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Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae pose significant 
treatment and infection prevention challenges. Escherichia coli sequence type (ST) 131 
associated with the blaCTX-M-15 gene has been the dominant lineage of ESBL-producing 
E. coli in the US and worldwide. In this study, our objective was to determine the β-lactamase 
profile, means of dissemination, prevalence, and the clonal identity of ESBL-producing 
E. coli in our region of Western New York. Whole-genome SNP-based phylogenomics 
was used to assess 89 ceftriaxone-resistant (CTR) E. coli. Isolates were collected from 
both inpatients and outpatients and from urine and sterile-sites over a 2 month period in 
2017 or throughout the year, respectively. ST131 was the predominant ST (46.0%), 
followed by ST38 (15.7%). The blaCTX-M-15 gene was commonly found in 53.7% of ST131 
isolates, whereas the blaCTX-M-27 gene was found in 26.8% of ST131, though was significantly 
associated with ST38, and was found in 71.4% of those strains. When compared to 
ST131, ST38 E. coli exhibited increased frequency of resistance to nitrofurantoin and 
decreased frequency of resistance to ciprofloxacin and ampicillin-sulbactam. Using 
Nanopore long-read sequencing technology, an analysis of the ESBL genetic context 
showed that the blaCTX-M-15 gene was chromosomal in 68.2% of ST131, whereas the 
blaCTX-M-27 gene was plasmid-borne in all ST131 and 90% of ST38 isolates. Notably, the 
blaCTX-M-27 gene in ST38 resided on highly-related (99.0–100.0% identity and 65.0–98.0% 
query coverage) conjugative IncF plasmids of distinct plasmid multi-locus sequence types 
(pMLSTs) from those in ST131. Furthermore, ST131 and ST38 were found to harbor 
different antibiotic resistance gene and virulence factor profiles. These findings raise the 
possibility of an emerging ESBL-producing E. coli lineage in our region.
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INTRODUCTION

Extended-spectrum β-lactamase (ESBL)-producing organisms 
are responsible for ~26,000 drug-resistant infections and ~1,700 
deaths per year in the US, where they are categorized as a 
serious and increasing threat within the Centers for Disease 
Control and Prevention’s (CDC) 2019 Antibiotic Resistance 
Threat Report (CDC, 2019). Among hospitalized patients, 
ESBL-producers may account for up to 11.6 and 16.1% of 
Escherichia coli causing urinary tract infection (UTI) and 
bloodstream infections (BSIs), respectively (Mendes et al., 2019). 
At present, CTX-M β-lactamases are the prevailing family of 
ESBLs and include more than 150 genes (Zhao and Hu, 2013). 
They may have originated as chromosomally-encoded enzymes 
in Kluyvera spp. before spreading to Escherichia, Klebsiella, 
and other enteric bacteria (Rossolini et al., 2008). Documented 
mechanisms of mobilization include capture by the insertion 
elements ISEcp1 and ISCR1, as well as bacteriophages (Poirel 
et al., 2008). While chromosomal integration is reported, CTX-M 
β-lactamase genes are more frequently associated with IncF 
plasmids (Doumith et  al., 2012; Stoesser et  al., 2016).

The most frequently reported gene, blaCTX-M-15, is associated 
with uropathogenic E. coli (UPEC) sequence type 131 (ST131), 
the predominant lineage of extra-intestinal pathogenic E. coli 
(ExPEC) worldwide (Nicolas-Chanoine et  al., 2014; Pitout and 
DeVinney, 2017; Birgy et  al., 2020). The successful emergence 
of this clone is attributed to the acquisition of antimicrobial 
resistance (AMR), specifically to fluoroquinolones (Nicolas-
Chanoine et al., 2014; Shaik et al., 2017). In the US, the blaCTX-M-15 
gene has also been frequently reported in the context of ST131 
(often carried on IncF plasmids; Chandramohan and Revell, 
2012; Banerjee et  al., 2013; Doi et  al., 2013; Chen et  al., 2014; 
Kanamori et  al., 2017). However, hinting that the epidemiology 
may be  changing, the 2016 SENTRY Antimicrobial Surveillance 
Study demonstrated that the blaCTX-M-27 gene (17.3%) is also 
significant in E. coli UTI and BSI isolates, compared to the 
blaCTX-M-15 gene (55.5%; Mendes et  al., 2019). Similarly, ST131 
carrying the blaCTX-M-27 gene is also a frequent minority around 
the globe (Livermore et  al., 2007; Cao et  al., 2011; Dahbi et  al., 
2013; Matsumura et  al., 2013; Seiffert et  al., 2013; Roer et  al., 
2017; Guiral et  al., 2019; Peirano and Pitout, 2019; Birgy et  al., 
2020). The relative advantages of one CTX-M family gene vs. 
another are not clear, though the blaCTX-M-27 gene may confer 
additional activity against ceftazidime (Bonnet et  al., 2003).

The genetic context of blaCTX-M-15 and other CTX-M family 
genes in ESBL-producing E. coli in the US remains relatively 
undefined. In this study, we  used bacterial whole-genome 
sequencing (WGS) to investigate the genomic epidemiology 
of 89 ceftriaxone-resistant (CTR) E. coli with respect to clonality, 
susceptibility, multi-drug resistance (MDR), and β-lactamase 
profiles. One of our goals was to compare the prevailing 
clonal types and ARGs between urine and sterile-site isolates 
from both inpatients and outpatients. Plasmid CTX-M gene 
context was further examined for all isolates using long-read 
sequencing. Complete plasmid sequences and chromosomal 
integration sites were mapped. Thus, this study represents a 
detailed snapshot of the genomic landscape, including the 

apparatus of horizontal transmission, of ESBL-producing E. coli 
isolated in our region of Western New  York (NY).

MATERIALS AND METHODS

Clinical Laboratory Setting and Isolate 
Selection
This study was performed under University of Rochester Medical 
Center (URMC) IRB protocol RSRB00068143. Eighty-nine CTR 
E. coli isolates collected as part of routine clinical care at the 
URMC Clinical Microbiology laboratory in Rochester, New  York 
were selected for this project. The laboratory provides diagnostic 
services to a population of ~0.5  million people in Western NY 
and services several area hospitals, urgent cares, nursing homes, 
and outpatient practices. To identify potential ESBL-producing 
organisms, we  selected unique patient isolates for WGS based on 
CTR. Urine CTR E. coli were collected at convenience during the 
months of October and November in 2017 (53 isolates), and CTR 
E. coli derived from sterile-site infections were collected throughout 
2017 (36 isolates: 28 BSIs, 4 bone, 2 peritoneal fluid, 1 joint fluid, 
and 1 drain). In their respective timeframes, this captured 53/67 
(79.1%) of unique patient CTR urine isolates and 36/36 (100%) 
CTR sterile-site isolates. Initial E. coli identification was performed 
with MALDI-TOF (Vitek MS v3.0; bioMérieux Inc., Durham, NC). 
Antibiotic susceptibility (including ESBL production) was assessed 
with Vitek 2 (bioMérieux Inc.; AST-GN70 test card). Phenotypic 
ESBL production assessed by Vitek2 is indicated by “+” (Data S1 
– Antibiogram). Cefazolin susceptibility was determined by Kirby-
Bauer disk diffusion for isolates from sterile-sites and is indicated 
with “/KB” in Data S1 – Antibiogram. Kirby-Bauer zone of 
inhibition diameter is indicated in millimeters. Susceptibility was 
interpreted with CLSI standard M100 (CLSI, 2019).

Bacterial Growth Conditions and Genomic 
DNA Extraction
E. coli isolates were archived at −80°C in trypticase soy broth 
(TSB) with 20% glycerol and maintained at 35°C on blood 
agar (BD BBL trypticase soy agar with 5% Sheep Blood; BD). 
Bacterial DNA was extracted with the MagNA Pure Compact 
System (Roche, Indianapolis, IN). DNA was quantified with 
the QuantiFluor dsDNA system (Promega, Madison, WI).

Genomic DNA Sequencing
DNA library preparation was performed according to the 
manufacturer’s protocol (Nextera XT DNA Library Preparation 
Kit; Illumina, San Diego, CA), purified using Agencourt AMPure 
XP beads (Beckman Coulter Inc., Indianapolis, IN), and 
quality-checked using the Agilent 4,200 TapeStation System 
(Agilent; Santa Clara, CA). Purified PCR products were 
normalized using Nextera XT Library Normalization Beads 
(Illumina). Normalized samples were pooled and quantified 
using the Qubit ssDNA Assay kit (Invitrogen). Library pools 
were loaded with 2.45 ng ssDNA and 20 μl PhiX control DNA 
(20 pM). Paired-end sequencing was performed with MiSeq 
Reagent v3 600-cycle kits on the MiSeq instrument (Illumina).
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Plasmid Purification and Long-Read 
Sequencing
Plasmids were sequenced on the MinION platform (Oxford 
Nanopore Technologies; Cambridge, MA). Briefly, for each of 
the 89 strains, 100 ml of Luria-Bertani (LB) broth was inoculated 
and incubated for ~18  h at 37°C, and plasmids were purified 
using the QIAfilter Plasmid Midi Kit (Qiagen, Germantown, 
MD). Plasmid DNA was purified (Agencourt AMPure XP 
beads), and quantified (QuantiFluor dsDNA), and adjusted 
to 400  ng in a total volume of 7.5  μl molecular biology-grade 
H2O. Sequencing library preparation (Rapid Barcoding 
Sequencing kit; Oxford Nanopore Technologies) was performed 
as indicated with the following alterations: Fragmentation Mix 
RB01-12 volume was reduced to 1.5  μl and was incubated 
for 20 s at 30°C. Base-calling and de-multiplexing was performed 
using Albacore v2.3.1 (Oxford Nanopore Technologies) and 
Illumina-Nanopore hybrid read assemblies were generated by 
Unicycler (Wick et  al., 2017). Plasmids were denoted as 
“circular” (complete) or “uncircularized” (i.e., incomplete or 
fragments). BLASTn was used to identify plasmids, plasmid 
multi-locus sequence typing (pMLST), and virulence and 
antimicrobial resistance genes (ARGs), which were also assessed 
with Center for Genomic Epidemiology (CGE) tools (including 
ResFinder and FimTyper; Thomsen et  al., 2016) and with 
ABRicate (Seemann, 2017). Plasmids were annotated using 
RAST (Aziz et  al., 2008) and aligned with Mauve (Darling 
et  al., 2004). In some instances, genomic sequences recovered 
from long-read plasmid sequencing were used to create hybrid 
assemblies with Illumina reads.

Bioinformatics and Statistical Analyses
A pipeline written in Python, sqlite3, BASH, JavaScript, D3 
(Bostock et  al., 2011), JQuery, HTML, and Bootstrap was used 
for genomic DNA read quality control, genomic sequence assembly, 
mapping, SNP calling, and phylogenomics. Briefly, human DNA 
reads were removed using Bowtie2 v2.3.5.1 (Langmead and 
Salzberg, 2012). Trimmomatic v0.39 (Bolger et  al., 2014) was 
used for adaptor removal and read quality control (with altered 
criteria: SLIDINGWINDOW: 5:20; and MINLEN: 50). Assemblies 
were built using SPAdes v3.13.0 (Bankevich et al., 2012). Genome 
assembly quality was assessed by Quast (Gurevich et  al., 2013). 
Genomes were aligned against E. coli MG1655 (GenBank: 
NC_000913.3) using Bowtie2 (Langmead and Salzberg, 2012). 
BLASTn was used to determine multi-locus sequence typing 
(MLST; Jolley and Maiden, 2010). ARGs and virulence factors 
were determined as above. Phage sequences were detected with 
PHASTER (Arndt et al., 2016). E. coli phylogroups were determined 
with ClermonTyper (Beghain et  al., 2018).

A modified CFSAN SNP Pipeline was used for 
reference-based SNP calling and phylogenetic analysis (Davis 
et al., 2015). The “call_sites” function uses samtools (Li et al., 
2009) and varscan (settings: min-var-freq:0.90; 
min-coverage:12; min-avg-qual:20; Koboldt et  al., 2012) to 
find high-confidence SNPs between the reference sequence 
and mapped reads. SNPs that occur inside phages, mobile 
elements, and transposons were removed using a custom 

RAST-annotated gff file (Aziz et al., 2008). Maximum likelihood 
trees were built using a concatenated SNP fasta file for each 
analyzed genome (settings: call_consensus, minConsFreq: 
0.9). Trees were produced with FastTree (Price et  al., 2010). 
Plasmid content was determined with Roary v3.11.2 (Page 
et  al., 2015) and visualized with hierarchical clustering using 
Morpheus (Broad Institute, Cambridge, MA). Circular 
alignment plots were produced with Circos (Krzywinski et al., 
2009). Linear alignment gene diagrams were produced with 
EasyFig (Sullivan et  al., 2011).

Statistical calculations were performed in Prism 8 (GraphPad 
Software, San Diego, CA). Multiple t-tests (Holm-Sidak method) 
were used for comparison of AMR frequencies. Otherwise, 
Fisher’s exact test was used, including for gene content 
comparisons between ST131 and ST38. Unless otherwise 
indicated, data shown represent the mean  ±  SEM.

RESULTS

Regional Burden of Ceftriaxone-Resistant 
and ESBL-Producing E. coli
Surveying over 5  years (2013–2018), the average frequency 
(mean  ±  SEM) of CTR E. coli in sterile-site and urine 
isolates was 5.6 ± 1.2% and 3.7 ± 0.1%, respectively. Likewise, 
ESBL-producers were detected at frequencies of 4.8  ±  1.3% 
and 3.0% ± 0.1% for sterile-site and urine isolates (Figure 1A). 
The majority of CTR E. coli were isolated from urine 
specimens (90.3%; Figure  1B). The sequenced CTR E. coli 
originated across a geographic distribution in Western NY 
that approximated the patient population served by our 
laboratory (Figure  1C). Isolates from inpatients accounted 
for 53.9% of the overall study set. Of sterile-site isolates, 
94.4% were from inpatients vs. 26.4% of urine isolates. The 
cumulative antibiogram for CTR E. coli isolated from urine 
indicated the following resistance frequencies (mean ± SEM): 
ampicillin (99.9  ±  0.007%), ampicillin-sulbactam 
(78.4  ±  0.9%), amikacin (0.4  ±  0.1%), aztreonam 
(69.5  ±  1.0%), ciprofloxacin (65.6  ±  1.0%), nitrofurantoin 
(13.3  ±  0.8%), cefepime (35.0  ±  1.2%), gentamicin 
(28.7 ± 1.1%), trimethoprim-sulfamethoxazole (48.6 ± 1.2%), 
tigecycline (0%), tobramycin (32.2 ± 1.1%), and piperacillin-
tazobactam (12.7  ±  0.8%). The resistance frequencies for 
CTR E. coli isolated from sterile-sites were: ampicillin 
(94.3 ± 3.2%), ampicillin-sulbactam (67.9 ± 6.5%), amikacin 
(0%), aztreonam (75.5  ±  6.0%), ciprofloxacin (71.7  ±  6.2%), 
nitrofurantoin (17.0  ±  5.2%), cefepime (22.6  ±  5.8%), 
gentamicin (20.7  ±  5.6%), trimethoprim-sulfamethoxazole 
(56.6  ±  6.8%), tigecycline (1.9  ±  1.8%), tobramycin 
(20.7  ±  5.6%), and piperacillin-tazobactam (37.7  ±  2.6%). 
Resistance frequencies of the total E. coli in our hospital 
system and community vs. the sequenced isolates are depicted 
in Figure 1D. For urine isolates, the frequency of ampicillin 
resistance was different between the larger collection of CTR 
E. coli vs. sequenced E. coli (99.8  ±  0.007 vs. 94.3  ±  3.2%, 
p < 0.000001). Otherwise, there were no significant differences 
observed for any other drug tested when compared to urine 
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isolates selected for sequencing. Likewise, there were no 
significant differences in the antibiogram between the 
sequenced sterile-site CTR E. coli and the larger collection 
of sterile-site E. coli. Antibiotic resistance profiles of sequenced 
isolates are summarized in supplemental data (Data S1 
– Antibiogram).

ST131 and ST38 Were the Predominant 
Sequence Types and Exhibited Differences 
in Antibiotic Susceptibilities
WGS MLST determined that ST131 was the most frequent 
(46.0%, 41/89) and ST38 was the second-most frequent 
(15.7%, 14/89) ST. These were followed by ST69 (4.5%, 

4/89) and ST10 (3.4%, 3/89; Data S1 – Genomes). Excluding 
ST131 and ST38, the remaining sequenced isolates (35/89) 
belonged to 25 other STs. Diversity of STs was similar 
between sterile-site and urine isolates with 16 vs. 17 different 
STs identified, respectively. Among ST131 isolates, 68.3% 
were isolated from inpatients (including long-term care 
facilities), whereas 35.7% of ST38 were isolated from inpatients. 
Although not significantly different, 41.5% of ST131 were 
sterile-site isolates compared to 21.4% of ST38 (Table  1). 
All ST131 isolates were phylogroup B2, and all ST38 isolates 
were phylogroup D.

SNP-based phylogenetic clustering revealed that the median 
SNP distance between ST131 and ST38 was 24,641 SNPs ± 3.0 
SNPs. The median SNP distance among ST131 isolates was 

A C

D

F G

E

B

FIGURE 1 | Incidence of ceftriaxone-resistant (CTR) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in Western New York (NY). (A) Yearly 
frequency of CTR and ESBL-producing E. coli in sterile-site and urine E. coli. Mean percentage with error bars showing SEM. Statistical test: t-test (Holm-Sidak 
method). Significance: *p ≤ 0.05. (B) Total monthly count of sterile-site and urine E. coli isolated between 2013 and 2018. Data include only one isolate per patient. 
(C) Geographic distribution and prevalence of E. coli sequence types (STs). (D) Antimicrobial resistance (AMR) profiles of sterile-site and urine E. coli isolated 
between 2013 and 2018. Relative frequency is shown for monthly profiles for all isolates (left), CTR isolates (right), and whole-genome sequenced (WGS) CTR 
isolates (colored panels). CTR, ceftriaxone; AM, ampicillin; AMS, ampicillin-sulbactam; AN, amikacin; AZM, aztreonam; CIP, ciprofloxacin; CZ, ceftizoxime; FD, 
nitrofurantoin; FEP, cefepime; GM, gentamicin; SXT, trimethoprim-sulfamethoxazole; TIG, tigecycline; TOB, tobramycin; TZP, piperacillin-tazobactam; ESBL, 
Extended spectrum β-lactamase. (E) Violin plot showing distribution of intraclade pairwise SNP distances for ST131 and ST38. (F) Differences in AMR rates 
between sterile-site and urine E. coli ST131 and ST38 STs. Statistical test: multiple t-tests (Holm-Sidak method). Significance: *p ≤ 0.05 and ***p ≤ 0.001. (G) ARGs 
and putative virulence factors associated with ST131 and ST38. Color indicates percentage of ST131 or ST38 isolates encoding genes listed. Genes are listed only 
if mean ST131 and ST38 percentages differ by >30% (for ARGs) and >50% (for putative virulence factors).
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122 SNPs (range: 0–6,792 SNPs) and 82 SNPs (range: 0–11,470 
SNPs) for ST38 isolates (Figure 1E and Data S1 – SNP distance).

Compared to ST131, ST38 isolates from urine demonstrated 
increased frequency of resistance to nitrofurantoin 
(70.0 ± 15.3 vs. 4.1 ± 4.1%, p < 0.000001) and trimethoprim-
sulfamethoxazole (90.0 ± 10.0 vs. 41.6 ± 10.2%, p = 0.00003; 
Figure  1F). For nine ST38 strains with intermediate or 
resistant nitrofurantoin phenotypes, Q67STOP (eight isolates) 
and Q26STOP (one isolate) truncations were detected in 
the nitroreductase gene nfsA (data not shown). Likewise, 
mutations in nfsA (L60STOP, Q26STOP, and Q113STOP) 
were detected in three nitrofurantoin-resistant ST131 isolates 
(data not shown). Increased frequency of trimethoprim-
sulfamethoxazole resistance correlated with the presence of 
sul1, sul2, and dfrA genes, which, when considered together, 
were more frequent in ST38 than in ST131 (69.1 vs. 28.7%, 
p  <  0.0001; Figure  1G). ST38 isolates from urine were also 
more often susceptible to ampicillin-sulbactam compared to 
ST131 (40.0  ±  16.3 vs. 79.1  ±  8.4%, p  =  0.0006). However, 
blaTEM and blaOXA-1 genes were also absent in both ST38 
and ST131 isolates susceptible to ampicillin-sulbactam 
(Data S1 – Genomes).

ST131 isolates were more frequently resistant to ciprofloxacin 
than ST38 strains regardless of urine vs. sterile-site specimen 
type (urine: 95.8  ±  4.1 vs. 30.0  ±  15.2%, p  <  0.000001; sterile-
site: 94.1  ±  5.8% vs. none detected, p  =  0.000004). Mutations 
known to be associated with quinolone resistance were detected 
in ST131 isolates, including in gyrA (D87N, S83L, and A828S), 
and in the parC gene (S80I, E84V; Data S1 – ST131; Sorlozano 
et  al., 2007; Phan et  al., 2015; Kanamori et  al., 2017; 
Nicolas-Chanoine et  al., 2017). Fluoroquinolone resistance 
correlated with ST131 clades. URMC_16, URMC_22, and 
URMC_112 demonstrated full or intermediate susceptibility 
to fluoroquinolones, harbored single gyrA mutations, and were 
found to be  fimH41, all consistent with Clade A 
(Data S1 – ST131). The remaining ST131 isolates were all 
resistant to ciprofloxacin and were characterized as fimH30 
with one exception (fimH34, URMC_111), placing them within 
ST131 Clade C (Data S1 – ST131). Three ciprofloxacin-resistant 
ST38 isolates had gyrA (S83L) and parC (S80I) gene mutations.

Differences in Gene Content Between 
ST131 and ST38
Profiling for putative virulence factors revealed differences in 
gene content between ST131 and ST38 isolates (Figure  1G). 
The majority of ST131 isolates carried genes encoding the secreted 
autotransporter toxin (sat: ST131, 100% vs. ST38, 7.1%; p < 0.0001; 
Guignot et  al., 2007), genes for iron acquisition (e.g., iucC: 
ST131, 92.6% vs. ST38, 7.1%; p  <  0.0001), and genes for Type 
1 fimbriae biogenesis (e.g., fimI, fimC, fimD, fimF, and fimG: 
ST131, 100% vs. ST38, 21.4%; p < 0.0001). Additionally, cytotoxic 
necrotizing factor (cnf1: ST131, 29.3% vs. ST38, 0%; p  =  0.02) 
and the plasmid-encoded enterotoxin (senB: ST131, 46.3% vs. ST38, 
7.1%; p  =  0.01; Nataro et  al., 1995) were also enriched in 
ST131 isolates, compared to ST38. In contrast, ST38-enriched 
genes included determinants characteristic of enteroaggregative 
E. coli (EAEC; Lima et  al., 2013; Chattaway et  al., 2014; Havt 
et  al., 2017), such as genes for aggregative heat stable toxin 
(astA: ST131, 0% vs. ST38, 92.9%; p  <  0.0001; Paiva de Sousa 
and Dubreuil, 2001), non-fimbrial adhesin (afaF: ST131, 0% 
vs. ST38, 71.4%; p  <  0.0001; Korotkova et  al., 2008), iron 
transport (shuA, shuT, shuX: ST131, 0% vs. ST38, 92.9%; 
p  <  0.0001), and anti-aggregation protein (aap: ST131, 0% vs. 
ST38, 50.0%; p  <  0.0001; Sheikh et  al., 2002).

ST131 and ST38 Have Distinct CTX-M 
β-Lactamase Genes
Among the 89 sequenced isolates, the blaCTX-M-15 gene was 
found in 30/89 (34%) isolates (ST131, 22/41 vs. ST38, 1/14; 
p = 0.004; Figure 2A and Data S1 – Genomes). The blaCTX-M-27 
gene was nearly as common and was found in 27/89 (30.3%) 
isolates. Whereas the blaCTX-M-15 gene was mainly associated 
with ST131, the blaCTX-M-27 gene was associated with both ST131 
and ST38, accounting, respectively, for 26.8 and 64.3% of those 
isolates (ST131, 11/41 vs. ST38, 10/14; p  =  0.005; Figure  2B 
and Table 1). Less frequent blaCTX-M genes included the blaCTX-

M-14 gene (7/89), the blaCTX-M-55 gene (6/89), and the blaCTX-M-1 
gene (4/89). Non-CTX-M family β-lactamase genes were found 
in 9/89 isolates, including the blaCMY-2 gene (8/89), the blaSHV-12 
gene (1/89), and a blaKPC-3 gene (1/89). Of 21/41 ST131 strains, 
the blaCTX-M-15 gene correlated with fimH30 and ciprofloxacin 
resistance, placing those strains in clade C2 
(H30-Rx; Price et  al., 2013; Petty et  al., 2014; Stoesser et  al., 
2016). Of the remaining ST131 isolates, 12.2% (5/41) were 
Clade C1 (H30-R), 26.8% (11/41) were clade C1-M27 (H30-R), 
7.3% (3/41) were clade A, and one isolate (URMC_111, fimH34) 
was of an undefined clade (Data S1 – ST131). Within the 
most common MLST, ST131, the blaCTX-M-15 gene was not more 
likely to be  found among inpatients than the blaCTX-M-27 gene 
(63.6 vs. 72.7%; p  =  not significant).

Genetic Context of the ESBL blaCTX-M-15 in 
ST131 and ST38 E. coli
Among the 30 isolates with the blaCTX-M-15 gene, 15/22 ST131 
isolates had the gene integrated into the chromosome. The 
blaCTX-M-15 gene was chromosomal in 4/8 isolates of other STs, 
one of which was ST38 (Figure 2A and Data S1 – Genomes). 

TABLE 1 | Distinguishing features of ST131 and ST38 isolates sequenced in this 
study.

MLST ST131 n (%) ST38 n (%) p value

Source

Urine 24 (58.5) 11 (78.6) Not significant
Sterile-sites 17 (41.5) 3 (21.4) Not significant
Location

Inpatient 28 (68.3) 5 (35.7) Not significant
Outpatient 13 (31.7) 9 (64.3) Not significant
Phylogroup

B2 41 (100.0) 0 (0.00) <0.0001
D 0 (0.00) 14 (100.0) <0.0001
ESBL

blaCTX-M-15 22 (53.7) 1 (7.2) 0.004
blaCTX-M-27 11 (26.8) 10 (71.4) 0.005
Total isolates 41 14
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For most chromosomal insertions, alignment (with 100% 
identity) of the immediate blaCTX-M-15 context revealed the 
presence of the well-known ISEcp1-flanked blaCTX-M-15-orf477 
arrangement (Rodríguez et  al., 2004). The blaCTX-M-15 gene 
insertions were also typically flanked by other IS element 
insertions and scars (Figure  2C).

Among the ST131 isolates with chromosomal blaCTX-M-15, 
the gene was frequently located in one of two sites, either: 
(1) between genes encoding shikimate kinase (aro) and pyrroline-
5-carboxylate-reductase (proC; 6/15 isolates); or (2) inserted 
adjacent to a molybdate metabolism regulator gene (molR; 4/15 
isolates). In the remaining 5/15 ST131 isolates with chromosomal 
integration, the blaCTX-M-15 gene was inserted in unique sites. 
In two instances, long-read hybrid assembly using chromosomal 
reads obtained during plasmid sequencing also identified one 
additional chromosomal copy of the blaCTX-M-15 gene inserted 
into unique locations (in URMC_7 and URMC_59; Figure 2C).

In 6/11 isolates, the plasmid-encoded blaCTX-M-15 genes were 
carried on IncF-type plasmids of a variety of pMLSTs 
(Figure  3B). Two additional plasmids (URMC_62_p_96678 
and URMC_112_p_99275) were typed as IncY (Data S1, 
Plasmids). In general, blaCTX-M-15 plasmids shared little synteny 
with each other or with blaCTX-M-27 plasmids (Figures  3A,B). 
The plasmids varied in their carriage and arrangement of ARGs. 

Most (9/11) carried MDR regions with up to 10 ARGs, typically 
including a Class 1 integron (Data S2). Interestingly, 
URMC_112_p_99275 carried the blaCTX-M-15 gene in an intact 
phage (Escherichia phage RCS47; Genbank: NC_042128).

The blaCTX-M-27 β-Lactamase Gene Is 
Associated With Distinct Plasmids in  
ST38 vs. ST131
The 26 blaCTX-M-27 β-lactamase genes identified here were borne 
on plasmids in 11/11 ST131 isolates (clade C1-M27) and 9/10 
ST38 isolates (Figure  3C). With the exception of 
URMC_37_p_38993 (IncX), the 11 ST131 plasmids that encoded 
the blaCTX-M-27 gene were of various IncF-types, with pMLST 
IncF[F1:A2:B20] being found in 9/11 (Figure  3C and 
Data S1 – Plasmids). Five of these ST131 plasmids had high 
homology (101,085–116,130  bp, >99% identity) to the 
multi-replicon plasmid pH105 (134,899 bp; Genbank: CP021871) 
recently characterized in a vaginal ST131 isolate with the blaCTX-

M-27 gene in Germany (Ghosh et  al., 2017). These also carried 
ARGs acting against aminoglycosides (aadA5, streptomycin/
spectinomycin resistance; aph(6)-Id, tobramycin and amikacin 
resistance; aph(3″)-Ib, streptomycin resistance; and ant(3″)-Ia, 
streptomycin and spectinomycin resistance). Other ARGs detected 
in the pH105-like plasmids identified here included genes 

A B

C

FIGURE 2 | WGS SNP-based phylogenomic tree and ST distribution of sequenced CTR E. coli. (A) Isolates (89 total) selected for WGS included those from urine 
(53 isolates) and sterile-sites (36 total: 28 blood, 4 bone, 2 peritoneal fluid, 1 joint fluid, and 1 drain) specimens. Detected ARGs are displayed as chromosomal 
(lines) or plasmid-borne (circles). Circles indicate the number of plasmids identified in each E. coli isolate. Half-circles indicate incomplete sequences. (B) Relative 
frequency of β-lactamase genes detected in E. coli ST131 and ST38 STs. (C) Gene context schematic of representative blaCTX-M-15 gene chromosomal insertion sites.
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conferring resistance to macrolides [mph(A)], tetracyclines [tet(A)], 
sulfonamides (sul1, sul2), and trimethoprim (dfrA17). The MDR 
regions also encoded a chromate resistance gene (chrA), a Class 
I integron, and were scarred with transpositions of ISs. Typically, 
the blaCTX-M-27 gene was flanked by IS903B and IS26. The other 
5 IncF plasmids in ST131 had a variety of close hits in Genbank 
(Data S1 – Plasmids), with 4/5 bearing no other ARGs other 
than the blaCTX-M-15 gene.

The nine ST38 isolates with IncF plasmids carrying the 
blaCTX-M-27 gene were highly related (99.0–100.0% identity and 
65.0–98.0% query coverage) and ranged in size from 99,138 
to 266,636 bp. The majority (8/9) were typed as IncF[F2:A-:B10]. 
The remaining 1/9 was IncF[F1:A2:B20]. In general, the ST38 
plasmids with the blaCTX-M-27 gene had a conserved ~40-kb 
conjugation-associated tra region and a single complex MDR 
region (Figure  3D). The MDR region frequently harbored a 

A B

C

D

FIGURE 3 | Plasmids harboring the blaCTX-M-15 and blaCTX-M-27 β-lactamase genes. (A) Circular alignment plot of plasmids with either blaCTX-M-15 or blaCTX-M-27 genes 
showing E. coli ST (inner ring; color key consistent with Figure 2A) and β-lactamase (outer ring). Ribbons colored by alignment E-value score ratio. (B) Gene 
content of all plasmids harboring the blaCTX-M-15 gene. Detected genes shown in blue with hierarchical clustering. (C) Gene content of all plasmids harboring the 
blaCTX-M-27 gene. Detected genes shown in blue with hierarchical clustering. (D) Gene schematic and linear alignment of complete plasmids encoding the blaCTX-M-27 
gene from ST38 (with genes shown as arrows). Arrows are colored to show antibiotic resistance genes (red), conjugation-associated genes (purple), and other/
hypothetical genes (gray). Pie charts show relative frequencies of annotated genes by functional characteristics found in conserved (left) and variable (right) regions 
in plasmids with the blaCTX-M-27 gene.
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Class 1 integron stacked with multiple AMR determinants, 
other ARGs, and genes involved in heavy metal resistance 
(e.g., srpC putative chromate transporter). The ARGs were 
typically flanked by IS26 and IS15D1. IS associated with the 
blaCTX-M-27 gene included IS903B and a fragment of ISEcp1, 
into which IS26 had inserted. URMC_53_p_264196 was larger 
(>200-kb) due to a duplication of the tra gene region and 
additional gene content, including a putative enteroaggregative 
virulence factor (e.g., astA heat-stable enterotoxin 1; Figure 3D). 
In URMC_60_p_74080, the MDR region was not present, and 
the blaCTX-M-27 gene was the only ARG on the plasmid.

DISCUSSION

Our data indicated that the blaCTX-M-15 gene was the predominant 
ESBL in our region, but also that the blaCTX-M-27 gene constituted 
a large minority, being highly represented in ST131 (26.8%) 
and in ST38 (64.2%) isolates. Prior studies conducted in the 
US have indicated that the blaCTX-M-15 gene is the predominant 
ESBL, and is frequently carried by ST131, the most widely 
established extraintestinal clone (Johnson et  al., 2012).

In our clade C2 (H30-Rx) ST131 isolates, two integration 
sites accounted for 10/15 chromosomally integrated blaCTX-M-15 
genes. Both of these integration sites have been reported for 
ESBL E. coli collected in other studies (i.e., Genbank: 
NZ_CP018979 and NZ_CP018991.1). Indicating that these 
groups did not represent recent local clonal transmission, they 
were separated by >50 SNPs. The blaCTX-M-15 gene was carried 
on a diverse group of plasmids in the clade C2 group, all 
with unique pMLSTs (Figure  3B).

Others have shown the increasing prevalence of blaCTX-M-27 
in ST131 (Matsumura et al., 2015). In these studies and others, 
the blaCTX-M-27 gene has been associated with fimH30 and 
fluoroquinolone resistance as part of clade C1-M27. Here, 
we  found the same, as well as noting that the blaCTX-M-27 gene 
was often embedded in plasmids of pMLST IncF[F1:A2:B20] 
which was almost exclusively restricted to the C1-M27 clade, 
as reported by others (Ghosh et  al., 2017; Kondratyeva et  al., 
2020). Interestingly, An IncF[F1:A2:B20] plasmid was also found 
in a single ST38 strain (URMC_96; Figure  3C).

Among ST38 strains in our study set, the blaCTX-M-27 gene 
was borne on plasmids with few close homologs in Genbank, 
and which were distinct from those in ST131. These were 
among the most novel of all the plasmids described in this 
study. The closest homologue was the IncF plasmid p7_2.1 
(Genbank: CP023821), which shared >99% identity over a query 
coverage range of 33–61% with the ST38 plasmids that carried 
the blaCTX-M-27 gene (Data S1 – Plasmids). The p7_2.1 plasmid 
was identified in a Swedish study of stool isolates but does 
not harbor the blaCTX-M-27 gene. Another ST38 blaCTX-M-27-carrying 
plasmid (URMC_96_p153061) matched closely (99% identity 
and 80% query coverage) to plasmid p4_4.1 from the same 
study (GenBank: CP023827.1), but also had 100% identity (34% 
query coverage) to pDA33137-178 from a ST44 isolate (Nicoloff 
et al., 2019). In our study, IncF plasmids in ST38 were commonly 
(8/9) IncF[F2:A-:B10], where the blaCTX-M-27 gene was closely 

associated with IS903B and IS26. The latter has been reported 
to help drive the dissemination of some CTX-M β-lactamase 
genes (e.g., blaCTX-M-14; Zhao and Hu, 2013). FAB pMLST 
assessment of ST38 plasmids has not been widely done, though 
IncF[F2:A-:B10] has been shown in one study to account for 
1/12 isolates of a collection of ST38, where IncF[F1:A-:B33] 
was more commonly observed (4/12; Shaik et  al., 2017).

While ST131 is a well-known epidemic lineage, ST38 has 
historically been found less frequently in surveillance studies, 
though that may be  changing. For example, in the US, 4.8% 
of E. coli causing UTIs and 6.2% of BSI isolates were typed 
as ST38  in a recent nationwide surveillance study (Mendes 
et  al., 2019). Furthermore, after selecting isolates with elevated 
MICs for ceftriaxone, aztreonam, ceftazidime, and/or imipenem/
meropenem, ST38 comprised 11.6% of UTI and 16.1% of BSI 
isolates (Mendes et al., 2019). Studies from Europe, the Middle 
East, and Asia have also found ST38 to be a significant minority 
among ESBL-producing E. coli (Alghoribi et  al., 2015; Hertz 
et  al., 2016; Peirano and Pitout, 2019; Sepp et  al., 2019). By 
comparison, our study found that ST38 comprised 15.7% of 
total CTR isolates (urine: 18.8%; sterile-site: 11.1%). Human 
clinical ST38 isolates have previously been associated with 
blaCTX-M-9, blaCTX-M-14, blaNDM-1, and increasingly, with blaOXA-48 
genes (Suzuki et  al., 2009; Kim et  al., 2011; Mshana et  al., 
2011; Poirel et  al., 2011; van der Bij et  al., 2011; Brodrick 
et  al., 2017), but only sporadically with the blaCTX-M-27 gene 
(Flament-Simon et al., 2020; Yasir et al., 2020). Other molecular 
epidemiological studies have not, to our knowledge, detected 
this association (Day et  al., 2019), indicating that carriage of 
the blaCTX-M-27 gene by ST38 isolates may be  emerging.

Published genomic comparisons of ST131 with ST38 suggest 
that the latter harbors fewer UPEC-associated virulence genes, 
though the two have similar in vitro adhesion, invasion, and serum 
resistance phenotypes (Shaik et  al., 2017). Elsewhere, ST38 has 
been described as an ExPEC or a UPEC/EAEC hybrid (Chattaway 
et  al., 2014; Phan et  al., 2015; Muenzner et  al., 2016). Others 
have suggested that EAEC attributes may increase the potential 
of such strains to cause UTIs (Boll et al., 2013). The ST38 isolates 
identified in this study did not harbor genes encoding for aggregative 
adherence fimbriae (AAF) nor for AggR, the transcription factor 
that regulates AAF biogenesis (Boll et  al., 2012). While profiling 
virulence factors in silico is limited by the quality and quantity 
of available databases, the ST38 isolates in this study did harbor 
some putative virulence factors that may be  associated with 
aggregation and dispersion in EAEC. For example, ST38 harbored 
afaF-III (Afa/Dr. adhesin family; Muenzner et  al., 2016). The 
pathogenicity and clinical pertinence of E. coli expressing Afa/Dr. 
adhesins in UTIs are well established (Servin, 2014).

In this study, ST131 exhibited increased frequency of resistance 
to fluoroquinolones and ampicillin-sulbactam compared to 
ST38, which was often non-susceptible to nitrofurantoin. 
Increased frequency of fluoroquinolone resistance in ST131 
vs. ST38 has been previously described (Alghoribi et  al., 2015; 
Gauthier et  al., 2018; Guiral et  al., 2019) and is a hallmark 
of clade C strains. Only 3/41 ST131 isolates in this study 
were susceptible (S or I) to fluoroquinolones, all of which 
were clade A. To the best of our knowledge, the increased 
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frequency of nitrofurantoin resistance in ST38 has not been 
reported. Nonsense mutations in the nitroreductase genes nfsA 
and nfsB are associated with nitrofurantoin resistance and were 
found in all nonsusceptible strains of both ST38 and ST131 
(Sandegren et  al., 2008; Shanmugam et  al., 2016).

If ST38 is emerging as a prominent ESBL lineage, then 
concurrent resistance to nitrofurantoin is concerning because 
this drug has thus far remained useful for fluoroquinolone-resistant 
and ESBL-producing organisms (Hertz et al., 2016; Tulara, 2018). 
Vice-versa, the emergence of this lineage may be  influenced by 
the reduction of fluoroquinolone use. With respect to the observed 
differences for ampicillin-sulbactam, others have noted that 
blaCTX-M-15 genes (or isolates harboring these determinants) are 
associated with increased frequency of resistance compared to 
isolates carrying the blaCTX-M-27 gene (Faheem et al., 2013; Matsumura 
et al., 2015). This is consistent with our results given the respective 
preponderance of these enzymes in ST131 vs. ST38. This observation 
may also be  related to the presence of other β-lactamases, as 
isolates of both ST131 and ST38 were more often resistant to 
ampicillin-sulbactam if they also harbored broad spectrum 
β-lactamase genes such as blaTEM and blaOXA.

Limitations of this study include the regional nature and 
narrow timeframe of isolate collection. Furthermore, while our 
sequenced E. coli may have similar phenotypic susceptibility 
to both current and past isolates, they may not be representative 
of the ARGs, STs, and mobile genetic elements found in the 
community across time. The findings in this study raise several 
questions. For example, is there a fitness advantage for isolates 
carrying the blaCTX-M-27 gene? This gene may confer greater 
resistance to ceftazidime (Kuroda et  al., 2012). What explains 
the almost exclusive association between ST38 and the blaCTX-M-27 
gene, while ST131 is associated with both the blaCTX-M-27 and 
blaCTX-M-15 genes? Is the spread of blaCTX-M-27 in our region 
associated with human carriage from areas of high prevalence 
or an isolated clonal outbreak? Recent surveillance of food-
producing animals in the US showed that cattle and turkey 
E. coli frequently carried the blaCTX-M-27 gene (Tadesse et  al., 
2018). Salmonella spp. from food-producing animals have also 
been shown to carry the blaCTX-M-27 gene (Zhang et  al., 2016), 
though the plasmids in our study bore little resemblance to 
publically available sequences from Salmonella (data not shown). 
Establishing a link between these observations highlights the 
need for more extensive and longitudinal “One Health” 
surveillance studies. In conclusion, although this work may 
serve as a window through which to view national epidemiological 
trends, additional surveillance is needed to confirm the emergence 
of ST38 and its association with the blaCTX-M-27 gene.
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