For each drug, we also evaluate the
robustness of these Cox regression models fit to expres-
sion of genes in that drug’s multitask gene set, across 5
cross-validation folds that stratify the set of patients who
were given that drug. For each of these patient sets, we
use expression of genes in that drug’s multitask gene set
to fit Cox regression models, and compute a gene’s impor-
tance as the absolute value of its Cox regression coefficient
in that cross-validation fold. We examine the consistency
of these gene-wise importance measures between cross-
validation folds by computing pairwise Spearman corre-
lations between all (g) = 10 pairs of (absolute value)
coefficient vectors. These correlation values are shown in
Additional file 1: Figure S6. We see that these correlation
measures range from 0.71 — 0.77 for docetaxel, with 65
genes identified by the MT method; 0.58 — 0.73 for dox-
orubicin, with 70 MT genes; and 0.66 — 0.83 for paclitaxel,
with 113 MT genes. Thus, the in vitro LINCS data con-
tains drug specific information that can be used across
cancer types to predict drug efficacy much better than
general onco-genes.

Discussion

Several methods have been developed for reconstructing
disease and drug response networks from gene expres-
sion data. However, even when integrated with general
interaction datasets, these reconstruction methods tend
to suffer from the scarcity data and the large param-
eter space which often leads to overfitting and other
inaccuracies [43].

We developed a new multi-task learning framework
for reconstructing signaling and regulatory response net-
works. Such methods provide the best of two worlds.
On the one hand they can utilize related datasets when
reconstructing the networks, reducing the data scarcity
problem while on the other they still reconstruct spe-
cific response network for each condition/cell type. We
designed an appropriate regularized objective function for
this task and developed methods for efficiently search-
ing for pathways that are commonly used across the tasks
being modeled. Using LINCS datasets we were able to
identify both sources and targets which were used as start
and end points in the pathways we reconstruct.

Application of the multi-task learning framework to the
analysis of drug responses in cancer cell lines allowed us
to identify both common and cell type specific pathways.
As expected, the common pathways contain many of the
well known cancer genes as well as other genes involved
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in cell cycle and immune response activity [44]. Interest-
ingly, the cell type specific pathway we obtained correctly
assigned many proteins to their specific tissue. This rep-
resents an additional benefit of the multi-task learning
framework. Since the usage of cell type specific pathways
is penalized by the objective the only paths that would be
included are those that are able to explain a large num-
ber of cell type specific targets. Thus, paths that are still
included even though they are only assigned to one task
represent key events in the cell type specific response. In
contrast, it is very hard to identify such cell type specific
pathways when performing the standard, single task, anal-
ysis since they can often score lower than those paths that
contain general cancer response genes.

We used MSigDB gene sets to train the hyperparameters
for our model. Thus, some of the improvement in terms of
GO and census genes for MT vs. single task learning can
be attributed to the overlap between the training and test
data used. However, we only used breast cancer for train-
ing and so results for prostate and melanoma and their
comparison to controls is still valid. In addition, as the sur-
vival analysis indicates the set of genes selected does not
only improve the match with prior knowledge about can-
cer genes but also improves our ability to assess future
outcomes which is an independent criteria.

While perturbation experiments such as those per-
formed by LINCS can be carried out on cell lines, it
is much harder to obtain molecular drug response data
from patients. Most studies, including the large TCGA
study, only provide a snapshot expression signature, usu-
ally obtained from the initial biopsy. Thus, a major
challenge in translating genomic analysis to clinical appli-
cation is to be able to predict, based on this initial sample,
the response of the individual to the various treatment
options available. Here we showed that by combining the
in vitro cell line data with the patient specific RNA-Seq
data we can greatly improve our ability to predict drug
specific responses in several different types of cancer. The
ability of the MT learning method to identify key pro-
teins in the pathways that are the most responsive to the
drug allowed it to correctly zoom in on these when train-
ing a regression model for each drug leading to much
better results when compared to using general cancer
genes. In addition, and unlike prior methods that relied
on the patient expression data alone, the use of an exter-
nal dataset (LINCS in this case) to train such model is
likely to reduce overfitting since genes selected are not
impacted by the specific way in which the clinical data was
obtained [45].

While in this paper we looked for positive correlations
between drugs treatment experiments and protein KD
experiment to identify potential drug targets, the method
can work with absolute correlations as well. In our case
all drugs we looked at are known inhibitors and so we
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expected to see the same response direction for the drugs
and their target KD experiments. However, if one is study-
ing other types of drugs, including activators, using the
absolute correlation may be a better choice.

Conclusions

By using MT learning we were able to obtain accurate
drug specific sets of genes from a large collection of in
vitro expression experiments. The sets of genes identified
by our method can be used to both, determine the tissue
specificity of a response and the pathways it activates and
to accurately predict survival when combining top ranked
genes across tissues. The ability to integrate in vitro and in
vivo data for such tasks is an important issue for efficiently
translating experimental results to clinical tests.

Methods

General overview

A typical learning algorithm for classification or regres-
sion focuses on minimizing a loss function that is task
specific. For example, learning a classifier for dogs is a dif-
ferent task than learning a classifier for cats and so a dog
classifier would use a different set of parameters than a
cat classifier. However, in many cases there exists domain-
specific information that multiple tasks may share and
that could potentially improve the set of parameters
learned for all tasks. Evangelou et al. [46] and Caruana
et al. [21] have shown that such approach works well for
several cases of kernel regression and classification, as well
as for other ML techniques. A common objective function
for multi-task learning is as follows [46]:

C
argmin,,, ., [ZL (viaf (wFi)) + ||wl«||p}
=1
l C C
+r2 ) D wi—will ()

i=1 j=i+1

Here, the first set of components of the objective func-
tion is the typical single task objective which seeks to
identify the optimal (regularized) set of parameters to
minimize a specific loss function. The second compo-
nent is the multi-task addition. It is used to penal-
ize differences between parameters assigned to each of
the tasks, encouraging similar estimates across different
tasks. Other formulations of the multi-task objective are
also commonly used, including trace norm regularization
[47-49]), joint feature learning [50], and robust multi-task
feature learning [51], though these formulations all share
the same goal of penalizing differences in model parame-
ters between tasks. Multi-task learning is especially useful
in cases where the training data for each specific task is
limited, as is often the case in computational biology.
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A multi-task objective function for reconstructing drug
response networks

We would like to formulate an objective function for
reconstructing drug response networks in different cell
types (where each cell type represents a task). These net-
works should (compactly) explain the observed expression
response while encouraging sharing of nodes (proteins)
and pathways across different tasks/cells types. Since
many cancer drugs can successfully treat several types
of cancers [52], we expect that in many cases different
cancer cell types react to drugs using similar pathways.
Thus, the multi-task learning approach allows us to uti-
lize more data when constructing drug response networks
while at the same time it can still identify cell type specific
pathways.

We assume that for each drug and cell type we have a
list of potential paths and that our goal is to select among
these paths the subset that are activated in the response.
Each path links a source (a protein that may interact
directly with the drug) and a target (DE genes following
drug treatment). Below we discuss how sources, targets
and potential paths are determined. Algorithms devel-
oped for reconstructing cell type specific response models
attempt to identify pathways that lead from sources to
targets in the network using the least amount of interme-
diates [10, 53]. Such pathways provide the most compact
explanation for the observed response following treat-
ment while at the same time highlight the intermediate
nodes (TFs and signaling proteins) that contribute to
the response observed. Our multi-task learning objec-
tive function aims to balance this requirement (compact
explanation of the observed response for each cell type)
with the goal of using similar pathways for all the different
responses we are studying. An overview of the method is
shown in Fig. 1.

We use the following notations to formally present the
objective:

Notation

e (:set of all conditions - in our case the cell lines for a
particular drug experiment
T,: set of targets of a condition ¢ € C

e Pi:set of paths connecting ¢ € C to target t € Tg,
from protein interaction data

® /i(p): weight of a path computed as the product of
probabilities of edges in the path

e S, subgraph of the network corresponding to all
paths selected for a condition c.

e S:subgraph of the network containing the union of
all paths from all conditions c € C.

e Is(p): Lif p € Sand 0 otherwise
n(p1, p2): number of nodes common to paths p1, pa

e N(S): total number of nodes present in all paths
contained in S



Ruffalo et al. BMC Systems Biology (2017) 11:96

e 7. setof TFs of condition ¢ € C

. ’P(ff: set of paths connectingc € Ctotf € T
TF(S): set of transcription factors in the network
induced by S

o T(f): set of all predicted targets of a transcription
factor tf

® DE(c, tf): set of differentially expressed targets of tf
in condition c.

Objective function
We optimize the following objective function:

max {A1 Y Y I(|ScN P > 0)
$=Ueec Se ceC teT,
DE(c,
SENPIE
ceC tfeTF(S.)
(2)
+123 DD h(p) § — (MaN(©S))
ceC peS,
+{rs D npip)®
{pipjteS,i#f

We explain each term separately below:

1. Given a set of discovered paths S, (current
subnetwork of a given condition), the first term is the
loss function for the individual network
reconstruction task. This term encourages
explanation of as many targets as possible by
summing up the number of targets that are explained
by the selected pathways.

2. The second and third terms are the regularization
terms for the single tasks. The 2nd term penalizes the
use of TFs for which a large fraction of their targets
are not DE in that condition while the third penalizes
for paths that do not have a high weight (see below
for how we compute a weight for a path)

3. Finally, the last two terms in the objective are the
multi-task regularization parts. The 4th term
penalizes the size of the selected union of
subnetworks for each condition § = |, S¢ in
terms of the total number of nodes included in all
pathways selected encouraging nodes that are shared
between tasks. The last term similarly encourages the
selection of shared paths between the tasks.

We optimize this objective function across cell lines,
producing a unified model for each distinct drug.
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Learning and inference

The NP-hard set cover problem can be reduced to the
objective function listed above by appropriately selecting
A1 and Ag (the first term encourages the use of all ele-
ments while the third term penalizes the use of too many
sets/paths). We thus developed a greedy algorithm to opti-
mize our objective. The main point of the algorithm is the
focus on TFs rather than on the target themselves. Since
we assume that each target (DE gene) needs to be acti-
vated/repressed by a TF upstream, the selection of a set of
paths can be reduced to the appropriate selected of a sub-
set of TFs that, together, cover as many of the targets as
possible while not connected to many non DE genes. For
this, we greedily add and remove TFs to the set of selected
paths for each task (S;) until the target function no longer
increases. Note that there are often several paths that can
link TFs to sources and we need to select at least one
of them (which means also selection of all intermediate
nodes) in order to include the TF in our solution set. The
identity of the best path for each TF is a function of the
other protein/TFs that are already included and so should
be re-determined in each iteration of the greedy search.
See Additional file 1 for the set of algorithms we use to
rank paths for each iteration and for selecting the TFs to
include in the resulting networks.

Beyond inference (i.e. the selection of paths) the objec-
tive function has five parameters (A;, i € {1,2,3,4,5})
which should be set. To determine values for these param-
eters, we used a training set of 9 drugs and determined
accuracy based on significant overlap with the MSIGDB
genesets. As can be seen in Additional file 1: Table S1, we
observed good agreement between the values determined
for these parameters for the different drugs we tested and
used these values for the analysis described in Results.

Network construction

We used general protein-protein and protein-DNA inter-
action data to obtain a superset of all possible pathways.
Protein interaction data was obtained from [54—56]. Note
that that data contains probabilities for each of the edges
in the network based on the confidence in the type of
experiment that identified the interactions and these were
used to determine path weights using the method defined
in [57]. Protein-DNA interactions are composed of a
potential set of targets based on motif analysis [58]. In
addition, we extend the list of potential TF targets using
LINCS KD data in the following way. For each TF knock-
down performed by LINCS we add the top d DE genes to
the potential set of targets for that TF. We use d = 100 in
this study though other values produced similar results.

Using LINCS data to identify sources
While the drugs we used in this study have known
direct targets, these are probably not the only targets of
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the drugs. Indeed, it has been observed in many cases
that drugs can directly activate other proteins that are
not designated as their official targets (often referred to
as side effects, [59]). Thus, ignoring these (unknown)
drug targets will likely negatively influence the abil-
ity of our method to explain the observed expression
response.

We have thus further expanded the list of potential tar-
gets for each drug (sources in our networks) by using a
large number of knockdown (KD) expression experiments
from LINCS, as recent work has shown that LINCS data
can be reliably used for drug target identification [60]. We
hypothesized that if a protein is a direct target of a spe-
cific drug, its expression KD profile will be similar to the
expression profile observed after applying the drug. To
identify such direct targets we compute the correlation
between the expression response of every KD experiment
and the drug response for each cell line/drug. We next
rank proteins based on this correlation and select a sub-
set of the k highest ranked ones as potential sources. For
this paper we have used k = 100 though other values of k
we tested led to similar results (Additional file 1: Table S9,
gene lists posted on supplementary website).

Ranking genes and evaluating the resulting networks

For each cell type and each drug, we obtain a set of path-
ways S, that start at a source protein (representing a direct
drug target) and ends at a gene target, i.e. a gene that is DE
following treatment with the drug. We use network flow
analysis to prioritize the set of key nodes in the networks
(Additional file 1).

Molecular networks are generally very difficult to val-
idate since there often is no known ground truth. We
thus rely on complementary datasets for validation. These
include GO (the Gene Ontology) [61] and 189 oncogenic
genesets from MSIGDB [62]. We also use a set of 572
known cancer genes from the Cancer Gene Census [42].
We examine the overlap between genes contained in our
molecular networks for each drug, and genes in these val-
idation sets for multiple cell lines/types: control, breast
and prostate cells combined, and only breast cancer. This
produces cross-drug measures of our method’s ability to
identify genes that are known to be involved in biological
processes of interest.

Finding common and cell type specific genes

Using multi-task learning we can identify both, genes that
are shared between all cells we are modeling as well as cell
type specific genes. This latter set is of particular interest
since these are genes that the algorithm decided to include
in the cell type specific network even though such inclu-
sion incurs a penalty since they cannot be used for the
other types of cells. Thus, these genes are likely key play-
ers in the cell type specific response. To find genes that are
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designated as cell type specific across several conditions
(drugs) we perform the following procedure:

1. We create a 3D matrix M3 of dimension
Ny x Ny x Nz, where the Ny is the number of genes
in the union of top discovered genes for the drugs
and cell types we are studying, N is the number of
drugs, and N is the number of tissue types.

2. For each entry of this matrix we compute the inverse
of the rank 1/r that this gene has in that drug and cell
type’s ranked list in the single-task scenario (ranked
list obtained as described above).

3. For each cell type, we add these scores across the
dimension of the drugs, which yields a Ny x N, matrix
M, with new summed scores. For clarity, let r; be the
rank of a particular gene g for a particular cell type ¢

and for the i/ drug. The entry 8g,c of matrix M for

Na 1 por

gene g and cell type c is given by: sg.c = D ;% -
each gene and each cell type, we take the summed
score and divide it by the average of the summed
scores for this gene for all cell types, to obtain a final
score fg . This is given by: fo. = +—H— sg},\z .
Ne 2 S

This MT framework therefore balances these two seem-
ingly competing objectives, on one hand it tries to find
genes that are associated with all cancer types being mod-
eled as these will score high for both networks, but on
the other hand it still produces condition or cell type spe-
cific networks which include genes that are unique to
this cell type. Genes that are cell type specific need to be
more critical to the network than the shared genes — in
other words, these genes must be essential for explain-
ing the flow of information for a specific cell type. Thus,
our method balances these two competing requirements
by placing a higher bar on the inclusion of task spe-
cific genes while still allowing them to be selected if
necessary.

Additional file

Additional file 1: Supporting Information. $1 Text: Description of the
inference algorithm for the multi-task objective function, learning
parameters for the multi-task objective, method for ranking genes in the
resulting networks, construction of the network figure, filtering of
high-degree genes, and supplementary tables. (PDF 475 kb)
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