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Abstract

Decoding post-transcriptional regulatory programs in RNA is a critical step in the larger goal to 

develop predictive dynamical models of cellular behavior. Despite recent efforts1–3, the vast 

landscape of RNA regulatory elements remain largely uncharacterized. A longstanding obstacle is 

the contribution of local RNA secondary structure in defining interaction partners in a variety of 

regulatory contexts, including but not limited to transcript stability3, alternative splicing4 and 

localization3. There are many documented instances where the presence of a structural regulatory 

element dictates alternative splicing patterns (e.g. human cardiac troponin T) or affects other 

aspects of RNA biology5. Thus, a full characterization of post-transcriptional regulatory programs 

requires capturing information provided by both local secondary structures and the underlying 

sequence3,6. We have developed a computational framework based on context-free grammars3,7 

and mutual information2 that systematically explores the immense space of small structural 

elements and reveals motifs that are significantly informative of genome-wide measurements of 

RNA behavior. The application of this framework to genome-wide mammalian mRNA stability 

data revealed eight highly significant elements with substantial structural information, for the 
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strongest of which we showed a major role in global mRNA regulation. Through biochemistry, 

mass-spectrometry, and in vivo binding studies, we identified HNRPA2B1 as the key regulator 

that binds this element and stabilizes a large number of its target genes. Ultimately, we created a 

global post-transcriptional regulatory map based on the identity of the discovered linear and 

structural cis-regulatory elements, their regulatory interactions and their target pathways. This 

approach can also be employed to reveal the structural elements that modulate other aspects of 

RNA behavior.

To isolate stability from other aspects of mRNA behavior, we performed whole-genome 

mRNA stability measurements by incubating MDA-MB-231 cells in the presence of 4-

thiouridine (4sU), which is efficiently incorporated into cellular RNA. Subsequently, 4sU-

labeled transcripts were captured and quantified at different time-points after the removal of 

4sU from the growth medium. We calculated a relative decay rate for each transcript based 

on the rate at which 4sU-labeled transcripts, in the absence of 4sU in the media, are replaced 

by newly synthesized unlabeled mRNAs in the population (Supplementary Fig. 1). These 

measurements were then used to identify the putative cis-regulatory elements (linear and 

structural) that underlie transcript stability. A number of methods have been previously 

introduced for discovering structural motifs mainly based on free energy minimization, local 

sequence alignments or a combination of both alignments and secondary structure 

predictions 3,6,8. However, the extent to which these in silico predictions reflect stable in 

vivo molecular conformations has not been fully explored9. In fact, the RNA binding 

proteins and complexes that interact with their target transcripts may facilitate the formation 

of secondary structures in vivo. Thus, we sought to bypass the need for predicting 

thermodynamically stable secondary structures by efficiently enumerating a large space of 

potential structural motifs. We developed TEISER (Tool for Eliciting Informative Structural 

Elements in RNA), a framework for identifying the structural motifs that are informative of 

whole-genome measurements across all the transcripts. In this approach, structural motifs 

are defined in terms of context-free grammars7 (CFGs) that represent hairpin structures as 

well as primary sequence information (see Methods and Supplementary Fig. 2). TEISER 

employs mutual information to measure the regulatory consequences of the presence or 

absence of each of roughly 100 million different seed CFGs (see Methods). Mutual 

information is a robust non-parametric measure that reveals general dependencies across 

discrete or continuous measurements2,10. For example, when applied to the transcript 

stability data, TEISER captures the dependency between the stability of each mRNA and the 

presence or absence of a given structural motif in its 5’ and 3’ untranslated regions (UTRs). 

TEISER, subsequently, uses these measurements to choose and further refine the most 

informative motifs, and performs a series of statistical tests, e.g. randomization-based 

statistics and jackknifing tests, to achieve very low (<0.01) false-discovery rates (see 

Methods and Supplementary Fig. 2).

Application of TEISER to the mRNA stability measurements in MDA-MB-231 cells 

revealed eight strong structural motif predictions that passed our statistical tests aimed at 

finding the most likely elements causally involved in mRNA stability (Fig. 1 and 

Supplementary Fig. 3). Apart from being highly informative of mRNA stability 

measurements, these putative regulatory elements show a variety of other characteristics that 
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support their functionality. For example, four of the discovered motifs are also informative 

of transcript stability measurements in mouse11 (Supplementary Fig. 4a). Furthermore, these 

motifs are highly conserved between human and mouse genomes (see Methods and 

Supplementary Fig. 3) and are also informative of co-expression clusters discovered across 

independent whole-genome datasets (Supplementary Fig. 4b).

Among the putative structural motifs discovered by TEISER, we chose sRSM1 (structural 

RNA Stability Motif-1)—the most statistically significant 3’ UTR element (z-score=122)—

for further analysis. In order to probe the functionality of sRSM1 instances across the 

genome, we performed in vivo titration experiments using synthetic oligonucleotides10,12. 

Upon transfecting MDA-MB-231 cells with decoy RNA molecules harboring sRSM1 

instances (Supplementary Fig. 5), we observed a notable reduction in the level of 

endogenous transcripts that carried this motif, in comparison to their level in the control 

cells transfected with scrambled RNA molecules (Fig. 2). This global down-regulation 

points to the presence of a trans-acting factor that, upon interaction with sRSM1, stabilizes 

its target transcripts. The decoy (synthetic) sRSM1 elements compete with endogenous 

mRNAs for the putative trans-acting factor, which results in the observed reduction in the 

level of its target mRNAs. Furthermore, reporter constructs carrying instances of sRSM1 

showed a marked decrease in transcript decay rate in comparison to scrambled controls, 

further suggesting a direct role for this structural element in transcript stability 

(Supplementary Fig. 6).

We used streptomycin-binding RNA aptamer immobilization coupled with mass 

spectrometry13 to discover candidates that bind, in vitro, to the decoy instances of sRSM1, 

but not to the scrambled versions (Supplementary Fig. 7). After isolation under stringent 

conditions and in-solution digestion of RNA-bound proteins followed by nanoliquid 

chromatography-tandem mass spectrometry, we identified HNRPA2B1 as a promising 

candidate (Supplementary Table 1). This RNA-binding protein is a member of the A/B 

subfamily of heterogeneous nuclear ribonucleoproteins (hnRNPs)14 and carries two repeats 

of quasi-RRM RNA binding domains (Supplementary Fig. 8). Moreover, the established 

roles of other members of this family, namely HNRNPD and HNRNA1, in regulating RNA 

stability15 and binding terminal stem-loops16 further suggest HNRPA2B1 as a functional 

regulator. Also, more than 4,000 transcripts carry potentially functional instances of sRSM1 

(see Methods), implicating this motif as a major global regulator of mRNA stability. The 

HNRPA2B1 transcript, at the same time, is highly abundant in the cell (one standard 

deviations higher than average17), thus making it a promising candidate for global 

modulation of mRNA stability through sRSM1.

In order to directly assess the regulatory consequences of modulating HNRPA2B1, we 

performed knock-down experiments followed by gene expression profiling. Consistent with 

our prior observations, HNRPA2B1 knock-down caused a significant decrease in the 

expression level of transcripts carrying sRSM1 (Fig. 3a). Stability measurements in the 

knock-down cells confirmed that the observed down-regulation of these transcripts was in 

fact due to changes in stability (see Methods), with the transcripts carrying sRSM1 elements 

showing a marked increase in their corresponding relative decay rates (Fig. 3b).
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In principle, our observations are consistent with a possible indirect role for HNRPA2B1—

brought about, for instance, by a common partner that binds both HNRPA2B1 and sRSM1 

sites. The direct interaction between HNRPA2B1 and its potential target genes can be tested 

through cross-linking and immunoprecipitation of HNRPA2B1, which, through local UV 

photoreactivity of bases and amino-acids, can detect direct physical interactions18. We 

expressed a tagged clone of HNRPA2B1 in MDA-MB-231 cells, and after UV-crosslinking, 

immunoprecipitated this protein and the target mRNA molecules that were bound to it. We 

then labeled the isolated RNA population and hybridized it to microarrays with the input 

total RNA as control (a method called RIP-chip19). We observed a highly significant 

enrichment of sRSM1 in the immunoprecipitated population (Fig. 3c). In order to reduce the 

background and better pinpoint the HNRPA2B1 binding sites, we treated the samples with 

nuclease prior to immunoprecipitation under denaturing conditions and sequenced the 

HNRPA2B1-bound RNA population (HITS-CLIP20). We observed that sRSM1 elements 

were significantly enriched in the identified putative binding sites, in comparison with 

randomly selected sequences21 (Fig. 3d). These observations demonstrate that HNRPA2B1 

directly interacts with sRSM1 in vivo and functions to stabilize its target transcripts through 

this regulatory element. These transcripts, in turn, modulate a variety of cellular processes 

and pathways. For example, we observed a significant positive correlation between sRSM1 

target transcripts and doubling-time in NCI-60 breast cancer cell-lines (Fig. 4a). Indeed, 

knocking-down HNRPA2B1 resulted in a slight but significant increase in growth rate (by 

10%, p-value<10−8) further highlighting the regulatory role of this global modulator in a key 

cellular process (Fig. 4b).

Revealing the detailed post-transcriptional regulatory code relies on the discovery of all the 

cis-regulatory elements that contribute to changes in transcript abundance. In addition to the 

sRSMs identified through TEISER, we also discovered a large diverse set of lRSMs (linear 

RNA Stability Motifs), including six known miRNA recognition sites, that are informative 

of transcript stability measurements (Supplementary Fig. 9). These motifs were identified by 

FIRE2, a framework for discovering informative linear motifs. Combining these two 

approaches provided us with an extensive set of putative regulatory elements that cover both 

structural and primary sequence components. The next step in deciphering the post-

transcriptional regulatory program involves the identification of target pathways that are 

potentially modulated by each element. Using iPAGE10, for pathway analysis of gene 

expression, we showed that our discovered elements likely target a diverse array of cellular 

processes and pathways (Supplementary Fig. 10). For example, the sRSM1 structural 

element is significantly enriched in the 3’ UTRs of the genes involved in “Notch signaling”, 

while avoiding the UTRs of other pathways such as “nucleosome assembly” (Supplementary 

Fig. 11). These results demonstrate that while post-transcriptional regulatory mechanisms 

are poorly characterized, they have potentially far-reaching impact on specific cellular 

processes.

Regulatory programs often employ combinatorial interactions between various cis-

regulatory elements to modulate gene expression2,22. We utilized mutual information to 

reveal such potential interactions in the post-transcriptional regulatory programs governing 

mRNA stability (Supplementary Fig. 12 and 13). For example, sRSM1 showed significant 
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interactions with a number of structural and linear motifs, including sRSM8 and sRSM3 

(Supplementary Fig. 11). These observed interactions might reflect cross talk, or insulation, 

between the underlying regulatory processes that act upstream of these elements. The full 

map of such interactions (Supplementary Fig. 14 and 15) reveals a complex network of 

motif-pathway relationships that set the stage for molecular dissection and predictive 

modeling of post-transcriptional regulation from sequence.

While we have studied mRNA stability under normal and static conditions in a single cell 

line, the full regulatory program that governs mRNA stability likely involves a much richer 

repertoire of cis-regulatory elements operating within a more complex regulatory network. 

Also, while we have focused on transcript stability, our framework is general in concept and 

can be employed to study complex regulatory programs governing other aspects of RNA 

biology. For example, the established role of local secondary structures in shaping the 

splicing code4,23 suggests alternative splicing as a prominent area for analysis using this 

framework. The large repertoire of publicly available whole-genome expression datasets 

similarly offers a rich resource for identifying the post-transcriptional regulatory modules 

that underlie steady-state measurements.

Methods Summary

TEISER relies on calculating mutual information values between whole-genome 

measurements and millions of predefined structural motifs. The statistically significant 

motifs are then optimized and elongated through a greedy algorithm. The mRNA stability 

measurements were performed using a previously published method1. The decoy/scrambled 

experiments and siRNA knock-downs were performed using lipofectamin 2000 reagent 

(Invitrogen). For hybridizations, we used human 4×44k whole-genome human arrays 

(Agilent). Isolation and identification of RNA-binding proteins were based on previously 

published protocols13,24. HNRPA2B1 target transcripts were isolated based on the CLIP 

protocol18.

Full Methods and any associated references are available in the online version of the paper 

at www.nature.com/nature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Discovery of RNA structural motifs informative of genome wide transcript stability
Each RNA structural motif is shown along with its pattern of enrichment/depletion across 

the range of mRNA stability measurements throughout the genome. The transcripts are 

partitioned into equally populated bins based on their stability measures, going from left 

(highly stable) to right (unstable). In the heatmap representation, a gold entry marks the 

enrichment of the given motif in its corresponding stability bin (measured by log-

transformed hypergeometric p-values), while a light-blue entry indicates motif depletion in 

the bin. Red and blue borders mark highly significant motif enrichments and depletions, 

respectively. Included are the motif names, their location (UP for 5’UTR and DN for 

3’UTR), their sequence information (in the form of a logo) and their frequency (the fraction 

of transcripts that carry at least one instance of the motif). Also shown are the associated 

mutual information values. Each mutual information (MI) value is used to calculate a z-

score, which is the number of standard-deviations of the actual MI relative to MI's calculated 

for 1.5 million randomly shuffled stability profiles. A structural illustration of each motif is 

also presented using the following single letter nucleotide code: Y=[UC], R=[AG], K=[UG], 

M=[AC], S=[GC], W=[AU], B=[GUC], D=[GAU], H=[ACU], V=[GCA] and N=any 

nucleotide.
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Figure 2. The regulatory role of sRSM1
Whole-genome expression levels were measured in decoy-transfected samples relative to the 

controls transfected with scrambled RNA molecules (see Methods). The measurements were 

performed in duplicate, for two independent decoy/scrambled sets (the relative transcript 

levels were subsequently averaged across the two replicates in each set). Genes were sorted 

and quantized into equally populated bins based on the average log-ratio of their expression 

levels in the decoy samples relative to the scrambled controls. TEISER was used to show the 

enrichment/depletion patterns of transcripts harboring sRSM1 in their 3’ UTRs. Mutual 

information values and the associated z-scores are also presented.
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Figure 3. HNRPA2B1 stabilizes transcripts through direct in vivo binding to sRSM1 structural 
motifs
a, Genome-wide expression levels were measured in HNRPA2B1 siRNA-transfected 

samples relative to mock-transfected controls. TEISER was used to capture the enrichment/

depletion pattern of transcripts carrying sRSM1 across the relative expression values. 

Experiments were performed in triplicate, each with an independent siRNA targeting 

HNRPA2B1 and the resulting log ratios were averaged for each transcript. b, Transcript 

decay rates were compared in HNRPA2B1 knock-downs versus mock-transfected controls. 
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These measurements were then analyzed by TEISER to visualize the extent to which the 

decay rates of transcripts carrying sRSM1 elements were increased following HNRPA2B1 

knock-down. c, Using UV-crosslinking followed by immunoprecipitation, mRNAs that bind 

HNRPA2B1 were extracted and compared against the input mRNA population (RIP-chip). 

The log ratio calculated for each mRNA denotes its abundance in the immunoprecipitated 

sample relative to the input control. Bins to the right contain the mRNAs that were captured 

as interacting partners with HNRPA2B1. Similar to the prior examples, TEISER was used to 

show the enrichment/depletion pattern of transcripts carrying sRSM1 in their 3’ UTRs. The 

values associated with each transcript were calculated as the average of log ratios from 

biological replicates. d, HNRPA2B1 binding sites were identified using 

immunoprecipitation followed by high-throughput sequencing (HITS-CLIP). Instances of 

the sRSM1 element are significantly enriched in these sites relative to a population of 

random sequences from 3’ UTRs that are not represented in the sequenced population.
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Figure 4. HNRPA2B1 regulates growth rate
a, Whole genome expression levels across five breast cancer cell lines (MCF7, MDA-

MB-231, HS578T, BT-549 and T47D) were correlated against their doubling times17. The 

resulting values, ranging from −1 to 1, were analyzed by TEISER to probe the enrichment/

depletion pattern of transcripts carrying sRSM1. b, The growth of HNRPA2B1 siRNA-

transfected samples was compared to those of mock-transfected controls. For each time-

point, the number of cells in four independent samples was counted in duplicates (n=8), 

yielding an estimated growth-rate (α). Shown are the average log-ratios, their standard 
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deviation at each time-point, and the statistical significance of the observed difference in 

growth-rate.
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