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Abstract

Background: The literature paints a complex picture of the association between mortality risk and ICU strain.
In this study, we sought to determine if there is an association between mortality risk in intensive care units (ICU)
and occupancy of beds compatible with mechanical ventilation, as a proxy for strain.

Methods: A national retrospective observational cohort study of 89 English hospital trusts (i.e. groups of hospitals
functioning as single operational units). Seven thousand one hundred thirty-three adults admitted to an ICU in
England between 2 April and 1 December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data
was submitted to the national surveillance programme and met study inclusion criteria. A Bayesian hierarchical
approach was used to model the association between hospital trust level (mechanical ventilation compatible), bed
occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size),
individual patient-level demographic characteristics (age, sex, ethnicity, deprivation index, time-to-ICU admission),
and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension,
immunosuppression, neurological disease, renal disease).
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Results: One hundred thirty-five thousand six hundred patient days were observed, with a mortality rate of 19.4
per 1000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high
occupancy (> 85% occupancy versus the baseline of 45 to 85%) [OR 1.23 (95% posterior credible interval (PCI): 1.08
to 1.39)]. In contrast, mortality was decreased for admissions during periods of low occupancy (< 45% relative to
the baseline) [OR 0.83 (95% PCI 0.75 to 0.94)].

Conclusion: Increasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is
associated with a higher mortality risk for individuals admitted to ICU. Further research is required to establish if this
is a causal relationship or whether it reflects strain on other operational factors such as staff. If causal, the result
highlights the importance of strategies to keep ICU occupancy low to mitigate the impact of this type of resource
saturation.

Keywords: Critical care, Hospital mortality, Public health surveillance, Quality of healthcare, Coronavirus infection

Background
From the first reports of a novel coronavirus (SARS-
CoV-2) in late 2019, to date, global mortality associated
with the resultant disease (COVID-19) has exceeded 1.7
million people [1]. The virulence of the pathogen has
prompted persistent concern about the ability of health
services around the world to effectively care for the vast
numbers of people affected [2]. These concerns are most
relevant in the context of scarce resources (e.g. mechan-
ical ventilation) required by patients in need of high-
acuity support, which is relatively common in patients
with COVID-19 [3]. Notably, even with the introduction
of non-pharmacological interventions such as stay-at-
home orders, almost a third of all hospitals in England
reached 100% occupancy of their ‘surge’ mechanical ven-
tilation capacity (i.e. including the additional beds that
were created through the re-allocation of resources) dur-
ing the first wave of the pandemic [4]. The second wave
in England appears to have been worse than the first,
with 40% more people in hospital, many hospitals over-
whelmed and staff wellbeing suffering due to the pro-
longed onslaught [5]. What remains unclear is whether
and to what extent operating at these extremes of critical
care occupancy impacted patient outcomes.
Availability of certain resources, such as bed occupancy/

availability, is well-established proxies for operational strain
[6]. Prior to COVID-19, the literature painted a complex pic-
ture of the association between morbidity and mortality and
ICU strain [7]. Some studies suggest that higher strain in in-
tensive care was associated with increased morbidity and
mortality risk [8–10], whereas others observed no association
at all [11, 12]. Data from the natural experiment caused by
the COVID-19 pandemic is accumulating; however, it is
similarly inconsistent. A recent study from Belgium reported
42% higher mortality during periods of ICU surge capacity
deployment, although in the analysis utilisation of surge cap-
acity was only evaluated as a binary variable [13]. Similarly, a
study based on the US Veterans Affairs database evaluating
quartile-based bins for occupancy found a 94% increased risk

of mortality when occupancy exceeded 75% [14]. The afore-
mentioned observations both directly contradict earlier re-
sults from smaller studies in Australia and Wales, where no
association between ICU occupancy and mortality was iden-
tified [15, 16].
A better understanding of how operating under such

extreme circumstances affects outcomes is crucial for
two reasons: firstly, to allow hospitals to adapt practice
to improve outcomes, and secondly, to provide policy
makers with more accurate information about the po-
tential consequences of allowing health services to be
overwhelmed. As such, in this study, we sought to evalu-
ate the extent to which mortality risk in intensive care
units (ICUs) during the COVID-19 pandemic in England
could be explained by differences in occupancy.

Methods
Data sources
Data on all intensive care unit (ICU) admissions across
England were extracted from the COVID-19 Hospitalisa-
tion in England Surveillance System (CHESS) [17]. Infor-
mation on occupancy rates were extracted from the
daily situation reports (i.e. ‘SitRep’) [4]. Both datasets are
mandatory regulatory submissions for all National
Health Service (NHS) acute care providers in England,
and further details about them can be found in add-
itional file 1: eMethods.

Study population
All ICU admissions reported to CHESS between 2 April
and 1 December (see additional file 1: eMethods for de-
tails on date selection), with presumed/confirmed
COVID-19 (100% tested positive during their admission;
see additional file 1: eMethods for details on diagnosis),
aged 18–99, non-pregnant, and with valid admission and
occupancy data, were eligible for inclusion (additional
file 1: Fig. S1).
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Recorded clinical features
Patient-level data
Information extracted from CHESS about each patient
comprised: administrative features (admitting trust, ad-
mission date, and first segment of postcode—used to
identify the relevant indices of multiple deprivation for
the corresponding areas in England)), demographic char-
acteristics (age, sex, ethnicity), recorded comorbidities
(obesity, diabetes, asthma, other chronic respiratory
disease, chronic heart disease, hypertension, immuno-
suppression due to disease or treatment, chronic neuro-
logical disease, chronic renal disease, chronic liver
disease), and a binary indicator for use of mechanical
ventilation. Ethnicity was coded as white, Asian (Sub-
continent and other), black, mixed, and other; comorbid-
ities were recorded as binary indicator variables, with
missing entries assumed to reflect the absence of a co-
morbidity. The appropriateness of this assumption in
CHESS has been previously explored [18].

Occupancy data
Trusts are groups of geographically co-located hospitals
that function as a single organisational unit within the
UK’s national healthcare system. Information extracted
from SitRep about each trust comprised: pre-pandemic
(January–March 2020) number of beds compatible with
mechanical ventilation, the proportion of beds compat-
ible with mechanical ventilation occupied on each day of
the study period, and each trust’s geographical region
[4]. Linkage was carried out based on the trust that an
individual was admitted to and the date of ICU admis-
sion in CHESS; patients in CHESS were matched via
their admission date to the relevant occupancy informa-
tion from the corresponding date in SitRep.

Outcome
The primary outcome was in-hospital all-cause mortal-
ity; patients were followed up until death, discharge,
transfer, or a minimum of 90 days from admission. Dis-
charge and transfer were both treated as suggesting that
the patient survived.

Statistical analysis
Descriptive summaries were generated as median and
interquartile ranges for continuous variables and fre-
quency and percentage incidence for categorical fac-
tors. Exploratory analyses included: the relationship of
the COVID-19 epidemic curve to bed occupancy at a
national level (additional file 1: Fig. S2); the distribu-
tion of missingness amongst patients and trusts (add-
itional file 1: Fig. S3); variation in age and
comorbidity burden over the first wave (additional file
1: Fig. S4); the impact of modelling continuous vari-
ables either linearly, through the use of threshold

functions, or via (standard cubic) splines/smooths
(additional file 1: eMethods).
A Bayesian hierarchical approach was used to model

the association between the trust, group and patient-
level factors and mortality risk. Specifically, a generalised
additive mixed model was utilised, with intercept and
slope coefficients for population and group level effects,
and a Bernoulli likelihood with logit function to link to
mortality outcome. Coefficients were inferred by Markov
chain Monte Carlo sampling, using Stan (CmdStan
V2.25.0), with a model specified using BRMS (V2.14.4)
in R (V4.0.3) [19–21]. Further information on the Bayes-
ian prior specification and modelling methods are re-
ported in additional file 1: eMethods. The rationale for
the different thresholds utilised for bed occupancy is also
detailed in additional file 1: eMethods; in short, the 85%
occupancy threshold utilised is based on guidance from
the Royal College of Emergency Medicine [22], whereas
the 45% (low occupancy threshold) was derived from the
exploratory analysis.
As secondary analyses, two potential interactions

were assessed: (1) baseline trust size and occupancy
and (2) patient age and occupancy (results not reported
due to insignificance). We also assessed the association
of occupancy on the recorded outcome date with mor-
tality and occupancy expressed in terms of pre-
pandemic ICU size. Several sensitivity analyses were
carried out (see additional file 1: eMethods for justifica-
tions): (1) filtering for different degrees of missingness
of patient-level comorbidity data at trust-level; (2) in-
cluding all individuals still on the unit as of 2 March
(and assuming they all survive or die; n = 250); (3) in-
cluding all individuals with a known outcome but no
date whom were excluded in the data cleaning process
(n = 10); (4) a random effect for all patient post 16 June
2020 (i.e. the date of the Recovery Trials press-release
regarding the effectiveness of dexamethasone); (5)
adjusting for week of admission; (6) adjusting for trust
and region as random effects; (7) additional patient-
level factors: time from hospital admission to ICU ad-
mission, chronic liver disease and obesity; (8) the re-
sidual bed availability in the sustainability and
transformation partnership (STPs) to which each trust
belongs—STPs are collections of geographically co-
located hospital trusts that are meant to operate collab-
oratively to support one another, and include ambu-
lance providers and community services so as to allow
end-to-end integration of care; (9) the weighted average
of the indices of multiple deprivation (IMD) corre-
sponding to each patient’s given postcode district (i.e.
the first half of their postcode), as a proxy for socio-
economic status; and (10) separated into the different
waves of the pandemic in the UK (i.e. 1st, inter-wave/
summer, and 2nd).
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Results
Seven thousand one hundred thirty-three individuals
were included in this study following application of the
inclusion/exclusion criteria (see additional file 1: Fig.
S1), of whom 2637 (37.0%) died. In total, 135,600 (me-
dian 12 days per patient; IQR 6–25) patient days were
observed, equating to a mortality rate of 19.4 per 1000
patient days. A full summary of the recorded patient-
level characteristics is reported in Table 1. Occupancy of
beds compatible with mechanical ventilation over the
study observation period is illustrated in additional file
1: Fig. S5, expanding on the results presented elsewhere
which are restricted to the first wave [4].

Mechanical ventilator occupancy rate on the day of
admission is associated with mortality risk
For high occupancy rates (85–100% of total beds, includ-
ing surge capacity), the unadjusted odds ratio (OR) for
mortality based on the mechanical ventilator occupancy
rate on the day of admission was 1.22 (95% posterior cred-
ibility interval (PCI) 1.06–1.40), relative to the baseline of
45–85%. For low occupancy rates (0–45%), the unadjusted
odds ratio was 0.82 (95% PCI 0.73–0.93), relative to the
baseline of 45–85%. Following adjustment for patient-
level factors (age, sex, ethnicity, and comorbidities), the
OR was 1.23 (95% PCI 1.05–1.43) for high occupancy
rates and 0.83 (95% PCI 0.73–0.96) for low occupancy
rates. Figure 1 illustrates the posterior probabilities for the
fully adjusted ORs (see additional file 1: Fig. S6 & S7 for
other model coefficients). To aid interpretation, the differ-
ence in risk for a 70-year-old man with no comorbidities
being admitted during a period of high versus low occu-
pancy is equivalent to the risk of them being over a decade
older (see full relationship in Fig. 2). Sensitivity analyses as
detailed in additional file 1: Table S1 were all concordant
with the primary analysis, and the results do not appear to
be sensitive to the choice of prior as illustrated in add-
itional file 1: Table S2.

Mortality risk increases linearly with admission date
specific occupancy and average exposure over the full
length of stay
The fully adjusted OR for mortality (Fig. 3), using occu-
pancy on the day of admission coded as a continuous
linear variable ranging from 0 to 1 (i.e. specified without
multiplying out by 100 (e.g. 20% = 0.20), therefore the
resulting odds ratio is for a step from 0% to 100%), was
1.59 (95% PCI 1.22–2.03). Furthermore, using the occu-
pancy from each individuals’ outcome date identified an
even larger association (full model specification in add-
itional file 1: Table S3), OR 2.29 (95% PCI 1.80–2.92).
Finally, the fully adjusted OR for the mean occupancy
over a patient’s total length of stay in ICU was 2.69 (95%
PCI 2.05–3.50); see additional file 1: Table S4.

Mortality risk is evident regardless of comparison to
surge or baseline capacity as the reference
Using the alternative definition of occupancy, relative to
baseline (i.e. pre-pandemic) capacity instead of the real-
time (surge) capacity on the day of admission illustrates
that mortality risk given a linear continuous factor was
1.31 (95% PCI 1.16–1.48; additional file 1: Table S5). In
other words, every 100% increase in occupancy above
baseline capacity was associated with a 31% increase in
risk of mortality.

Larger ICUs experience exaggerated impacts of extremes
of mechanical ventilator occupancy rates
Pre-pandemic number of beds did not substantially alter
the OR of occupancy as a sensitivity analysis (additional
file 1: Table S1). Moreover, for every additional 25 beds
compatible with mechanical ventilation (pre-pandemic),
there was no observed (significant at the 5% threshold)
decrease in mortality (additional file 1: Table S6). How-
ever, introduction of an interaction term between pre-
pandemic size and real-time occupancy identified that
larger ICUs experience exaggerated impacts of extremes
of mechanical ventilator occupancy rates (additional file
1: Fig. S8).

Discussion
The results of this study, including the individual-level
experience of over 7000 patients admitted to intensive
care units across England, suggest that survival rates for
patients with COVID-19 in intensive care settings ap-
pears to deteriorate as the occupancy of (surge capacity)
beds compatible with mechanical ventilation (a proxy for
operational pressure [6]), increases. Moreover, this risk
does not occur above a specific threshold, but rather ap-
pears linear, whereby going from 0% occupancy to 100%
occupancy increases the odds of mortality by 59% (after
adjusting for relevant individual-level factors). Further-
more, and expectedly, greater exposure to periods of
high occupancy over an individual’s total length of stay
is also associated with an increased risk of mortality.
This lends credibility (via a potential dose-response rela-
tionship) to the argument that this is a causal relation-
ship that is being observed; however, we cannot make a
definite claim based on our results. An additional piece
of context for interpreting these results is that the rele-
vant authorities in the UK made clear that no explicit
triaging unique to the pandemic took place [24], mean-
ing that everyone whom would have previously been
deemed suitable for ICU treatment was treated similarly
to prior to the pandemic.
The remaining result for which the interpretation is

not immediately apparent is that the risk of mortality
based on occupancy on the date of recorded outcome is
also high; OR 2.29 (95% posterior credible interval 1.80–
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Table 1 Characteristics of the study cohort stratified by occupancy on the day of admission

Occupancy

0–45% 45–85% 85–100% Overall

(n = 1602) (n = 4442) (n = 1089) (n = 7133)

Age in years

Median [IQR] 60 [51, 69] 60 [51, 69] 60 [52, 68] 60 [51, 69]

Time in days to ICU from hospital admission

Median [IQR] 1 [0, 4] 1 [0, 3] 1 [0, 3] 1 [0, 3]

Age group

18–24 13 (0.8) 45 (1.0) 11 (1.0) 69 (1.0)

25–34 71 (4.4) 148 (3.3) 37 (3.4) 256 (3.6)

35–44 134 (8.4) 365 (8.2) 81 (7.4) 580 (8.1)

45–54 331 (20.7) 894 (20.1) 227 (20.8) 1452 (20.4)

55–64 443 (27.7) 1381 (31.1) 340 (31.2) 2164 (30.3)

65–74 393 (24.5) 1084 (24.4) 293 (26.9) 1770 (24.8)

75–84 193 (12.0) 452 (10.2) 87 (8.0) 732 (10.3)

85+ 24 (1.5) 73 (1.6) 13 (1.2) 110 (1.5)

Sex

Female 545 (34.0) 1402 (31.6) 320 (29.4) 2267 (31.8)

Male 1057 (66.0) 3040 (68.4) 769 (70.6) 4866 (68.2)

Ethnicity

White 1088 (67.9) 2628 (59.2) 506 (46.5) 4222 (59.2)

Asian subcontinent 120 (7.5) 466 (10.5) 137 (12.6) 723 (10.1)

Asian (other) 75 (4.7) 260 (5.9) 85 (7.8) 420 (5.9)

Black 61 (3.8) 286 (6.4) 113 (10.4) 460 (6.4)

Mixed 14 (0.9) 77 (1.7) 37 (3.4) 128 (1.8)

Other 76 (4.7) 264 (5.9) 69 (6.3) 409 (5.7)

Missing 168 (10.5) 461 (10.4) 142 (13.0) 771 (10.8)

Obesity

Obese 652 (40.7) 1766 (39.8) 454 (41.7) 2872 (40.3)

Non-obese 520 (32.5) 1665 (37.5) 312 (28.7) 2497 (35.0)

Missing 430 (26.8) 1011 (22.8) 323 (29.7) 1764 (24.7)

Comorbidity

Diabetes 366 (22.8) 1184 (26.7) 304 (27.9) 1854 (26.0)

Chronic respiratory disease(s) 378 (23.6) 902 (20.3) 226 (20.8) 1506 (21.1)

Chronic heart disease 194 (12.1) 548 (12.3) 103 (9.5) 845 (11.8)

Chronic renal disease 124 (7.7) 384 (8.6) 78 (7.2) 586 (8.2)

Chronic neurological disease 105 (6.6) 216 (4.9) 37 (3.4) 358 (5.0)

Chronic liver disease 81 (5.1) 91 (2.0) 18 (1.7) 190 (2.7)

Immunosuppressive disease 61 (3.8) 146 (3.3) 20 (1.8) 227 (3.2)

Hypertension 534 (33.3) 1576 (35.5) 328 (30.1) 2438 (34.2)

Invasive mechanical ventilation

Proportion ventilated 699 (43.6) 2296 (51.7) 666 (61.2) 3661 (51.3)

Mortality

Crude (unadjusted, absolute) 522 (32.6) 1654 (37.2) 461 (42.3) 2637 (37.0)

Continuous covariates are presented with their median and interquartile range, whilst categorical covariates are presented with their frequency and within
column percentage prevalence
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2.92). There are several plausible explanations, but for
the sake of brevity, we will mention just two. The first is
based on the same principle as the other results, i.e. as
occupancy increases the availability of staff and re-
sources decreases which can indirect contribute to an in-
dividual’s mortality risk, and/or there may be a direct
effect due to rationing of care or treatment limiting or-
ders. Alternatively, this result could also reflect a specific
type of observation bias wherein patients who are likely
to survive are kept in ICU and in hospital longer [25],
thus resulting in them being eventually discharged dur-
ing periods of lower occupancy. In both instances fur-
ther research is needed to clarify the underlying causal
mechanism which is driving these observations.

In context of the literature
Our observations are consistent with the aforementioned
Belgian and US VA study [13, 14], except that they extend
the results to suggest a linear association rather than
stepped increase at specific thresholds. Although previous
COVID-19 specific studies report an association between

larger ICUs and lower COVID-19 mortality [26], our re-
sults are equivocal. However, we did observe an interaction
with (pre-pandemic) unit size, whereby larger ICUs experi-
ence more exaggerated impacts from both higher and lower
(surge) occupancy rates, although it is unclear from our
data what is driving this heterogeneity. Finally, these results
might partially explain the decreased mortality rate seen in
the latter half of the first wave in the UK [27], where occu-
pancy rates were much lower than at the peak [4]. Import-
antly, the average number of co-morbidities per patient
appears to rise when occupancy decreases (additional file 1:
Fig. S4), suggesting if there was implicit/soft triaging it
would not have been in a manner that would explain the
observed effect (i.e. more co-morbidities are generally
thought to be associated with a worse outcome). However,
more research is necessary to definitively exclude this po-
tential explanation for the results.

Strengths and limitations
The strengths of this study are the national cohort of
patient-level data with extensive capture of admissions [25],

Fig. 1 The adjusted odds ratios for the risk of mortality based on different ICU bed occupancy rates (treated as a three-level categorical variable). The
full posterior distribution of the odds ratio (OR) for mortality given low occupancy 0–45% (top; green), and high occupancy 85–100% (bottom; red) are
presented. The PCIs presented are equally tailed credibility intervals for the posterior odds ratio distributions. The outer (less saturated) interval is the
95% PCI, and the inner (more saturated) interval shows the 90% PCI. The reference category is 45–85% occupancy. Exact values are tabulated
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coupled with a rigorous modelling method (additional file 1:
eMethods). However, there are also several limitations. For
example, we lack 30-day outcome data for discharged and
transferred individuals and thus were forced to model under
a naïve assumption that these individuals survived, which
may have impacted our estimates of the risk of mortality.
Below is a more detailed discussion on three key issues that

should be accounted for when interpreting the associations
reported in this study:

Availability of physiological and clinical data
The lack of physiological data and minimal clinical inter-
vention data available in the CHESS dataset limits our
ability to adjust for individual-level differences in

Fig. 2 The adjusted odds ratios for the risk of mortality based on ICU bed occupancy (treated as a linear continuous variable) on the day of
admission (top) and each individual’s recorded outcome date (bottom). The full posterior distribution of the odds ratio (OR) for mortality given
occupancy on the date of ICU admission (top; purple), mean occupancy during ICU stay (middle: pink), and occupancy on the date of each
individual’s recorded outcome (bottom; blue) are presented. The PCIs presented are equally tailed credibility intervals for the posterior odds ratio
distributions. Occupancy was specified without multiplying out by 100 (i.e. 20% = 0.20); therefore, the odds ratio is for a step from 0% to 100%
(i.e. 0.0 to 1.0). Exact values are tabulated
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Fig. 3 (See legend on next page.)
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severity and treatment. Thus, we cannot exclude that
the observed associations are a result of unmeasured
confounding due to differences in severity on admission
or variation in natural history due to the evolving treat-
ment strategies that have been used over the course of
the pandemic. At present, there is no single research en-
vironment that links primary care, secondary care, ad-
ministrative mortality records, surveillance datasets (e.g.
CHESS), routine COVID testing (e.g. Public Health Eng-
land’s testing data), and national audit data such as that
collected by the UK Intensive Care National Audit and
Research Centre (ICNARC) which includes some of the
necessary information at the patient-level. Notably, there
are on-going attempts to link the aforementioned data-
sets, e.g. [28]. However, this exercise is still not
complete, and at the time of writing this, the (linked)
ICNARC dataset is not available. In essence, a compre-
hensive analysis including physiological and treatment
data alongside all the other ancillary datasets is not pos-
sible. To our knowledge, the UK consortium is the first
attempt to make such a national dataset and thus repli-
cation of our analysis with these data once available is a
critical future task.
Although direct analysis to address the above issues is not

possible for the reasons outlined previously, it is still worth
noting that several studies from the UK suggest that any po-
tential differences in severity on admission are unlikely to ex-
plain the observed association between occupancy and
mortality. For example, a study using linked CHESS data
from the first wave of the pandemic did not find between
centre variation in severity scores (e.g. mean APACHE-II) to
be associated with mortality risk [29]. Moreover, the UK na-
tional audit (ICNARC) did not identify any significant tem-
poral variation in mean severity scores of patients admitted
to ICU over the course of this study [30]; both results in
combination suggest that unmeasured confounding due to
differences in severity of admission are unlikely to fully ex-
plain the observed association.

Incomplete characterisation of operational strain
Characterisation of operational strain as a function of
surge occupancy likely fails to fully reflect the complex-
ity of using non-specialist staff and other resource

allocation issues present when ‘creating’ new ICU beds,
which could be the underlying causal explanation for the
increased mortality risk observed during periods of high
occupancy. Notably, previous research has identified a
detrimental impact of insufficient (adequately trained)
nursing and medical consultant staff on patient mortality
risk in intensive care units [31], and staff absence rates
were raised 3-fold from the baseline of 4% at the peak of
the first wave of the pandemic [32]. As such, it is not
just functional strain due to the creation of new beds,
but also absence that could underlie a staff-specific ex-
planation for the observed association. Again, this is a
key area for future research to explore, especially with
mounting evidence of operational strain being associated
with increased mortality risk [33].

The prevalence of variants of concern
Despite the more recent identification of several effective
treatments for severe COVID-19, as bed saturation in
ICUs again became an issue from November 2020 to
January 2021, mortality rates increased across England
to rates similar to that seen during the 1st wave [34].
Notably, B117/Alpha was the most prevalent strain of
COVID-19 in the UK during November 2020 [35] and is
known to have increased transmission and mortality risk
[36]. Although we attempted to limit the potential im-
pact of varying prevalence of different variants of con-
cern (VOC), using specific date windows for our analysis
and assessing week of admission as a sensitivity analysis,
without knowledge of the specific variant COVID-19 for
each individual diagnosis, it is impossible to exclude this
as a cause of residual confounding.

Implications for policy makers and clinicians
The results presented in this study are especially relevant
given the identification of variants of concern with in-
creased risk of transmission and mortality [36], as well
as vaccine/immunity escape potential [37], which suggest
that the risk of further epidemics driven by Sars-CoV-2
are not implausible. From a mitigation perspective, our
study highlights the importance of public health inter-
ventions (such as expeditious vaccination programmes
and non-pharmacological interventions), to control both

(See figure on previous page.)
Fig. 3 The increase in mortality risk associated with admission to intensive care during periods of different occupancy rates, expressed in terms of
the equivalent increase in years of age. (Left) The predicted mortality curves arising from predictions made by the primary model across a range
of age values for a white male patient is shown alongside 95% credible intervals in a ribbon either side of the median line. The black dotted line
intersects all three curves; the 0–45% and 85–100% occupancy curve y value probabilities can then be used to solve back onto the reference
curve to determine effective ages of equal risk to the chosen age under reference 45–85% occupancy, shown by the corresponding green and
red dotted lines respectively [23]. (Right) The plot illustrates the number of years of additional age that ICU admission on a day with each
different mechanical ventilation bed occupancy rate equates to. For example, an individual with a chronological age of 40 has an effective age of
31 in a low occupancy setting (green) and 45 in a high occupancy setting (orange). Both of the aforementioned comparisons are relative to the
baseline occupancy of 45–85%). A comparison of the difference in risk between being admitted to the highest occupancy range relative to the
lowest is shown in (red) and for a 40-year-old is equivalent to an increase in their age by 11 years
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incidence and prevalence of COVID-19, and therefore
prevent ICU saturation, as there is evidence of direct
harm to patients as a consequence. In terms of adapta-
tion, during the second wave over 1000 patients in crit-
ical care units across the UK were transferred due to
capacity reasons. Whilst there are pre-existing mecha-
nisms to support these action [38], there is need for
more investment in digital infrastructure to support
better coordinated action at the national level. Again,
the natural experiment produced by the pandemic has
produced substantial amounts of data on transferred
patients and load-sharing between trusts. The com-
munity would benefit greatly from analysis of this real
world data to inform future best practices, from
whom to consider transferring, how far, as well as a
host of other factors that influence decision making,
rather than relying solely on model-based inferences
which suggest load-sharing is possible and probably
effective [39]. Moreover, there are number of other
adaptation interventions that might be worth consid-
ering for future research, such as modified treatment
strategies with lower sedation doses and more aggres-
sive extubation strategies to increase discharge rates
during periods of high occupancy and therefore an in-
creased baseline risk of mortality independent of
individual-level factors.

Conclusion
The results of this study suggest that increasing occu-
pancy of beds compatible with mechanical ventilation,
a proxy for operational strain, is associated with a
higher mortality risk for individuals admitted to ICU.
Further research is required to establish if this is a
causal relationship or whether it reflects strain on
other operational factors such as staff/residual con-
founding not addressed due to the lack of physio-
logical severity data. If causal, the result highlights
the importance of strategies to keep ICU occupancy
low to mitigate the impact of this type of resource
saturation, rather than waiting for arbitrary thresholds
to be triggered, especially given the observation that
average exposure (over an individual’s total length of
stay) to this operational risk factor is also associated
with mortality risk.
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