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Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA),
osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom
that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk
has been demonstrated to play a critical role in the onset and establishment of chronic
pain conditions. Immune cells release cytokines and immune mediators that can activate
and sensitize nociceptors evoking pain, through interaction with receptors in the sensory
nerve terminals. On the other hand, sensory and sympathetic nerve fibers release
neurotransmitters that bind to their specific receptor expressed on surface of immune
cells, initiating an immunomodulatory role. Macrophages have been shown to be key
players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant
immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can
result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this
review is to discuss the nature and impact of the interaction between the inflammatory
response and nerve fibers in these joint disorders regarding the genesis and maintenance
of pain. The role of macrophages is highlighted. The alteration in the joint innervation
pattern and the inflammatory response are also described. Additionally, the
immunomodulatory role of sensory and sympathetic neurotransmitters is revised.

Keywords: inflammation, sensory innervation, sympathetic innervation, rheumatoid arthritis, osteoarthritis, aseptic
loosening, macrophages
1 INTRODUCTION

Joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), are among the most
prevalent disabling musculoskeletal disorders (1–3). Osteoarthritis, the most common form of
arthritis, is characterized by the degradation of articular cartilage and subchondral bone,
osteophytes formation and synovitis, and it is mainly induced by joint injury or overuse (3). On
the other hand, RA is a systemic autoimmune disease that results primarily in inflammation and
joint damage (4). It has been reported that not only RA and OA prevalence is higher in women, but
women also report higher pain levels arising from these conditions than men (5). The mechanisms
org March 2022 | Volume 13 | Article 8129621
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underlying these sex-related differences are still largely unknown.
Psychological factors, body fat mass, sex hormones, and sex-
related differences in immune response may account for this sex
dimorphism (5). The available therapies do not prevent or revert
the progression of these diseases, and in end-stage arthritis, joint
replacement surgery is the gold standard procedure to provide
pain relief and recover joint function (6, 7). Nevertheless, the
slow progressive inflammatory response to the implant debris
promotes periprosthetic osteolysis (PPOL) that may result in
implant aseptic loosening (AL), a major threat to long-term
implant survival (8).

Pain is a common symptom of RA, OA and AL, and has a
great impact on the physical function and patients’ wellbeing (9,
10). Radiographic findings of joint degeneration do not always
correlate positively with joint pain (11–13). This could be due to
the fact that radiography imaging does not allow the assessment
inflammatory changes (e.g. synovial hypertrophy and synovitis).
To evaluate inflammation ultrasound and magnetic resonance
imaging-based studies are needed. Inflammatory features are
indeed positively and linearly correlated with joint pain (14, 15).
These findings identify inflammation as an important predictive
factor of pain.

The neuroimmune interplay has been demonstrated to have a
key role in the generation and maintenance of pain in diseases
with an inflammatory component (16). A diverse repertoire of
inflammation-derived mediators can interact with nociceptors
and modulate their activity. Among these mediators, pro-
inflammatory cytokines, chemokines, growth factors and
damage-associated molecular patterns (DAMPs- damaged
molecules released from damaged or dying cells that bind to
pattern recognition receptors [PRRs, e.g., toll-like receptors
(TLRs)] (17)) have been shown to interact with receptors in
the nociceptors, inducting their sensitization (18, 19). On the
other hand, neuropeptides released by sensory nerve endings,
such as Substance P (SP) and calcitonin gene-related peptide
(CGRP), bind to their respective receptors located on the surface
of immune cells, modulating their activity (20, 21). The
sympathetic neurotransmitters, in particular the norepinephrine,
are able to interfere with the inflammatory process, through the
adrenoreceptors (ARs) expressed by immune cells (22).

Among the immune cells involved in the neuroimmune
interplay, the macrophages have been highlighted as key
players in the context of chronic inflammatory diseases (23).
Macrophages express the receptors for the neurotransmitters and
release mediators able to activate and sensitize nociceptors (24).
Moreover, the targeting of macrophages can result in pain
reduction (23).

In this narrative review, we discussed the mechanisms
underlying the interaction between the inflammatory response
and nerve fibers in RA, OA and AL regarding the genesis and
maintenance of pain, in particular the role of macrophages was
highlighted. The neuronal network and the immune response in
joint health and disease are also described. Furthermore, the
immunomodulation by the sensory and sympathetic
neurotransmitters was revised. The role of neuroimmune
interaction in pain has been addressed in recent reviews [e.g
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(25–30)]. Here, we focus instead on the neuroimmune crosstalk
in pain associated to RA, OA, and AL diseases.
2 THE INFLAMMATORY RESPONSE IN
JOINT DISORDERS

Although the severity of the immune response is higher in RA
and AL, the involvement of an inflammatory component in the
OA pathology is also well recognized. Here, the most relevant
inflammatory processes in these joint disorders are described.

2.1 Synovial-Resident Macrophages
Synovial joints are characterized by the presence of a fluid-filled
joint cavity surrounded by the synovium. The synovium is
formed by two layers, the lining and the sub-lining. The lining
layer is composed of tissue-resident macrophages and fibroblasts
(31). The sub-lining layer is formed by fibroblasts, tissue-resident
macrophages, nerves, and blood and lymphatic vessels (31). The
disruption of synovial membrane architecture occurs early in
joint inflammation (32). Culemann et al. (33) demonstrated that
macrophages in the lining layer protect joints from inflammatory
immune-cell assaults that are associated with arthritis. The
authors studied the origin, differentiation, and distribution of
these macrophages during steady-state and arthritis. The barrier-
forming macrophages consist of a distinct population of CX3C
chemokine receptor 1-positive (CX3CR1

+) tissue-resident
macrophages and derive from interstitial macrophages
CX3CR1

- in the sub-lining layer (Figure 1) (33). Interestingly,
these barrier-forming macrophages express tight junction
proteins like the epithelial cells and provide an anti-
inflammatory barrier around the joint that is disrupted during
arthritis (33). Non-resident macrophages that infiltrate the joint
are central effectors of synovial inflammation and arise from
circulating monocytes (33).

Healthy synovial fluid lacks immune cell trafficking. Joint
inflammation occurs when leukocytes infiltrate the synovial
compartment. The severity of joint inflammation correlates
with the degree of synovial macrophages infiltration, and
depletion of these macrophages has a profound therapeutic
benefit (34).

Macrophages are specialized phagocytic (scavenger-like) cells
that recognize, ingest, and degrade cellular debris and pathogens.
They act both in innate and adaptive immunity and are essential for
the maintenance of tissue homeostasis and tissue repair processes.
Recently, it was reported that macrophages derived from two main
cellular lineages. One lineage emerges from bone-marrow-derived
immune cells, the monocytes. The other lineage is monocyte
independent, seeded in the tissues during embryonic
development, and derived from the yolk sac, fetal liver, and bone
marrow (35). Tissue-resident macrophages present a distinctive
gene-expression profile, defined by the local microenvironment (36,
37). Adding to this complex origin, macrophages are very plastic
cells and are often described as exhibiting a pro-inflammatory
phenotype (M1 macrophages) or an anti-inflammatory more
prone to tissue repair phenotype (M2 macrophages). Induced by
March 2022 | Volume 13 | Article 812962
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the type 1 helper (Th1) cells signature cytokine (interferon (INF)-g
and tumor necrosis factor (TNF)-a) and/or the TLRs ligands (e.g.
LPS), M1macrophages secrete pro-inflammatory cytokines and low
levels of interleukin (IL)-10. M2 macrophages result from the
stimulation of Th2 signature cytokine IL-4 and/or IL-13 and
secrete IL-10 and transforming growth factor (TGF)-b (38–40).
2.2 The Inflammatory Response
in Osteoarthritis
Osteoarthritis is a degenerative disease characterized by articular
cartilage destruction, subchondral bone remodeling, synovitis,
and osteophyte formation (41) (Figure 1), with higher
prevalence in females. Zhu et al. recently demonstrated a strong
relationship between the increased levels of proinflammatory
cytokines (IL-17F and IL-23) and bone marrow lesions in
females but not in males. Therefore, it is critical to unveil the
mechanisms underlying sex-related differences. Further studies
regarding inflammatory mediators in OA should be performed on
animal models of both sexes (42).

Osteoarthritis synovium shows hyperplasia, with an increased
number of lining cells and a mixed inflammatory infiltrate.
Frontiers in Immunology | www.frontiersin.org 3
Macrophages are the most abundant immune cell type in the
synovium, and their accumulation in the intimal lining is the first
signal of synovitis (43). Kraus VB et al. provided the first study in
humans demonstrating the involvement of macrophages in OA.
Using Single photon emission computed tomography- Non-
contrast (SPECT-CT) imaging, after the injection of Etarfolatide,
which detects activated macrophages in vivo, the authors observed
a correlation between the intensity of Etarfolatide uptake with
radiographic severity of joint shrinking and osteophyte formation
(44). Activated macrophages release inflammatory mediators,
namely TNF-a and IL-1b, that alter the function of synovial
fibroblasts and chondrocytes, leading to an increase in
inflammation and catabolism in the joints (45). During cartilage
degradation, DAMPs released from the extra-cellular matrix
(ECM) to the joint space, signal to macrophages to trigger a
protective response and eventually lead to repair (17). However,
prolonged or dysregulated activation by DAMPs can be
destructive and it has been implicated in the perpetuation of the
low-grade systemic inflammation observed in OA, by the
activation of the inflammasome pathways in macrophages (46).
It was recently reported that mouse macrophages that were
exposed to cartilage fragments, significantly upregulated genes
FIGURE 1 | The synovial joint in health and osteoarthritis. Normal joint: In the healthy joint, the synovium is formed by two layers, the lining and the sub-lining. The
lining layer is composed of barrier-forming macrophages and fibroblast-like synoviocytes (FLS). The sub-lining layer is composed of fibroblasts, tissue-resident
macrophages, nerves, and blood vessels. In physiologic conditions, the articular cartilage is not innervated and does not contain blood vessels. Osteoarthritis: OA is
characterized by articular damage and osteophyte formation. The presence of specific cell subsets and inflammatory mechanisms in OA remains unclear. In OA the
innervation profile is closely linked to inflammatory severity. FLS, fibroblasts-like synoviocytes; ECM, extracellular matrix; DAMPs, damage-associated molecular
patterns; IL, Interleukin; TNF, Tumor necrosis factor.
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involved in scavenger activity [phagocytosis, macrophage receptor
with collagenous structure (Marco)], integrin-binding activity
(migration, Itga5), TNF signaling and TLR signaling (TLR2).
These results were further confirmed by immunohistochemical
analysis of the synovial tissues obtained from OA patients. Results
from RNAs-seq analysis of murine macrophages revealed the
expression of MARCO, TLR2 and ITGa5 in the intima lining
layer of synovial tissues. Importantly, their inhibition with specific
antibodies significantly decreased the release of TNF-a by
macrophages stimulated with cartilage byproducts (47). To
decode the role of the different joint tissues in synovitis, Belluzi
E. et al., cultured the human fibroblasts-like synoviocytes cell line
K4IM in the presence of conditioned media (CM) from cartilage,
synovial membrane, meniscus and infrapatellar fat pad (IFP)
obtained from tissues of patients facing total knee arthroplasty.
All the conditions tested led to the production of high levels of IL-
6, IL-8, and C-CMotif Chemokine Ligand (CCL2). However, only
K4IM cells cultured with CM from OA synovium demonstrated
an increase of Il-6, CXCL8, metalloproteinase (MMP)10 and IL-1b
expression. These results showed that in OA all joint tissues played
a role in the progression of synovial inflammation, in particular
the synovial membrane (48). The new findings of synovial
macrophage subsets in RA that go beyond the classical M1/M2
concept, could potentiate the development of new therapeutic
approaches that promote the resolution of synovial inflammation
in OA. The presence of the same cellular subtypes and
mechanisms in OA remains unclear and it is under investigation.

2.3 The Inflammatory Response in
Rheumatoid Arthritis
Rheumatoid arthritis is an autoimmune disease, characterized by
synovial inflammation and hyperplasia, the production of
autoantibodies (i.e., antibodies that react to self-antigens) to
immunoglobulin G [IgG; rheumatoid factor (RF)] and
citrullinated proteins [anti-citrullinated proteins antibodies
(ACPAs)], and joint destruction. Synovial inflammation is the
dominant feature in the early stage of RA (49). The pathology of
RA is also characterized by the proliferation and activation of
synovial tissue fibroblasts (50), as well as the trafficking of key
cellular subsets, namely neutrophils, CD4+ T cells (51), B cells
(52), and monocytes/macrophages (53) into the synovium,
giving rise to an invasive tissue or pannus (Figure 2 and
Table 1). These interactions promote the release of several
inflammatory mediators, including TNF-a, IL-1b, IL-6, IL-17,
IL-23, IL-10, and TGF-b, which directly affect cartilage and bone
cells, thus perpetuating the inflammatory cascade (Figure 2
and Table 1).
2.4 The Inflammatory Response
in Aseptic Loosening
The molecular mechanisms responsible for PPOL/AL are still
elusive. Tissue inflammation in response to prosthetic
byproducts has been pointed to as the main responsible for AL
(97). Wear particles released from implant devices that
accumulate around the bone-implant interface, induce the
Frontiers in Immunology | www.frontiersin.org 4
release of pro-inflammatory mediators by tissue-resident
macrophages (98) (Figure 2). The continuous release of wear
particles perpetuates a chronic low-grade inflammation around
the implant. This low-grade inflammation promotes the
secretion of osteoclastogenic mediators, namely RANKL and
IL-1b, which induce the differentiation of macrophages into
osteoclasts (99), leading to bone resorption. Vasconcelos DM
et al. analyzed the local immune profile and inflammatory
response in AL and compared it to OA. The authors
concluded that AL and OA differ in tissue architecture,
immune cell distribution and local TGF-b1 expression. The
results revealed that in OA the inflammation is restricted to
the synovial membrane, in turn in AL, macrophages invaded all
the periprosthetic tissue. In this study wear particles on aseptic
interface tissues did not induce local macrophage polarization
(M1 or M2), receptors from both profiles were present and
evenly distributed in macrophages. In addition, AL and OA share
similar systemic profiles in mRNA levels of the pro-
inflammatory makers, namely TNF-a, IL-1b, IL-6, iNOS and
RANKL. Interestingly, an increase of TGF-b1 expression in
tissues from AL patients was observed when compared to OA.
These results suggest a relation between TGF-b1 expression and
the immune response in AL and OA (100). Recently, Dyskova
et al. in a pilot study analyzed the inflammation protein
signatures in tissues collected from patients with failed total
knee arthroscopy due to AL. The authors found that AL tissues
presented high levels of TNF-family members [sTNFR2,
TNFSF14, sFasL, B cell activating factor belonging to the TNF
family (sBAFF)], cytokines and chemokines (IL,8, CCL2, IL1RA/
IL36, sIL6R), and growth factors [amphiregulin (sAREG), colony
stimulating factor (CSF1)]. Macrophages and osteoclast-like cells
are the producers of these inflammatory molecules in AL (101).
The sTNFR2 in AL was already reported as having a role in the
osteoclast formation, and the absence of sTNFR2 receptors
impairs osteoclastogenesis (102). Further studies with a larger
patient cohort and using single-cell transcriptomic analysis will
be helpful to confirm and identify the key players in AL.
3 THE JOINT INNERVATION

The synovial joints are highly innervated by sensory and
sympathetic nerve fibers. Changes in the innervation pattern
are supposed to contribute to the generation and maintenance of
arthritis pain. Here, the joint innervation pattern is described in
physiologic and in arthritic conditions.

3.1 The Joint Innervation in Physiological
Conditions
Unequivocal evidence has demonstrated the innervation of the
capsule, ligaments, synovium, meniscus, fatpads, subchondral
bone and periosteum in the synovial joints (103–106). In
contrast, in physiologic conditions, articular cartilage is not
innervated and does not contain blood vessels (105, 106).

The synovial joints are innervated by sensory thinly
myelinated A-d fibers and unmyelinated peptide-rich C-fibers.
March 2022 | Volume 13 | Article 812962
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The A-d fibers are mainly present in the capsule, ligaments and
meniscus (107). These nerve fibers release the neuropeptides
CGRP and SP (108, 109). They are mostly sensitive to nerve
growth factor (NGF) and express the tropomyosin receptor
kinase A (TrkA) (108, 109). Typically, the A-d fibers are
sensitive to high threshold stimulation, and respond to noxious
mechanical stimuli and in a lesser extent to thermal stimuli (108,
109). The unmyelinated C-fibers are the most abundant nerve
fibers in the synovial joints (107). As the A-d fibers, the majority
of these C-fiber are peptidergic, releasing SP and CGRP upon
activation, and are also TrkA-positive (108, 109). The C-fibers
Frontiers in Immunology | www.frontiersin.org 5
also have a high threshold, and they respond to multi stimuli
modalities, such as mechanical, thermal, and chemical stimuli
(108, 109). The innervation of joints by A-b myelinated fibers is
scarce and mostly restricted to the capsule and ligament surface
(107). They have very low thresholds and are sensitive to
mechanical stimulation (108, 109). Overall, the joint sensory
innervation is mostly composed of silent nociceptors (the C-
fibers and the A-d fibers), which respond only to potentially
dangerous stimulation.

Sympathetic nerve fibers innervate the synovial joint
structures, except for the articular cartilage (110). These nerve
FIGURE 2 | The synovial joint in rheumatoid arthritis and aseptic loosening. Rheumatoid Arthritis: In RA, the synovial intimal lining expands and forms an invasive
hyperplastic pannus and sensory innervation increases, and sympathetic innervation is lost. The vicious cycle mediated by the interactions shown between immune
cells, synovial fibroblasts, chondrocytes, and osteoclasts, together with the molecular products of damage, drive the chronic phase in the pathogenesis of RA.
Aseptic loosening: In AL, wear particles released from implant devices and accumulated around the bone-implant interface, induce the release of pro-inflammatory
mediators by tissue-resident macrophage. The innervation profile in AL is characterized by the rearrangement of sensory neurons and the absence of sympathetic
fibers. IL, interleukin; TNF, tumor necrosis factor; ROS, reactive oxygen species; RANKL, receptor activator of nuclear factor kappa-B ligand; TGF, transforming
growth factor; AL, aseptic loosening; Th, T-helper.
March 2022 | Volume 13 | Article 812962
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fibers express tyrosine hydroxylase (TH, the rate-limiting
enzyme for biosynthesis of catecholamines) and release
norepinephrine, and are mostly associated with blood vessels
(31). The sympathetic nerves express TrkA, thus they are also
Frontiers in Immunology | www.frontiersin.org 6
influenced by NGF (111). The sympathetic neurotransmitters
can modulate indirectly joint pain due to their vascular- and
immune-regulatory action, but also through the direct
modulation of nociceptors activity (112).
TABLE 1 | Contribution of different cell types to Rheumatoid Arthritis.

Cell Type Subtype Role in RA Trigger factors in RA Target and Action Ref.

Synovial
Fibroblasts

Maintain the inflammation, support the
recruitment, survival and accumulation of
leukocyte populations in synovium.
Ostoclastogenesis.

CXCL8, CCL2, CCL5,
CXCL10, CXCL5,
CXCL1 and MMPs

JAK inhibitors suppressed the inflammatory
response induced by oncostatin M in RA
synovial fibroblasts.

(50, 54–56)

In mice, genetic removal or blockade of
NOTCH3 signaling decreases inflammation
and hampers joint damage in inflammatory
arthritis.

(57)

FAPa+THY1+

immune
effector
fibroblasts

Located in the synovial sub-lining. Little
effect on bone and cartilage erosion.
Mediators of severe and persistent
inflammation.

IL-6, IL-33, IL-34 In mice, deletion of FAPa+
fibroblasts impair

inflammation and bone erosions.
(58)

FAPa+THY1−

destructive
fibroblasts

Located in the synovial lining layer.Bone and
cartilage damage.

CCL9, TNFSF11, MMP3,
MMP9, MMP13, RANKL

B cells Antibody producer, APC, T Cell activation,
cytokine producer, osteoclastogenesis.

Receptor activator
nuclear factor kappa-B
ligand (RANKL), IL-1, IL-
6, TNF-a

In patients, B cell depletion, with the use of
rituximab provided significant improvements in
disease symptoms.

(59–63)

T Cells Th-1 Cytokine producer, macrophage activation. IFN-g, IL-2, TNF-a Direct inhibition of T cells by or T cell depletion
has exhibited limited or no therapeutic
efficacy.

(64, 65)
Th-2 Cytokine producer, B-cell activation. IL-4, IL-5 (66)
Th-17 Cytokine producer, MMPs stimulation,

promote pannus growth, neoangiogenesis
and osteoclastogenesis.

IL-17A, IL-17,F, IL-21,
IL-22, TNF-a

(67)

Treg Suppress autoreactive lymphocytes,
immunoregulatory functions.

IL-10, TGF-b (68, 69)

Th9 Neutrophils survival and Th17 differentiation. IL-9 (70, 71)
Tph B cells activation. IL-21 (72)

DCs APC, T cells activation. CXCL8, CCL3, CXCL10,
IL-1b, IL-6, IL-12, IL-23

(73–78)

Neutrophils First responders, cytokine producers.
Involved in the earliest phase of arthritis.

TNF-a,IL-1b, IL-6, IL-8,
LTB4 and CXCL5

Neutrophils depletion impairs arthritis
development.

(79–84)

PAD4 expression mediated by IL-6 was
recently implicated in RA onset.

(85)

Macrophages M1 Phagocytic cells, Present in high number in
RA.M1>M2 ratio.

CXCL7, IL-1, TNF-a Targeting inflammatory macrophages inducing
their apoptosis, has a therapeutic benefit in
reducing joint inflammation.

(34, 86–93)

M2 IL-10 IL-10 deficient mouse model showed that the
lack of IL-10 aggravated the inflammatory
arthritis phenotype.

(94)

AtoMs AtoMs are the osteoclast precursor-
containing population in the pannus tissue

RANKL Tamoxifen inhibited the capacity of AtoMs to
differentiate into osteoclasts in vitro and in
vivo.

(95)

CX3CR1+

macrophages
Barrier-forming CX3CR1+ macrophages;
Maintenance and protection of the joints
against inflammation

N/A In arthritis, barrier-forming macrophages layer
rapidly disintegrated and cells loosened their
physical interactions, accelerating neutrophil
influx.

(33)

IL-
1b+HBEGF+

macrophages

Pro-inflammatory tissue-damaging profile.
HBEGF+ macrophages promote fibroblast
invasiveness

IL-1 and EGF HBEGF+ macrophages promote fibroblast
invasiveness through an epidermal growth
factor receptor.

(96)
March 2022 | Volume 13 |
APC, Antigen presenting cell; AtoMs, Arthritis-associated osteoclastogenic macrophages; CCL2, Chemokine (C-C motif) ligand 2; CCL3, Chemokine (C-C motif) ligand 3; CCL5,
Chemokine (C-C motif) ligand 5; CCL9, Chemokine (C-C motif) ligand 9; CXCL1, C-X-C Motif Chemokine Ligand 1; CXCL10, C-X-C Motif Chemokine Ligand 10; CXCL5, C-X-C Motif
Chemokine Ligand 5; CXCL7, C-X-C Motif Chemokine Ligand 7; CXCL8, C-X-C Motif Chemokine Ligand 8; DC, Dendritic cell; EGF, Epithelial growth factor; FAPa, Fibroblast activation
protein-a; HBEGF, Heparin Binding EGF Like Growth Factor; IFN-, Interferon gamma; IL-1, Interleukin 1 beta; IL-12, Interleukin 12; IL-17, Interleukin 17; IL,-7A, Interleukin 17 A; IL-2,
Interleukin 2; IL-21, Interleukin 21; IL-22, Interleukin 22; IL-23, Interleukin 23; IL-33, Interleukin 33; IL-34, Interleukin 34; IL-4, Interleukin 4; IL-5, Interleukin 5; IL-6, Interleukin 6; LTB4,
Leukotriene B4; M1, Pro-inflammatory macrophages; M2, Anti-inflammatory macrophages; MMP13, Matrix metalloproteinases 13; MMP3; Matrix metalloproteinases 3; MMP9, Matrix
metalloproteinases 9; MMPs, Matrix metalloproteinases; PAD4, Protein Arginine Deiminase; RA, Rheumatoid arthritis; RANKL, Receptor activator of nuclear factor kappa-B ligand; TGF-,
Transforming Growth factor beta; Th17, T helper 17 cells; Th9, T helper 9 cells; THY1, Thymocyte differentiation antigen 1; TNF-, Tumor necrosis factor alpha; TNFSF11, Tumor necrosis
factor ligand superfamily member 11; Tph, T peripheral helper cells; N/A, not applicable.
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3.2 Alterations in Joint Innervation Pattern
in Joint Disorders
Alteration in the pattern of innervation has been described in
several pathological conditions. The sprouting of sensory and
sympathetic innervation was associated with pain in non-healing
bone fractures (113). The sprouting of sensory nerve fibers was
also described in bone cancer pain and chronic discogenic pain
(114, 115), and the sprouting of sympathetic nerve fiber in
neuropathic pain (116). In contrast, repulsion of the
sympathetic innervation has been reported in severe chronic
inflammatory conditions, such as Crohn’s disease and diabetes
(117, 118). Alterations in the innervation pattern have also been
described in joint disorders and associated with the severity
of pain.

In OA, data from animal models and human studies revealed
alterations of both sensory and sympathetic innervation profile.
In the OA mouse model induced by the destabilization of the
medial meniscus (DMM), an increase in the sensory nerve fibers
was observed in the medial synovium, meniscus, and
subchondral bone at 6 weeks after OA induction (119). In the
same mouse model, our group reported no changes in the
sensory innervation of the synovium, meniscus, or subchondral
bone 12 weeks after surgery, however, the sensory innervation
increased in the periosteum (120). The difference between the
two studies might be related to the disease progression stage. In
the monoiodacetate (MIA)-induced OA rat model, sprouting of
CGRP and TrkA positive fibers was observed in the knee joint
(121). The increase in the joint innervation was observed also in
human samples. Suri et al. (122). reported that sensory and
sympathetic nerve fibers were observed in articular cartilage,
following the neovascularization breaching the tidemark, in
human samples of the knee with mild and severe OA (122).

Studies in RA animal models also revealed alteration in the
joint innervation. The density of sensory (CGRP+, NF200+) and
sympathetic (TH+) nerve fibers was increased in the synovium in
the Complete Freund’s Adjuvant (CFA)-induced mouse model
(123). Interestingly, early and sustained administration of anti-
NGF therapy prevented the sprouting of the sensory and
sympathetic nerve fibers and reduced the pain-related
behaviors in this model, supporting the involvement of nerve
sprouting in arthritic pain (123). The sensory (CGRP+) and
sympathetic (VMAT-2+) nerve fibers density was also increased
in the synovium of the ankle joint in CFA-induced rat model
(124). The inhibition of sympathetic signaling with guanethidine
reduced pain-related behaviors, supporting its involvement in
joint pain (124). In contrast, a decrease in the sensory
innervation of the synovial membrane was observed in the
inflammatory CIA mouse model (125). A decrease of the
sensory nerve fibers in the synovium was also reported in
human OA, and correlated with inflammation (126). This
effect may be related to a high degree of inflammation. Further
investigation is needed to clarify the putative link between the
alteration in the joint innervation profile and the inflammation.

Studies with samples from RA patients reported a loss of
sympathetic innervation (127–129) and the magnitude of the
sympathetic nerve loss seems to correlate with the degree of
Frontiers in Immunology | www.frontiersin.org 7
inflammation. In fact, comparative studies between RA and OA
described the loss of TH+ nerve fibers in the synovial tissue of RA
patients but not in OA patients (127, 129). In contrast, a higher
number of sensory nerve fibers (SP+) were detected in the
synovial tissues from RA patients when compared to synovial
tissues from OA patients (127, 129).

Similarly, our group has reported the absence of sympathetic
nerve fibers (TH+) in periprosthetic tissues from AL patients,
while this was not observed in OA patients (100). This further
supports the results reported by Niissallo et al. showing the
absence of sympathetic and C-peptidergic nerve fibers from
synovial-like membrane [i.e., tissue surrounding the joint
implant that has the histological and histochemical
characteristics of a synovial-like lining (130)] (131). As
described for RA, the loss of TH+

fibers seems to correlate
with the severity of the inflammatory response. In contrast to
Niissalo et al., Ahmed et al. showed that the synovial-like
membrane from AL hip prostheses is supplied by sensory
nerve fibers positive to SP, neurokinin A (NKA) and CGRP
(132). Recently, we also reported the presence of sensory nerve
fibers in this tissue (100). However, the organization of the
sensory nerve fibers in synovial-like membrane was different
from the organization in the synovial membrane in OA patients
(100). SP+ and CGRP+ nerve fibers were observed in subintima
regions of the synovial membrane mainly around blood vessels,
whereas these nerve fibers were dispersed through the synovial-
like membrane (100). In Figure 1 the overall alteration in the
innervation pattern are represented.

Although there is still much to know regarding joint
innervation, it is clear that under pathological conditions joint
innervation undergoes important reorganization that will impact
pain transmission.
4 THE NEUROIMMUNE CROSSTALK IN
JOINT DISORDERS

The bidirectional communication between the peripheral
nervous system and the inflammatory process is recognized to
play a critical role in the generation and maintenance of pain
(16). In response to noxious stimuli, nociceptors, adding to the
generation of action potentials that will be transmitted to
the spinal cord, release inflammatory mediators that promote
the recruitment of immune cells and modulate their activity
(133). On the other hand, the molecules released by the immune
cells, such as cytokines, chemokines, lipid mediators and growth
factors, will activate nociceptors evoking a pain response (18, 19).
In this review, the neuroimmune crosstalk in the context of RA,
OA and AL will be discussed.
4.1 The Role of the Inflammatory
Mediators on the Nociceptor Activity and
Evoked Pain
A diverse repertoire of inflammatory mediators, including
cytokines, chemokines and DAMPs, are present at the arthritic
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joint, and able to activate the nociceptors initiating pain signaling
(134, 135).

In OA, DAMPs have been suggested to be involved in the
activation and sensitization of nociceptors, in particular by
signaling through the TLR4 (136). The TLRs and the receptor
for advanced glycation end products (RAGE) compose the class
of receptors that recognize DAMPs and pathogen-associated
molecular pattern (PAMPs), the pattern recognition receptors
(PRRs), which are expressed also in nociceptors (137, 138). The
blockade of TLR4 inhibits the release of MCP-1 induced by
activation with S100A8 and a2 -macroglobulin (DAMPs
molecules) in mouse dorsal root ganglia (DRG) in vitro
cultures (138). Nevertheless, the deletion of TLR4 was not
sufficient to suppress mechanical allodynia in the DMM mouse
model (138). Although TLR4 seems to be involved in OA pain,
alone its inhibition is not sufficient to reduce pain sensitization.
Interestingly, the expression of S100A8 and S100A9 was not
increased in the DMMmouse model, while it was upregulated in
samples of OA patients undergoing joint arthroplasty and in the
CIA mouse model (139). Moreover, the inhibition of TLR4 by
the antagonist TLR4-A1 significantly reduced mechanical
allodynia in the MIA rat model (140).

Although TLR4 is the most studied TLRs regarding pain
(141), nociceptors express other TLRs, such as TLR2, TLR3,
TLR4, TLR5, TLR7 and TLR 9 (141, 142). TLR2 was also shown
to be involved in arthritic pain (143). In DRG cultures, the
activation of TLR2 by stimulation with 32-mer was shown to
induce the expression of the pro-algesic chemokine CCL2 (143).
Moreover, the deletion of TLR2 prevented the development of
knee hyperalgesia in the DMM mouse model of OA (143).
Recently, the involvement of TLR7 activation in OA pain was
also demonstrated (144). The algesic effects of miR-21 (miRNA
highly released from synovial tissue in OA) are achieved through
TLR7 activation (144). The antagonism of TLR7 blocked the
miR-21-induced pain and had an analgesic effect in the Anterior
Cruciate Ligament Transection (ACLT) OA rat model (144). The
available data suggesting the involvements of TLRs in arthritic
pain still needs further confirmation.

Pro-inflammatory cytokines such as TNF-a, IL-1b and IL-6
are released by chondrocytes, synoviocytes and infiltrating
immune cells in joint disorders such as RA and OA (45, 145).
Moreover, nociceptors express the receptors for these
cytokines (134).

IL-1b increases the excitability of nociceptors through
p38MAP kinase, by delaying the tetrodotoxin (TTX)-resistant
voltage-gated sodium channels inactivation and increasing its
current threshold (146). The long-term administration of
diacerein, a powerful inhibitor of IL-1b synthesis, to patients
with moderate to severe knee OA resulted in a significant
reduction of pain (147, 148). Moreover, the intraarticular
administration of anakinra, an IL-1 receptor antagonist,
reduced pain and improved knee function in patients with an
acute knee injury (149).

TNF-a is known to directly activate nociceptors through TNF
receptor 1 (TNFR1), inducing the up-regulation of voltage-gated
sodium channels (Nav1.3 and Nav1.8), and resulting in ectopic
Frontiers in Immunology | www.frontiersin.org 8
impulse and spontaneous discharge of nociceptors, leading to
mechanical hyperalgesia (150). The concentration of TNF-a in
the synovial fluid positively correlates with the pain intensity in
patients with knee OA (151). The neutralization of TNF-a
resulted in pain relief in patients with knee OA (152, 153) and
antigen-induced arthritis (AIA) rat model (154).

IL-6 was also shown to play a role in the generation and
maintenance of arthritic pain. In patients with knee OA, a
positive correlation was found between the concentration of
IL-6 in the synovial fluid and reported pain (155). The IL-6
signaling depends on the IL-6 binding to gp80 specific receptor
(IL-6R) and then to the transmembrane signal-transducing
subunit gp130 (156). Sensory neurons were shown to express
the gp130 (157). The neutralization of IL-6/sIL-6R complexes by
the intra-articular administration of sgp130, reduced the
mechanical hyperalgesia during the acute phase of the AIA-
arthritis rat model (158). In RA patients, anti-human IL-6
receptor antibody is being tested in clinical trials and show to
result in an improvement of RA symptoms, including pain
(155, 159).

IL-17 has been considered an important pro-inflammatory
cytokine in RA (160), though its pro-nociceptive effects are less
studied. The sensory neurons in the mouse DRG were shown to
express all the IL-17 receptor subtypes (29). The deletion of IL-
17A resulted in the decrease of mechanical hyperalgesia in the
AIA mouse model, but it did not interfere with the disease
severity (29). In OA, a correlation was found between the levels
of IL-17 in the synovial fluid and pain in Knee OA patients (161).
Overall, this data suggests a putative role of IL-17 in joint pain in
RA, as well as in OA.

The chemokines, which are chemotactic cytokines, were also
shown to be a key mediator in arthritic pain. A positive
correlation was observed between the concentration of CCL2
in the synovial fluid and pain in knee OA patients (162, 163). The
CCL2 receptor, the CCR2, is expressed in sensory neurons, and
their activation was shown to sensitize nociceptors through the
increase in the Nav1.8 Na+ currents and TRPV1 expression by
the activation of the PI3K/Akt signaling pathway (164, 165).
Moreover, it was shown that CCL2, which is also synthesized by
DRG neurons, is involved in the DRG infiltration by
macrophages, an important mechanism in arthritis pain. The
deletion of CCL2 or CCR2 in mice delays the onset of pain-
related behavior in the DMM OA mouse model (166), and the
specific deletion of CCR2 inhibited the DRG macrophage
infiltration (167).

As referred above, nerve growth factors also contribute to the
mechanisms of chronic pain. The blockage of NGF has emerged
as a putative analgesic therapy in several diseases, including in
OA. The binding of NGF to TrkA increases the nociceptor
excitability, by upregulating the expression of TRPV1,
bradykinin receptors, purinergic P2X receptors and ion
channels, and the synthesis of substance P and CGRP (168).
The expression of NGF is known to be upregulated at the
inflammatory sites (169). In the DMM OA mouse model,
increased NGF mRNA levels were found in the knee joints,
and the inhibition of NGF signaling reduced the mechanical
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hyperalgesia (170). Additionally, a single systemic administration
of the anti-NGF antibody AS2886401-00 resulted in a long-term
decrease in the gait deficit in the MIA-induced arthritic rat model
(171). Additionally, the mRNA expression of TrkA was found to
be upregulated in the DRG in the MIA rat model, which was
reversed with the pre-treatment with indomethacin (nonsteroidal
anti-inflammatory drugs (NSAIDs) (172). Moreover, the pre-
treatment with indomethacin attenuated NGF-facilitated weight-
bearing asymmetry (172). Promising results are coming from
ongoing clinical trials with OA patients, in which few
administrations of a monoclonal Anti-NGF antibody induce
sustained pain relief in moderate to severe OA (173–175).
Although issues regarding adverse effects related to the
worsening of OA condition led to the interruption of the first
clinical trials (176), permission was given to restart these studies.

Autoimmune mechanisms are also suggested to be involved
in chronic pain (177). Autoantibodies were identified as
molecules that can play a role in the neuroimmune interplay
in pain in RA. These molecules were detected in RA patients [e.g.
RF and ACPA (178)] and are able to increase nociceptors
hyperexcitability, inducing pain (179). The autoantibodies
activate the complement system, increasing the inflammatory
response and indirectly promoting nociception (177). On the
other hand, autoantibodies also interact directly with the
nociceptors through binding to the Fc gamma receptors and
disrupting the ion channels (177). The injection of ACPA was
shown to induce nociception in mice (180). Moreover, it was
demonstrated that this effect was associated with the IL-8
produced by the osteoclasts when stimulated by ACPA (180).

Although OA is not considered an autoimmune disease,
autoantibodies were also detected in the serum and synovial
fluid of OA patients (181), but no relationship between these
autoantibodies and OA pain was yet described. Further studies
are needed to clarify the role of autoantibodies in RA and OA.
4.1.1 The Role of Macrophages on the Nociceptor
Activity and Evoked Pain
The immune system has not always a detrimental role in pain.
Although uncontrolled or unresolved acute inflammation
evolves to chronic inflammation, which can lead to chronic
inflammatory pain (182), the acute inflammatory response has
a protective role, promoting tissue repair, and elimination of
invading organisms. Macrophages have a pivotal role in acute
inflammation and its resolution (183). These cells release
mediators, such as maresins (MaRs), that have anti-
inflammatory, analgesic and pro-resolving properties (184,
185). Maresins enhance macrophage phagocytosis, and
promote the shift of cytokine release to the anti-inflammatory
M2 phenotypes, downregulating proinflammatory cytokines
(e.g., IL-1b, IL-6, and TNF-a) and increasing the synthesis of
anti-inflammatory cytokines (IL-10 and TGF-b) (183).
Specifically, macrophages were shown to promote analgesia via
a mechanism dependent on IL-10 signaling in DRG (186).
Additionally, the stimulation of M2 macrophages by IL-4
induces the synthesis of opioid peptides [e.g., Met-enkephalin,
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b-endorphin, and dynorphin A-(1-17)] that bind to the
peripheral opioid.

In joint chronic inflammation, macrophages are known to be
proinflammatory mediators, such as IL-1b, IL-6, and TNF-a, as
well as NGF and CCL2 (24).

In a previous study, we identified macrophages as the largely
dominant infiltrating cell population in the synovial membrane
of OA patients and in the synovial-like membrane of AL patients
(100). Moreover, SPECT-CT imaging analyses revealed a positive
correlation between the number of activated macrophages in the
knee and the severity of pain in patients with knee OA (44). Also,
in patients with knee OA, the synovial and plasma levels of the
CD14 (macrophages marker) correlate positively with pain
(187). The pivotal role of macrophages has also been
demonstrated in the development of RA (86–88).

Experiments targeting the macrophages confirm the
involvement of these cells in the mechanisms of pain in joint
disorders. In a rat model of advanced knee arthritis (produced by
intra-articular injection of MIA), the depletion of synovial
macrophage, via injection of clodronate liposomes, reduced the
levels of IL-1b and NGF in the joint, and lead to the suppression
of pain (188). It was also shown that the reduction in pain
observed after the deletion of CCL2 and CCR2 in the DMM OA
mouse model was associated with the suppression of joint levels
of CD68 mRNA (macrophage marker), suggesting a role for the
CD68 macrophages in the pain development (166). Moreover,
the involvement of granulocyte-macrophage colony stimulating
factor (GM-CSF) in pain in the CIA mouse model (189) was
shown to be achieved via macrophages, which in response to
GM-CSF synthesize mediators (CCL17, CCL22, CCR2, IL4ra,
Irf4, Nfil3, Socs1, Socs2, and Socs3) that activate the nociceptors
(190). This was further confirmed in a study performed in a GM-
CSF-dependent CIA mouse model, showing that the
neutralization of CCL17 reduces pain, and that the
macrophages were the only cells in the synovium expressing
CCL17 mRNA (191).

In several pain models, including models of RA and OA, the
DRG infiltration by macrophages was identified as a mechanism
of pain. A substantial increase in macrophages was reported
bilaterally in knee-innervating lumbar level DRG in the AIA rat
model, and this coincided with an increase in the expression of
vascular cell adhesion molecule-1 (VCAM-1), a molecule
involved in macrophage infiltration (192). Moreover, the
inhibition of TNF-a reduced the lumbar DRG infiltration by
macrophages and the VCAM-1 expression, as well as the
mechanical hyperalgesia (192). In the DMM OA mouse model,
an increase in the sensory neuron expression of CCL2 and CCR2
was coincident with the increase in the DRG infiltration by
macrophages (167). The deletion of CCR2 was also shown to
inhibit the DRG macrophage infiltration and reduce pain-related
behaviors (166, 167). Recently, Raoof et al. (193) reported in rat
models of OA (MIA and Groove surgery induced OA), that DRG
macrophages display an M1-like proinflammatory phenotype,
and systemic or local depletion of DRG macrophages reduce OA
pain without affecting the pathology (193). Moreover, the
inhibition of M1-like macrophages in DRG through intrathecal
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administration of an IL4-IL10 fusion protein or M2-like
macrophages also reduced OA pain (193).

Overall, the described data provides evidence for the
involvement of inflammatory mediators such as pro-
inflammatory cytokines, chemokines and growth factors in the
crosstalk between immune cells and nociceptors, and highlights
macrophages as key cell players in this crosstalk. Figure 3
summarizes the described mechanisms of interaction between
macrophages and sensory nerve fibers.

4.2 The Role of Sympathetic and
Sensory Neurotransmitters on the
Inflammatory Response
The nerve fibers locally in inflamed tissues are known to modulate
the inflammatory response. Activated nociceptors release into the
periphery SP and CGRP, which will affect the inflammatory
response. These neurotransmitters are strong vasodilator
molecules and chemotactic for innate and adaptive immune cells,
and they also modulate the activity of the immune cells (20, 21).
Tewari et al. (190) showed that the conditionedmediumfromNGF-
stimulated nociceptors modified macrophages gene transcription,
upregulating the expression of inflammatory mediators and
chemokines, such as IL-1b, IL6, and CCL22 (190). Moreover, it
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was shown, in an in vitro experiment, that sensory neurons that
innervate the OA knee joint in the rat polarize DRG macrophages
into an M1-like phenotype (193).

The binding of SP to the neurokinin-1 receptor expressed in
macrophages, promotes an alteration in the macrophage
phenotype towards a proinflammatory phenotype, as shown by
the up-regulation of IL-1 and TNFa (194). On the other hand,
evidence supports the anti-inflammatory role of CGRP (21). For
instance, CGRP modulates TLR4-stimulated macrophages by
enhancing the levels of regulatory cytokines, such as IL-10,
through the activation of CREB-dependent gene transcription
(195). Substance P and CGRP are known to be involved in the
modulation of inflammatory response (20, 21), and specifically,
evidence suggests their involvement in chronic joint
inflammations. These neuropeptides were found to be
upregulated in the synovial fluid of patients with OA and RA
(196). Moreover, upregulate levels of these neuropeptides
positively correlated with the levels of pro-inflammatory
cytokines (197). The levels of SP and CGRP were upregulated
in the pseudosynovial fluid of implant AL patients (198). The
modulation of SP and CGRP might be a putative strategy to
reduce inflammation in chronic joint inflammatory conditions,
as demonstrated in other inflammatory conditions (199, 200).
FIGURE 3 | The interaction between macrophages and sensory neurons. Macrophages and joint cells release mediators (cytokines, chemokines, DAMPs, lipid
mediators, growth factors) and noxious stimuli that act on ion channels and various receptors for these mediators. Action potentials are transduced via the dorsal
root ganglia (DRG) to the spinal cord and transmitted to the brain to be processed as pain. Activated neurons release neuropeptides affecting immune cells and
regulating inflammatory responses. DRG infiltration by macrophages was identified as a mechanism of pain. M1, classically activated macrophages; M2, alternatively
activated macrophages; CGRP, calcitonin gene-related peptide; SP, substance P; PRRs, pattern recognition receptors; TRPV1, transient receptor potential cation
channel V member 1; Na 1.7, voltage-gated sodium; TLR, Toll-like receptor; NGF, nerve growth factor; VCAM, vascular cell adhesion molecule; CX3CR, fractalkine
receptor; DRG, dorsal root ganglia; CCR, chemokine receptor; CCL, C-C motif chemokine ligand; FLS, fibroblasts-like synoviocytes.
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Evidence has attributed a pivotal role to sympathetic signaling,
in the regulation of chronic inflammatory conditions. The
immunomodulatory effects of norepinephrine, the major
peripheral catecholamine, can be achieved directly through the
activation of the alpha (a) and beta (b) adrenergic receptors (ARs)
expressed by the immune cells (22). The stimulation of b2-AR,
responsive to high concentrations of norepinephrine, is reported to
trigger anti-inflammatory mechanisms on immune cells, whereas
the stimulation of b-AR, responsive to high concentrations of
norepinephrine, activates pro-inflammatory mechanisms (22).

Studies inducing sympathectomy or the administration of b-
AR agonist or antagonists in rodent adjuvant-induced arthritis
or CIA models, revealed a dual role of the sympathetic nervous
system (201). Proinflammatory effects of norepinephrine were
observed at the early phase of the disease and anti-inflammatory
effects at the later phase (202, 203). In another mouse model of
RA, zymosan-induced arthritis, the administration of b-agonists
at initial stages of the disease, induced anti-inflammatory effects,
while the administration of a1- and a2-agonists induced either
pro- and anti-inflammatory effects, respectively (204). The
overall effect depends on the receptor expression profile and
on the norepinephrine concentration.

Interestingly, the loss of sympathetic innervation in severely
inflamed tissues has been reported (117, 118). In RA, data from
animal models and human studies revealed the loss of
sympathetic nerve fibers in the synovium (127–129). This
absence was also reported in the synovial-like membrane of
hip implant aseptic-loosening patients (100). Moreover, this
effect is correlated with the harshness of the inflammatory
response (127, 129). Comparative studies between RA and OA,
and AL and OA, show the reduction of sympathetic innervation
in the synovium of RA patients and the synovial like-membrane
of AL patients, but not in the synovial membrane of OA patients
(100, 127). In RA the loss of sympathetic might be compensated
by the appearance of TH+ catecholamine-producing cells as
observed in the CIA mouse model (128), but not in AL (205).

In implantAL, expression ofb2-ARwas also shown to be absent
in themacrophages in synovial like-membraneofALpatients (205).
The stimulation of b2-AR in macrophages induces a shift in their
polarization towards an anti-inflammatory phenotype,which acts a
way to prevent hyper-inflammation (206). Thus, the absence of b2-
AR signaling in macrophages in AL suggest a preferential
polarization of macrophages towards a proinflammatory
phenotype, which could be underlying the severity of the
inflammatory response and the consequent osteolysis. Overall,
the local sympathetic nervous system emerges as a putative target
to control the inflammatory response in RA and AL.
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5 CONCLUSION

The neuroimmune crosstalk has been investigated in the context
of joint disorders regarding chronic pain. The literature reviewed
in this manuscript support that RA and OA pain share
neuroimmune mechanism. Regarding the AL, the
neuroimmune crosstalk remains poorly understood. The
information gathered so far demonstrated the ability of
inflammatory mediators, such as pro-inflammatory cytokines
(IL-1b, TNF-a, IL-6, and IL-17), CCL2, and NGF, to interact
with receptors in joint nociceptors, inducing their activation and
sensitization in OA and RA. Moreover, DAMPs were also
reported to be involved through the activation of TLRs
expressed in the nociceptors. In this process, the macrophages
emerged as the key immune cell player. Experiments targeting
the macrophages confirm their involvement in the mechanisms
of joint pain.

On the other hand, sensory neurotransmitters are known to
modulate inflammatory activity. This immunomodulatory effect
in joint disorders is supported by the increased expression levels
of SP and CGRP in the synovial fluid of OA, RA, and AL
patients. Interestingly, sympathetic immunomodulation seems
to be reduced in severe inflammatory conditions like RA and AL.
The alterations in the levels of the neurotransmitters positively
correlate with inflammation.

The comprehensive understanding of the mechanisms
underlying the neuroimmune crosstalk in the context of joint
disorders will support the identification of novel therapeutic
targets to treat the associated chronic pain.
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ACLT Anterior Cruciate Ligament Transection
ACPAs Anti-citrullinated proteins antibodies
AIA Antigen-induced arthritis
a-AR Alpha-adrenergic receptors
AREG Amphiregulin
APC Antigen presenting cell
ARs Adrenoreceptors
b-AR Beta-adrenergic receptors
BAFF B cell activating factor belonging to the TNF family
CCL Chemokine (C-C motif) ligand
CD 24 Cluster of differentiation 24
CFA Complete Freund’s Adjuvant
CGRP Calcitonin gene-related peptide
CIA Collagen-induced arthritis
CM Conditioned Medium
CSF1 Colony Stimulating Factor 1
CX3CR1 C-X3-C Motif Chemokine Receptor 1
CXCL Chemokine (C-X-C motif) ligand
DAMPs Damage-associated molecular pattern molecules
DC Dendritic cell
DMM Destabilization of the medial meniscus
DRG Dorsal root ganglia
ECM Extracellular matrix
EGF Epidermal growth factor
FAPa Fibroblast activation protein – alpha
FLIP Flice Inhibitory Protein
GM-CSF Granulocyte-macrophage colony stimulating factor
HLA-DR Human Leukocyte Antigen – DR isotype
IFN-g Interferon gamma
IgG Immunoglobulin G
IL- Interleukin
iNOS Inducible nitric oxide synthase
JAK Janus kinase
LTB4 Leukotriene B4
MARCO Macrophage receptor with collagenous structure
M-CSF Macrophage colony stimulating factor

(Continued)
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MIA Monoiodacetate
MMPs Matrix metalloproteinase
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
NGF Nerve growth factor
NKA Neurokinin A
NSAIDS Nonsteroidal anti-inflammatory drugs
OA Osteoarthritis
P2X7 P2X purinoceptor 7
PAMPs Pathogen-associated molecular patterns
PDCD Programmed cell death protein 1
PPOL Periprosthetic osteolysis
PTEN Phosphatase and tensin homolog
RA Rheumatoid arthritis
RAGE Receptor for advanced glycation end-products
RANKL Receptor activator of nuclear factor kappa-b ligand
RASFs Rheumatoid arthritis synovial fibroblasts
RF Rheumatoid Factor
SCID Severe combined immunodeficiency
SEN-P1 Sentrin-specific protease 1
sFASL soluble Fas Ligand
Siglec 10 Sialic Acid Binding Ig Like Lectin 10
sTNFR2 Soluble tumor necrosis factor receptor 2
SUMO-1 Small ubiquitin-like modifier-1
TFH T follicular helper cells
TGF Tumor growth factor
TH Tyrosine hydroxylase
TIM-3 T cell immunoglobulin and mucin-domain containing-3
TLR Toll-like receptor
TNFSF14 Tumor necrosis factor superfamily member 14
TNF-a Tumor necrosis factor alpha
TPH T peripheral helper cells
TRAP Tartrate-resistant acid phosphatase
TREM1 Triggering receptor expressed on myeloid cells 1
TrKA Tropomyosin receptor kinase A
TRPV1 Transient receptor potential cation channel V member 1
VCAM-1 Vascular cell adhesion molecule-1
VMAT-2 Vesicular monoamine transporter 2
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