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Abstract: Due to logistical challenges, long-term human space exploration missions 

require a life support system capable of regenerating all the essentials for survival. Higher 

plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, 

and clean water for humans. Plants can adapt to extreme environments on Earth, and model 

plants have been shown to grow and develop through a full life cycle in microgravity. 

However, more knowledge about the long term effects of the extraterrestrial environment 

on plant growth and development is necessary. The European Space Agency (ESA) has 

developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to 

develop a closed regenerative life support system, based on micro-organisms and higher 

plant processes, with continuous recycling of resources. In this context, a literature review 

to analyze the impact of the space environments on higher plants, with focus on gravity 

levels, magnetic fields and radiation, has been performed. This communication presents  

a roadmap giving directions for future scientific activities within space plant cultivation. 

The roadmap aims to identify the research activities required before higher plants can be 

included in regenerative life support systems in space. 

Keywords: microgravity; magnetic field; radiation; roadmap; MELiSSA; plants;  

Moon; Mars 
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1. Introduction 

Future missions to the Moon and Mars, involving long-term stays in space, rely on a life  

support system for food production and regeneration of resources. As identified through MELiSSA  

(Micro-Ecological Life Support System Alternative), such Closed Regenerative Life Support Systems 

(CRLSS) need to include a compartment for the production of higher plants [1–5]. Through CO2 

absorption and O2 emission, water purification through transpiration, waste product recycling via 

mineral nutrition, and as a food source, plants play a key role in CRLSS [4,6,7]. On the Earth plants 

are known to adapt to extreme environments, and space experiments have demonstrated that plants are 

able to grow and reproduce in microgravity [8–12]. The first plant materials were brought into space  

in 1960, when seeds of wheat, pea, maize, and onion were flown on board of Sputnik 4 [13]. This was 

followed by photosynthetic measurements of Chlorella and the duckweed Spirodela [14] and with 

wheat seedlings and pepper plants on Biosatellite II [15]. Since then, a number of experiments have 

been successfully performed in a spacecraft, and a full life cycle of Arabidopsis thaliana has been 

completed on Salyut-7 [16]. The extensive effort and resources allocated to plant cultivation in space 

have revealed many answers, and also raised new research questions, especially with regard to food 

plants. Knowledge about the long term effects of the space environment on plant growth and 

development is essential for the design of a dependable CRLSS for space exploration beyond Low 

Earth Orbit (LEO). 

The Literature Review of Higher Plants in Space for MELiSSA (LiRHiPliSME) project, contributing 

to MELiSSA, was initiated to analyze the present state of knowledge concerning the impact of space 

environments on higher plants. Focus has been on the effects on higher plants exposed to three factors 

on the Moon and Mars making the physical environment different from Earth: gravity levels, magnetic 

fields, and radiation [17,18]. The core activities in LiRHiPliSME have been a literature study, as well 

as a mobilization within the scientific community, including interviews with selected scientists and 

project workshops. Based on the LiRHiPLiSME project, and in collaboration with the European Space 

Agency, a roadmap giving directions for future scientific activities within MELiSSA and plant 

cultivation in space is presented. 

2. Results and Discussion 

2.1. The Physical Environment on ISS, the Earth, Moon and Mars 

While the International Space Station (ISS) is in free fall, the Moon has 1/6, Mars 1/3 of Earth’s 

gravity. The strength of the Earth’s geomagnetic field is in the range of 30,000–60,000 nT [19], being 

strongest at the poles and weakest at the equator. The Moon and Mars have no global magnetic field, 

but only areas with local crustal magnetic fields that vary in strength and direction all over the  

surface [20–22]. On the Moon and Mars, the radiation levels are high, especially due to heavy ions 

from galactic cosmic rays (GCR) and energetic protons from large solar particles events (SPE). On the 

Moon’s surface the accumulated dose over the course of a year is about 57 cGy (=cSv) for GCRs and 

about 100 cGy per event for large SPEs. The accumulated dose on the Mars surface is 77 cGy per year 

for GCRs and 35 cGy per event for large SPEs. In comparison, the atmosphere and magnetic field 

surrounding the Earth provides radiation protection and the galactic GCR doses measured on Earth is 
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0.027 cGy per year and almost zero for SPEs [23,24]. The International Space Station (ISS) is located 

at low Earth orbit: here the radiation consists of GCRs and SPEs, and protons and electrons when 

passing through the South Atlantic Anomaly (SAA) of the radiation belt. The radiation dose at the ISS 

can vary but has been measured to be on average 15 cGy per year for GCRs, 4.6 cGy per year for SAA 

and up to 10 cGy within a few days during an intense SPE [25]. 

2.2. Main Conclusion from Literature Review 

Plants have demonstrated their ability to grow and reproduce in space [8–11,16,17,26–28]. Although 

it has been documented that the reproduction phase does not depend on gravity for completion, the 

reproduction fitness is often reduced in Space and can cause a risk to the resource-use efficiency in 

plant based CRLSS [29,30]. Moreover, the influences of the space environment may result in an effect 

in the long term and over multiple generations, or have an impact on the plants’ role as food and part 

of a regenerative life support system. On the whole, the most frequently reported effects of a reduced 

gravity environment on plant physiology are secondary effects and linked to changes in the plants 

physical environment. This emphasizes the need for an advanced understanding of space effects on 

physiological transport and exchange, as well as adequate environmental control in the growth 

facilities for plant cultivation in space flight. Porterfield (2002) summarizes the biophysical limitations 

of gas exchange and physiological transport in the microgravity environment [31]. A brief overview of 

the established effects of gravity, radiation, and magnetic fields on higher plants is given below. More 

comprehensive presentations of the results from the literature review are published elsewhere [17,18]. 

2.2.1. Gravity 

Reduced gravity environments influence the plants physical environment that again affects  

the physiological transport of water and solutes, and gas exchange between the plant and its 

surroundings [31]. These effects are called indirect effects of gravity because they are not caused  

by gravity interacting with the mass of the plant body itself. As an example, the lack of buoyancy 

driven thermal convection (BDTC) in microgravity and the consequent increase of boundary layer 

thickness, causes biophysical limitations on the processes of gas exchange and transpiration in higher  

plants [31]. In the aerial plant parts this effect can be diminished by proper ventilation and forced air  

movement [10,32]. In the root zone the problem is more complex, and root zone hypoxia induced by 

gravity dependent changes in fluid and gas distribution remains a persistent challenge for plant 

experiments in microgravity [33–35]. Diffusion limited gas exchange and root zone hypoxia can result 

in a reduced uptake and transport of nutrients in plants [31]. Some studies indicate that the stunted 

growth observed in microgravity can be linked to nutritional issues [36,37] and that nutrient uptake is 

altered by the space environment [38,39]. The results of these studies [36–39] are challenging to 

interpret due to the limited information on hardware, experimental set up, degree of environmental 

control and ventilation in the growth chambers. When looking at changes in plant medium composition 

after a spaceflight experiment in NASA’s Plant Growth Unit, Levine and Krikorian (2008) found a 

reduced amount of potassium in the spaceflight exposed growth medium indicating an elevated 

potassium uptake in plants grown in space [40]. This was argued to be either an increased quantity of 

root tissue, or to a microgravity related change in uptake kinetics. Another study showed no differences 
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in nutrient uptake rates between ground and flight exposed plant material in ventilated chambers [41]. 

Thus, studies on the effects of the space environment on plant nutrition are inconclusive and very 

limited, and no study has, as far as we know, assessed effects on the rhizosphere. 

Plant gas exchange, metabolism, and photosynthesis mechanisms were not affected by microgravity 

when provided with satisfactory environmental control [26,42]. A reduction in the activity of the 

photosystem activity has been reported [42,43]. Still, more studies are required to draw a final conclusion 

about the potential effects of reduced gravity on photosynthesis. A research based understanding of  

the influence of gravity on physiological transport and exchange will enable hardware technology 

development and technological solutions to overcome these challenges. 

Spaceflight experiments reveal no detrimental impact of gravity or other space factors on the 

morphology of higher plants in either short or long term flights (one generation period). One of the 

best characterized gravity responses of plants is the directed growth in response to gravity, called 

gravitropism [44]. The extensive work on gravitropism, including space experiments, is reviewed in 

several articles [45–50]. Studies of lentil roots have documented automorphogenesis and autotropism 

under microgravity conditions [51]. Higher plants respond to a range of environmental stimuli in 

addition to gravity; for example light (phototropism) and water (hydrotropism [52]). Under microgravity 

conditions the plant will still orient according to the light source and water potential gradient [53,54]. 

These responses are not necessarily the same as on ground, e.g., Arabidopsis hypocotyls responds with 

an increased blue-light phototropic reaction under microgravity compared to a 1 g control [53]. 

Influence of gravity has also been observed on the ultrastructure of cell organelles, e.g., larger 

chloroplasts and randomly distributed amyloplasts, in addition to a thinner cell wall combined with a 

decrease of cell wall constituents (polysaccharides) [55–57]. 

2.2.2. Radiation 

Cosmic radiation alter gene expression levels and affect the genome through DNA damage and 

chromosome mutations [58]. At this point, however, the effects do not seem to be detrimental for plant 

growth and survival [18]. Still, and despite the fact that plants have been grown in low Earth orbit 

during several consecutive generations [27], it is still not known if the plant genome will remain stable 

under space conditions. 

Due to the shielding of the experiment facility, which is a prerequisite for humans in manned space 

exploration, long term exposure to low chronic radiation is considered to be more relevant than high 

acute radiation doses. Moreover, chronic exposure to low doses of ionizing radiation has been shown 

to have a comparatively stronger influence on plant genetics than an acute dose [59]. Rather few 

studies have been performed with chronic radiation exposures [60]. Chronic exposure to ionizing 

radiation seems to affect the genetic structure of populations in the long term, and a reduction of 

genetic variability may be an adaptive process associated with chronic stress [61]. Different 

mechanisms are involved in the response to chronic or acute exposure to radiation [62]. While the  

most well represented group of genes affected by acute radiation exposure is a group of oxidative 

stress-related genes, chronic stress leads to a totally different response that reflects in adaptive 

responses by regulating genes belonging to general stress and nucleic acid metabolism. Chronic stress 

also induces several genes involved in photosynthesis and carbohydrate metabolism [62]. Chronic 
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exposure with different levels of low-dose gamma radiation causes a reduction in fresh weight of roots, 

stems and leaves of A. thaliana, without discernibly affecting oxidative stress pathways [63]. This 

supports previous results [59,62]. Different species show varying resistance to radiation damage [64]. 

Consequently, the experiments with radiation on ground should focus on low chronic radiation 

exposure and different species including food plants. 

2.2.3. Magnetic Fields 

The most significant role of the Earth’s magnetic field is to provide shielding from space radiation. 

Since there is no global magnetic field on Moon and Mars, tests with plants exposed to very weak 

magnetic shields are important. There are studies indicating that a magnetic field lower than the 

geomagnetic field directly causes changes in plant growth and development [18,65], and plant 

metabolism [66,67], in some cases by inhibition, in other cases by enhancement. In contrast, several 

studies have been performed with a magnetic field on top of the geomagnetic field indicating an 

influence on plant growth and photosynthesis [68–75]. Both kinds of studies suggest that changes in 

magnetic fields might impact plant growth and development. A recent study indicates that plants 

through evolution have developed a magneto receptor mechanism where the plant cryptochrome is 

central [76]. Even though the necessity of these experiments has been stressed [77], magnetic field 

experiments in space have not been performed so far, only experiments on ground have been reported. 

3. Directions and Requirements for Future Research 

In general, the primary objectives for future research activities should be linked to the fundamental 

processes required to ensure sustainable plant production in space, i.e., effects of the space environment 

on the processes of photosynthesis, gas exchange, transport of water and solutes and stability of the 

plant genome. Experiments should also, whenever feasible, include assessment of a plant’s complete 

growth cycle. Since the hardware has turned out to be of great importance for the results in microgravity 

research, an optimized experimental design with full environmental monitoring and control must be 

the standard for future experiments. This includes a detailed description of climatic conditions and 

protocols for sowing, plant handling and analysis. Selecting a few model plants, including crop plants 

for life support, would further increase the comparability between studies. There is a consensus 

worldwide that preferred characteristics for CRLSS crops are a short cultivation cycle from seed to 

seed, high productivity and resistance against pathogens, reduced plant size, high levels of adaptability 

to expected space conditions, and stress tolerance [4]. In addition, cultivars with high nutritional value 

for astronauts and low levels of anti-nutritional factors and non-edible biomass (waste) are favoured. 

For MELiSSA, four crops high in energy and/or protein have been selected: bread wheat, durum 

wheat, potato, and soybean [4]. 

International collaboration between space agencies, both during experiment preparation and 

implementation, and through sharing of experiences and results would increase the output of space 

plant experiments [78]. 
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3.1. Higher Plant Model 

A valuable tool in characterising and understanding the plant physiological processes under space 

conditions is the development of mathematical models. A proper model for plant physiological 

processes should include the complex interplay between environmental, physiological, biophysical and 

bio mathematical factors [79]. Hezard et al. [80] developed a model that separates the different plant 

organs in order to study the various sub-processes. All these sub-models fit into a generally structured 

model predicting the CO2 and nutrient solution consumption, as well as the oxygen, clean water, and 

food production of the MELiSSA higher plant compartment in different environmental conditions [80]. 

Another model describes the mass flux at the surface of the plant leaf in a life support system [81]. 

This includes transport phenomena, such as the vaporisation of water, CO2 uptake, oxygen release, and 

respiration. Impact of the external environment is included in the model, even for gravity levels on the 

Moon and Mars [81]. 

To increase the predictability of the higher plant compartment, the MELiSSA program pre-flight 

activities include extensive food characterisation studies on ground to fully describe and understand 

the chosen MELiSSA species and all the processes related to them [4,29,82,83]. The food characterisation 

studies will support the development of a multi-parameter model termed the Higher Plant Model 

(HPM), which will describe the physiological processes in the higher plant chamber. The HPM must 

be validated under space conditions, especially the parameters known to be affected by gravity like 

physiological transport and exchange. 

3.2. Ground Based Experiments 

After an evaluation of the available technical solutions for simulation of space conditions, chronic 

exposure to low radiation seems to be the most realistic variable to be assessed in pre-flight experiments. 

Priority should be given to effects of radiation on biomass production, photosynthesis, and gas exchange, 

gene expression profile, along with all processes affecting the plants nutrient value. Subsequently, it is 

important to consider the effects of chronic irradiation on morphological changes, chromosome 

aberrations and mutation frequency, since these are good measures of plant development and genome 

stability. The radiation exposure should mimic space radiation as much as possible, and include at least 

gamma-rays, proton and neutron particles. Existing facilities for radiation experiments are the 

Radioactive Isotope Beam Factory RIKEN (Nishina Center for Accelerator-Based Science, RIBF), the 

HIMAC (Heavy-Ion Medical Accelerator in Chiba), both located in Japan, as well as the Alternating 

Gradient Synchrotron in Brookhaven, USA. The available facilities for radiation experiments and 

simulation of space conditions will only partly simulate the whole radiation load in space, even though 

a large number of rays and particles with high energies can be obtained. The two-dimensional (2D) 

clinostats and random positioning machines (RPM) are widely applied and useful methods for 

simulation of microgravity (reviewed by van Loon [84]), but the spatial dimensions are strongly 

restricting the sample size and cultivation method. Another ground based method for simulating 

microgravity is magnetic levitation, using a vertical bore magnet for levitation of biological  

material [85]. In a comparative study of the different methods for microgravity simulation, magnetic 

levitation was found to be of limited use due to the inability to levitate plant gravisensors (statholites), 
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and more generally because of the difficulty in separating the effects of levitation from other effects of 

the strong magnetic field on the organism [85]. Thus, the available platforms for microgravity 

simulation are valuable tools for basic research but were evaluated by the LiRHiPliSME team and 

project partners to be insufficient for the study of food plants and long term higher plant experiments 

for life support applications. 

In future life support systems with higher plants, a recirculating hydroponic system is considered to 

be the preferred cultivation system. To achieve the required process control in such a system, extensive 

research is required on basic plant nutrition and rhizosphere processes. In parallel with the scientific 

investigations, development of sensor technology for surveillance of nutrients in the solution and plant 

nutrient status should take place. The optimal solution would be a system with a high recycling 

capacity and real time surveillance of plant nutrient and water status. 

3.3. Space Experiments 

Water and nutrient management is considered to be one of the most challenging aspects of  

plant cultivation in space, and there is a need for both scientific activities and technology  

development [31,86]. The effects of gravity on basic physical phenomena of all matter, and how these 

effects in turn influence on the biological system, need to be elucidated before the direct effects of 

gravity on the cell, tissue, organ, or whole organism can be revealed [33]. It should be distinguished, 

however, if the final goal is plant cultivation in microgravity (like in Low Earth orbit or on an 

asteroid), or on the surface of the Moon or Mars with fractional gravity present. 

Based on reported results from space experiments, several issues related to potential effects of 

fractional- or microgravity on food quality and safety need to be examined. These should for example 

include changes in the cell wall components [55,56,87–89] and changes in secondary metabolite 

production [90–92]. Thus far, radiation effects have not been measured or discriminated from potential 

microgravity effects in any of the reported plant experiments in low Earth orbit. One way to separate 

these effects is an in-flight reference centrifuge providing a 1× g gravity environment while all other 

factors of spaceflight are the same. Centrifuges also allow for experiments with Mars (0.38× g) and 

Lunar (0.17× g) gravity exposures, and whether or not higher plants can sense gravity in these 

environments [5]. The importance of this kind of control has been stressed and is realized in several 

facilities available for plant research on the ISS, like Biolab and the European Modular Cultivation 

System (EMCS) [28,93–96]. Including a dosimeter in the growth chambers would accurately measure 

the amount of radiation received by the plants. 

Experiments on ground with shielding from the Earth’s magnetic field show that weak magnetic 

fields influence plant gas exchange and metabolism. However, more experiments are required to 

ascertain the effect of magnetic fields, especially for the growth conditions on the Moon and Mars.  

To assess the effects of total space radiation load, and potentially in the absence of a magnetic field, 

experiments need to be performed outside low Earth orbit, e.g., as being part of robotic missions to the 

surfaces of the Moon and Mars. For these missions the return of plant material to Earth for analysis is 

very limited, and permanent supervision of the plant’s growth and health status preferably on the basis 

of remote sensing technology, is required. 
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Today, the best site for performing space experiments with higher plants is the ISS. Satellites, and 

to some extent parabolic flights, are good alternatives to analyse the short term effects of fractional 

gravity on photosynthesis and physiological transport, especially gas exchange and transpiration. 

Longer exposure to space conditions can be studied in low Earth orbit on the ISS with facilities like 

EMCS. These facilities allow experiments with full environmental control while exposing the plants to 

the gravity conditions of Moon and Mars. 

3.4. Roadmap 

Based on the LiRHiPliSME project and directions given above, the research activities required to 

reach the scientific readiness for further development of a CRLSS containing higher plants have been 

grouped into a set of building blocks. These building blocks, forming the basis for the roadmap, are 

presented in Figure 1. 

Figure 1. Main groups of requirements for future space research activities on higher plants. 

The lower section of the describes activities to be performed as a basis for future research 

activities, the middle section describes pre-flight experiments, while the upper section of 

the figure describes space experiments required to reach the scientific readiness to develop 

regenerative life support systems containing higher plants. 

 

In Figure 2, the building blocks are placed in a timeline, forming a roadmap assuming implementation 

of a complete MELiSSA life support system with higher plants operating in space by 2050. The 

roadmap aims to outline the scientific activities leading to milestone achievements towards sustainable 

plant growth and food production in space. Ground based activities include the development of 

mathematical models and food characterisation studies (describing the plants growth, development and 
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metabolism) aiming to fully characterize and understand the chosen crops and all the processes related 

to them. Plant experiments beyond LEO are envisaged as part of a manned mission. The roadmap 

presented is limited to realization of a higher plant chamber as part of the MELiSSA loop, and the 

references to the complete MELiSSA loop are included for programmatic clarity. 

Figure 2. Roadmap for future research activities on higher plants as part of a life support 

system for space exploration. The lower section describes preflight activities to be performed 

on the ground, while the upper section describes future plant related research activities in 

space. The food characterization studies are carried out as preflight activities to characterize 

the species-specific qualities of the chosen MELiSSA crops (i.e., growth, development and 

metabolism), and will provide input to the development of the HPM. 

 

4. Conclusions 

Extensive research performed within space plant biology have enabled us to conclude that higher 

plants are able to adapt to space conditions in low Earth orbit, at least during one generation from seed 

to seed. However, sufficient environmental control, including forced ventilation, trace gas control and 

a well-functioning system for water and nutrient delivery, is required for successful experiments.  

The information about experiments dealing with whole plant physiology in microgravity is limited, 

and the long term effects of space conditions, especially outside LEO, need to be better characterized. 

Before the successful integration of higher plants into a CRLSS can take place, more data are required 

to determine long term effects on fundamental plant processes after chronic exposure to radiation, to a 

weak magnetic field and to fractional gravity. Physiological transport and exchange, both within the 
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plant, and between the plant and its environment, should be prioritized as it impacts plant metabolism 

and is affected by gravity. The rootzone and rhizosphere requires special attention. A valuable tool in 

early stress detection and understanding plant responses to space conditions is the development of 

mathematical models describing the expected metabolic pattern for the species being studied under 

―normal‖ or Earth conditions. 

Both, the new technology emerging from the process towards CRLSS and the development of crop 

models can be regarded as the applied aspect in space research, compared to the more fundamental 

research using non-edible model plants, such as Arabidopsis thaliana. CRLSS have strong synergies to 

sustainable agriculture and food production on Earth, which is an aspect of high priority in the science 

community and the society in general. Implementing a better coordination between the applied and the 

fundamental research communities is believed to improve the scientific results both in quantity and 

quality and, thus, maximize the use of the resources linked, e.g., to the ISS platform and the ground  

based facilities. 

Acknowledgments 

This work was funded by the PROgramme de Développement d’Expériences scientifiques (PRODEX) 

of ESA and NTNU Samfunnsforskning AS through MELiSSA related project activities. We thank  

Enno Brinckmann and Christel Paille for supporting the preparation of this manuscript. We would also 

thank all the LiRHiPliSME partners and interviewees for stimulating discussions and feedback during 

the literature review process. The LiRHiPliSME partners included Ray Wheeler (Space Life Sciences 

Laboratory, Kennedy Space Center, USA), Mike Dixon (University of Guelph, Canada), Claude-Gilles 

Dussap (Universite Blaise Pascal, France), Dominique Van der Straeten (University of Ghent, 

Belgium), Enno Brinckmann, Pauline Hezard, (Ecole Centrale Paris, France), and Rob J. Ferl 

(Department of Horticultural Sciences, University of Florida, USA). The scientists interviewed were 

Tor-Henning Iversen (Norwegian University of Science and Technology), John Kiss (The University 

of Mississippi University, USA), Massimo Maffei (University of Genova, Italy), Oscar A. Monje, 

(Space Life Sciences Laboratory, Kennedy Space Center, USA), Mary Musgrave (University of 

Connecticut, USA), Hideyuki Takahashi (Tohoku University, Japan), and Alexander Tikhomirov 

(Russian Academy of Sciences). 

Author Contributions 

The corresponding author had the primary responsibility for the roadmap elaboration, while the  

co-authors contributed to the manuscript in equal measure. 

Abbreviations 

BDTC Buoyancy Driven Thermal Convection 

CRLSS Closed Regenerative Life Support System 

EMCS European Modular Cultivation System 

GCR Galactic Cosmic Rays 

HPM Higher Plant Model 



Life 2014, 4 199 

 

 

ISS International Space Station 

LEO Low Earth Orbit 

LiRHiPliSME Literature Review of Higher Plants in Space for MELiSSA 

MELiSSA Micro-Ecological Life Support System Alternative 

RPM Random Positioning Machine 

SAA South Atlantic Anomaly 

SPE Solar Particle Event 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Godia, F.; Albiol, J.; Montesinos, J.L.; Perez, J.; Creus, N.; Cabello, F.; Mengual, X.; Montras, A.; 

Lasseur, C. MELiSSA: A loop of interconnected bioreactors to develop life support in space.  

J. Biotechnol. 2002, 99, 319–330. 

2. Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, C.  

The MELiSSA pilot plant facility as an integration test-bed for advanced life support systems. 

Adv. Space Res. 2004, 34, 1483–1493. 

3. Hendrickx, L.; de Wever, H.; Hermans, V.; Mastroleo, F.; Morin, N.; Wilmotte, A.; Janssen, P.; 

Mergeay, M. Microbial ecology of the closed artificial ecosystem MELiSSA (micro-ecological 

life support system alternative): Reinventing and compartmentalizing the earth’s food and oxygen 

regeneration system for long-haul space exploration missions. Res. Microbiol. 2006, 157, 77–86. 

4. Paradiso, R.; de Micco, V.; Buonomo, R.; Aronne, G.; Barbieri, G.; de Pascale, S. Soilless 

cultivation of soybean for bioregenerative life-support systems: A literature review and the 

experience of the MELiSSA project—Food characterisation phase I. Plant Biol. 2014, 16, 69–78. 

5. Kiss, J.Z. Plant biology in reduced gravity on the Moon and Mars. Plant Biol. 2014, 16, 12–17. 

6. Wheeler, R.M.; Stutte, G.W.; Sobarrao, G.V.; Yorio, N.C. Plant growth and human life support 

for space travel. In Handbook of Plant and Crop Physiology; Pessarakli, M., Ed.; Marcel Dekker: 

New York, NY, USA; Basel, Switzerland, 2001; pp. 925–941. 

7. Ferl, R.; Wheeler, R.; Levine, H.G.; Paul, A.L. Plants in space. Curr. Opin. Plant Biol. 2002, 5, 

258–263. 

8. Ivanova, T.N.; Bercovich, Y.A.; Mashinskiy, A.L.; Meleshko, G.I. The 1st space vegetables have 

been grown in the svet greenhouse using controlled environmental-conditions. Acta Astronaut. 

1993, 29, 639–644. 

9. Link, B.M.; Durst, S.J.; Zhou, W.; Stankovic, B. Seed-to-seed growth of arabidopsis thaliana on 

the international space station. Adv. Space Res. 2003, 31, 2237–2243. 

10. Musgrave, M.E.; Kuang, A.X.; Matthews, S.W. Plant reproduction during spaceflight: Importance 

of the gaseous environment. Planta 1997, 203, S177–S184. 

11. Sychev, V.N.; Shepelev, E.Y.; Meleshko, G.I.; Gurieva, T.S.; Levinskikh, M.A.; Podolsky, I.G.; 

Dadasheva, O.A.; Popov, V.V. Main characteristics of biological components of developing life 



Life 2014, 4 200 

 

 

support system observed during the experiments aboard orbital complex mir. Adv. Space Res. 

2001, 27, 1529–1534. 

12. Sychev, V.N.; Levinskikh, M.A.; Podolsky, I.G. Biological component of life support systems for 

a crew in long-duration space expeditions. Acta Astronaut. 2008, 63, 1119–1125. 

13. Stanković, B. A plant space odyssey. Trends Plant Sci. 2001, 6, 591–593. 

14. Ward, C.H.; Wilks, S.S.; Craft, H.L. Effects of prolonged near weightlessness on growth and gas 

exchange of photosynthetic plants. Dev. Ind. Microbiol. 1970, 11, 276–295. 

15. Johnson, S.P.; Tibbitts, T.W. Liminal angle of a plagiogeotropic organ under weightlessness. 

Bioscience 1968, 18, 655–661. 

16. Merkys, A.J.; Laurinavicius, R.S.; Svegzdiene, D.V. Plant growth, development and embryogenesis 

during salyut-7 flight. Adv. Space Res. 1984, 4, 55–63. 

17. Wolff, S.A.; Coelho, L.H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.I. Plant mineral nutrition, 

gas exchange and photosynthesis in space: A review. Adv. Space Res. 2013, 51, 465–475. 

18. Karoliussen, I.B.E.; Kittang, A.-I. Will plants grow on Moon or Mars? Curr. Biotechnol. 2013, 2, 

235–243. 

19. Acuña, M.H. The magnetic field of mars. Lead. Edge 2003, 22, 769–771. 

20. Acuña, M.H.; Connerney, J.E.P.; Wasilewski, P.; Lin, R.P.; Anderson, K.A.; Carlson, C.W.; 

McFadden, J.; Curtis, D.W.; Mitchell, D.; Reme, H.; et al. Magnetic field and plasma 

observations at mars: Initial results of the Mars global surveyor mission. Science 1998, 279, 

1676–1680. 

21. Mitchell, D.L.; Halekas, J.S.; Lin, R.P.; Frey, S.; Hood, L.L.; Acuna, M.H.; Binder, A. Global 

mapping of lunar crustal magnetic fields by lunar prospector. Icarus 2008, 194, 401–409. 

22. Purucker, M.E. A global model of the internal magnetic field of the Moon based on lunar 

prospector magnetometer observations. Icarus 2008, 197, 19–23. 

23. Rapp, D. Radiation effects and shielding requirements in human missions to the Moon and Mars. 

MARS Int. J. Mars Sci. Exp. 2006, 2, 46–71. 

24. Yang, C.H.; Craise, L.M.; Durante, M.; Mei, M. Heavy-ion-induced genetic changes and 

evolution processes. Life Sci. Space Res. 1994, 14, 373–382. 

25. Berger, T. Radiation dosimetry onboard the international space station iss. Z Med. Phys. 2008, 18, 

265–275. 

26. Musgrave, M.E. Growing plants in space. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 

2007, 2, No. 065. 

27. Sychev, V.N.; Levinskikh, M.A.; Gostimsky, S.A.; Bingham, G.E.; Podolsky, I.G. Spaceflight 

effects on consecutive generations of peas grown onboard the russian segment of the international 

space station. Acta Astronaut. 2007, 60, 426–432. 

28. Wolverton, C.; Kiss, J.Z. An update on plant space biology. Gravit. Space Biol. 2011, 22, No. 2. 

29. De Micco, V.; de Pascale, S.; Paradiso, R.; Aronne, G. Microgravity effects on different stages of 

higher plant life cycle and completion of the seed-to-seed cycle. Plant Biol. 2014, 16, 31–38. 

30. Kordyum, E.L. Plant cell gravisensitivity and adaptation to microgravity. Plant Biol. 2014, 16, 

79–90. 

31. Porterfield, D.M. The biophysical limitations in physiological transport and exchange in plants 

grown in microgravity. J. Plant Growth Regul. 2002, 21, 177–190. 



Life 2014, 4 201 

 

 

32. Kitaya, Y.; Kawai, M.; Tsuruyama, J.; Takahashi, H.; Tani, A.; Goto, E.; Saito, T.; Kiyota, M. 

The effect of gravity on surface temperatures of plant leaves. Plant Cell Environ. 2003, 26,  

497–503. 

33. Liao, J.; Liu, G.; Monje, O.; Stutte, G.W.; Porterfield, D.M. Induction of hypoxic root metabolism 

results from physical limitations in O2 bioavailability in microgravity. Adv. Space Res. 2004, 34, 

1579–1584. 

34. Briarty, L.G.; Maher, E.P. Reserve utilization in seeds of arabidopsis thaliana germinating in 

microgravity. Int. J. Plant Sci. 2004, 165, 545–551. 

35. Porterfield, D.M.; Barta, D.J.; Ming, D.W.; Morrow, R.C.; Musgrave, M.E. Astroculture (tm) root 

metabolism and cytochemical analysis. Adv. Space Res. 2000, 26, 315–318. 

36. Nechitailo, G.; Gordeev, A. Effect of artificial electric fields on plants grown under microgravity 

conditions. Adv. Space Res. 2001, 28, 629–631. 

37. Aliyev, A.A.; Abilov, Z.K.; Mashinskiy, A.L.; Ganiyeva, R.A.; Ragimova, G.K. The ultrastructure 

and physiological characteristics of the photosynthesis system of shoots of garden pea grown for 

29 days on the ―salyut-7‖space station. USSR Space Life Sci. Dig. 1987, 10, 6. 

38. Belyavskaya, N.A. Free and membrane-bound calcium in microgravity and microgravity effects at 

the membrane level. Adv. Space Res. 1995, 17, 169–177. 

39. Kordyum, E.L.; Belyavskaya, N.A.; Nedukha, E.M.; Palladina, T.A.; Tarasenko, V.A. The role of 

calcium ions in cytological effects of hypogravity. Adv. Space Res. 1984, 4, 23–26. 

40. Levine, H.G.; Krikorian, A.D. Changes in plant medium composition after a spaceflight experiment: 

Potassium levels are of special interest. Adv. Space Res. 2008, 42, 1060–1065. 

41. Heyenga, A.G.; Forsman, A.; Stodieck, L.S.; Hoehn, A.; Kliss, M. Approaches in the 

determination of plant nutrient uptake and distribution in space flight conditions. Adv. Space Res. 

2000, 26, 299–302. 

42. Stutte, G.W.; Monje, O.; Goins, G.D.; Tripathy, B.C. Microgravity effects on thylakoid, single 

leaf, and whole canopy photosynthesis of dwarf wheat. Planta 2005, 223, 46–56. 

43. Tripathy, B.C.; Brown, C.S.; Levine, H.G.; Krikorian, A.D. Growth and photosynthetic responses 

of wheat plants crown in space. Plant Physiol. 1996, 110, 801–806. 

44. Kiss, J.Z.; Guisinger, M.M.; Miller, A.J.; Stackhouse, K.S. Reduced gravitropism in hypocotyls of 

starch-deficient mutants of arabidopsis. Plant Cell Physiol. 1997, 38, 518–525. 

45. Kiss, J.Z. Mechanisms of the early phases of plant gravitropism. Crit. Rev. Plant Sci. 2000, 19, 

551–573. 

46. Wyatt, S.E.; Kiss, J.Z. Plant tropisms: From darwin to the international space station. Am. J. Bot. 

2013, 100, 1–3. 

47. Blancaflor, E.B.; Masson, P.H. Plant gravitropism. Unraveling the ups and downs of a complex 

process. Plant Physiol. 2003, 133, 1677–1690. 

48. Perbal, G.; Driss-Ecole, D. Contributions of space experiments to the study of gravitropism.  

J. Plant Growth Regul. 2002, 21, 156–165. 

49. Morita, M.T. Directional gravity sensing in gravitropism. Annu. Rev. Plant. Biol. 2010, 61, 705–720. 

50. Toyota, M.; Gilroy, S. Gravitropism and mechanical signaling in plants. Am. J. Bot. 2013, 100, 

111–125. 



Life 2014, 4 202 

 

 

51. Driss-Ecole, D.; Legue, V.; Carnero-Diaz, E.; Perbal, G. Gravisensitivity and automorphogenesis 

of lentil seedling roots grown on board the international space station. Physiol. Plant. 2008, 134, 

191–201. 

52. Cassab, G.I. Other tropisms and their relationship to gravitropism. In Plant Tropisms; Wiley:  

New York, NY, USA, 2008; pp. 123–139. 

53. Millar, K.D.L.; Kumar, P.; Correll, M.J.; Mullen, J.L.; Hangarter, R.P.; Edelmann, R.E.; Kiss, J.Z. 

A novel phototropic response to red light is revealed in microgravity. New Phytol. 2010, 186, 

648–656. 

54. Takahashi, H.; Mizuno, H.; Kamada, M.; Fujii, N.; Higashitani, A.; Kamigaichi, S.; Aizawa, S.; 

Mukai, C.; Shimazu, T.; Fukui, K.; et al. A spaceflight experiment for the study of 

gravimorphogenesis and hydrotropism in cucumber seedlings. J. Plant Res. 1999, 112, 497–505. 

55. Hoson, T.; Saiki, M.; Kamisaka, S.; Yamashita, M. Automorphogenesis and gravitropism of plant 

seedlings grown under microgravity conditions. Adv. Space Res. 2001, 27, 933–940. 

56. Soga, K.; Wakabayashi, K.; Kamisaka, S.; Hoson, T. Stimulation of elongation growth and 

xyloglucan breakdown in arabidopsis hypocotyls under microgravity conditions in space. Planta 

2002, 215, 1040–1046. 

57. Nedukha, E. Effects of microgravity on the structure and function of plant cell walls. Int. Rev. Cytol. 

1997, 170, 39–77. 

58. Nevzgodina, L.V. Chromosomal aberrations as a biomarker for cosmic radiation. In 

Fundamentals for the Assessment of Risks from Environmental Radiation; NATO Science Series; 

Springer Netherlands: Houten, The Netherlands, 1999; pp. 203–208. 

59. Kovalchuk, O.; Arkhipov, A.; Barylyak, I.; Karachov, I.; Titov, V.; Hohn, B.; Kovalchuk, I. 

Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of 

homologous recombination than acutely irradiated plants. Mutat. Res. 2000, 449, 47–56. 

60. Real, A.; Sundell-Bergman, S.; Knowles, J.F.; Woodhead, D.S.; Zinger, I. Effects of ionising 

radiation exposure on plants, fish and mammals: Relevant data for environmental radiation 

protection. J. Radiol. Prot. 2004, 24, A123–A137. 

61. Esnault, M.A.; Legue, F.; Chenal, C. Ionizing radiation: Advances in plant response. Environ. Exp. 

Bot. 2010, 68, 231–237. 

62. Kovalchuk, I.; Molinier, J.; Yao, Y.L.; Arkhipov, A.; Kovalchuk, O. Transcriptome analysis 

reveals fundamental differences in plant response to acute and chronic exposure to ionizing 

radiation. Mutat. Res. 2007, 624, 101–113. 

63. Vandenhove, H.; Vanhoudt, N.; Cuypers, A.; van Hees, M.; Wannijn, J.; Horemans, N. Life-cycle 

chronic gamma exposure of arabidopsis thaliana induces growth effects but no discernable effects 

on oxidative stress pathways. Plant Physiol. Biochem. 2010, 48, 778–786. 

64. Bhaskaran, S.; Swaminathan, M.S. Chromosome aberrations, changes in DNA content and 

frequency and spectrum of mutations induced by X-rays and neutrons in polyploids. Radiat. Bot. 

1961, 1, 166–174. 

65. Galland, P.; Pazur, A. Magnetoreception in plants. J. Plant Res. 2005, 118, 371–389. 

66. Belyavskaya, N.A. Biological effects due to weak magnetic field on plants. Adv. Space Res. 2004, 

34, 1566–1574. 



Life 2014, 4 203 

 

 

67. Travkin, M.P. Change of bioelectric activity of setereasea purpurea under effect of constant and 

pulsating magnetic-field. Biofizika 1973, 18, 172–174. 

68. Ahmad, M.; Galland, P.; Ritz, T.; Wiltschko, R.; Wiltschko, W. Magnetic intensity affects 

cryptochrome-dependent responses in arabidopsis thaliana. Planta 2007, 225, 615–624. 

69. Aladjadjiyan, A.; Zahariev, A.L. Influence of stationary magnetic field on the absorption spectra 

of some energy plants. J. Environ. Prot. Ecol. 2009, 10, 1032–1036. 

70. Brettel, K.; Setif, P. Magnetic-field effects on primary reactions in Photosystem-I. Biochim. 

Biophys. Acta 1987, 893, 109–114. 

71. Hakala-Yatkin, M.; Sarvikas, P.; Paturi, P.; Mantysaari, M.; Mattila, H.; Tyystjarvi, T.; Nedbal, L.; 

Tyystjarvi, E. Magnetic field protects plants against high light by slowing down production of 

singlet oxygen. Physiol. Plant. 2011, 142, 26–34. 

72. Jovanic, B.R.; Jovanic, R. Effect of a permanent magnetic field on the optical and physiological 

properties of green plant leaves. Int. J. Environ. Stud. 2002, 59, 599–606. 

73. Yano, A.; Ohashi, Y.; Hirasaki, T.; Fuliwara, K. Effects of a 60 Hz magnetic field on photosynthetic 

CO2 uptake and early growth of radish seedlings. Bioelectromagnetics 2004, 25, 572–581. 

74. Solov’yov, I.A.; Schulten, K. Reaction kinetics and mechanism of magnetic field effects in 

cryptochrome. J. Phys. Chem. B 2012, 116, 1089–1099. 

75. Xu, C.X.; Yin, X.; Lv, Y.; Wu, C.Z.; Zhang, Y.X.; Song, T. A near-null magnetic field affects 

cryptochrome-related hypocotyl growth and flowering in arabidopsis. Adv. Space Res. 2012, 49, 

834–840. 

76. Occhipinti, A.; de Santis, A.; Maffei, M.E. Magnetoreception: An unavoidable step for plant 

evolution? Trends Plant Sci. 2014, 19, 1–4. 

77. Yamashita, M.; Tomita-Yokotani, K.; Hashimoto, H.; Takai, M.; Tsushima, M.; Nakamura, T. 

Experimental concept for examination of biological effects of magnetic field concealed by gravity. 

Adv. Space Res. 2004, 34, 1575–1578. 

78. Ruyters, G.; Braun, M. Plant biology in space: Recent accomplishments and recommendations for 

future research. Plant Biol. 2014, 16, 4–11. 

79. Gielis, J.; Gerats, T. A botanical perspective on modeling plants and plant shapes in computer 

graphics. In proceedings of International Conference on Computing, Communications and 

Control Technologies, Austin, TX, USA, 14–17 August 2004; pp. 265–272. 

80. Hezard, P.; Sasidharan, L.S.; Creuly, C.; Dussap, C.-G. Higher plant modeling for bioregenerative 

life support applications: General structure of modeling. In Proceedings of the 40th International 

Conference on Environmental Systems, Barcelona, Spain, 11–15 July 2010. 

81. Holmberg, M.; Paille, C.; Lasseur, C. Preliminary modelling of mass flux at the surface of plant 

leaves within the MELiSSA higher plant compartments. In Proceedings of the 38th COSPAR 

Scientific Assembly, Bremen, Germany, 15–18 July 2010. 

82. Stasiak, M.; Gidzinski, D.; Jordan, M.; Dixon, M. Crop selection for advanced life support systems 

in the ESA MELiSSA program: Durum wheat (triticum turgidum var durum). Adv. Space Res. 

2012, 49, 1684–1690. 

83. Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Duliere, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; 

van der Straeten, D. Selection and hydroponic growth of potato cultivars for bioregenerative life 

support systems. Adv. Space Res. 2012, 50, 156–165. 



Life 2014, 4 204 

 

 

84. Van Loon, J.J. Some history and use of the random positioning machine, rpm, in gravity related 

research. Adv. Space Res. 2007, 39, 1161–1165. 

85. Herranz, R.; Anken, R.; Boonstra, J.; Braun, M.; Christianen, P.C.M.; de Geest, M.; Hauslage, J.; 

Hilbig, R.; Hill, R.J.A.; Lebert, M.; et al. Ground-based facilities for simulation of microgravity: 

Organism-specific recommendations for their use, and recommended terminology. Astrobiology 

2013, 13, 1–17. 

86. De Micco, V.; Buonomo, R.; Paradiso, R.; de Pascale, S.; Aronne, G. Soybean cultivar selection 

for bioregenerative life support systems (blss)—Theoretical selection. Adv. Space Res. 2012, 49, 

1415–1421. 

87. Hoson, T.; Soga, K. New aspects of gravity responses in plant cells. Int. Rev. Cytol. 2003, 229, 

209–244. 

88. Hoson, T.; Soga, K.; Mori, R.; Saiki, M.; Nakamura, Y.; Wakabayashi, K.; Kamisaka, S. Cell wall 

changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions 

in space. J. Plant Res. 2004, 117, 449–455. 

89. Hoson, T.; Soga, K.; Wakabayashi, K.; Kamisaka, S.; Tanimoto, E. Growth and cell wall changes 

in rice roots during spaceflight. Plant Soil. 2003, 255, 19–26. 

90. Musgrave, M.E.; Kuang, A.; Tuominen, L.K.; Levine, L.H.; Morrow, R.C. Seed storage reserves and 

glucosinolates in brassica rapa l. Grown on the international space station. J. Am. Soc. Hortic. Sci. 

2005, 130, 848–856. 

91. Allen, J.; Bisbee, P.A.; Darnell, R.L.; Kuang, A.; Levine, L.H.; Musgrave, M.E.; van Loon, J.J. 

Gravity control of growth form in brassica rapa and arabidopsis thaliana (brassicaceae): 

Consequences for secondary metabolism. Am. J. Bot. 2009, 96, 652–660. 

92. Tuominen, L.K.; Levine, L.H.; Musgrave, M.E. Plant Secondary Metabolism in Altered Gravity; 

Humana Press: New York, NY, USA, 2009; pp. 373–386. 

93. Brinckmann, E. Centrifuges and their application for biological experiments in space. Microgr. 

Sci. Technol. 2012, 24, 365–372. 

94. Brinckmann, E. Esa hardware for plant research on the international space station. Adv. Space Res. 

2005, 36, 1162–1166. 

95. Kiss, J.Z.; Edelmann, R.E.; Wood, P.C. Gravitropism of hypocotyls of wild-type and starch-deficient 

arabidopsis seedlings in spaceflight studies. Planta 1999, 209, 96–103. 

96. Kittang, A.I.; Iversen, T.H.; Fossum, K.R.; Mazars, C.; Carnero-Diaz, E.; Boucheron-Dubuisson, E.; 

le Disquet, I.; Legué, V.; Herranz, R.; Pereda-Loth, V.; et al. Exploration of plant growth and 

development using the european modular cultivation system facility on the international space 

station. Plant Biol. 2014, 16, 528–538. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


