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Abstract

Background: Uncertainty often affects molecular biology experiments and data for different
reasons. Heterogeneity of gene or protein expression within the same tumor tissue is an example
of biological uncertainty which should be taken into account when molecular markers are used in
decision making. Tissue Microarray (TMA) experiments allow for large scale profiling of tissue
biopsies, investigating protein patterns characterizing specific disease states. TMA studies deal with
multiple sampling of the same patient, and therefore with multiple measurements of same protein
target, to account for possible biological heterogeneity. The aim of this paper is to provide and
validate a classification model taking into consideration the uncertainty associated with measuring
replicate samples.

Results: We propose an extension of the well-known Naive Bayes classifier, which accounts for
biological heterogeneity in a probabilistic framework, relying on Bayesian hierarchical models. The
model, which can be efficiently learned from the training dataset, exploits a closed-form of
classification equation, thus providing no additional computational cost with respect to the
standard Naive Bayes classifier. We validated the approach on several simulated datasets
comparing its performances with the Naive Bayes classifier. Moreover, we demonstrated that
explicitly dealing with heterogeneity can improve classification accuracy on a TMA prostate cancer
dataset.

Conclusion: The proposed Hierarchical Naive Bayes classifier can be conveniently applied in
problems where within sample heterogeneity must be taken into account, such as TMA
experiments and biological contexts where several measurements (replicates) are available for the
same biological sample. The performance of the new approach is better than the standard Naive
Bayes model, in particular when the within sample heterogeneity is different in the different classes.
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Background

The biomedical sciences are fraught with uncertainty. The
sources of this uncertainty are manifold. Devices used to
monitor biological processes vary in terms of resolutions.
Gaps in the full understanding of basic biology com-
pound this problem. Biological diversity or heterogeneity
may make predictions difficult. Finally, uncertainty may
be due to the unpredictable sources of noise, which can be
inside or outside the biological system itself.

In molecular biology uncertainty is ubiquitous; for exam-
ple, tissue heterogeneity makes it difficult to compare a
tissue sample composed of pure tumor cell populations
with one composed of tumor and other non-tumoral ele-
ments such as supporting structural tissues (i.e. stroma)
and vessels. However, in molecular biology, one rarely
can examine an entire tumor and biopsies are taken with
the assumption that they represent a portion of the whole
tumor.

This paper addresses the uncertainty associated with
measuring replicate samples. Understanding such kind of
uncertainty would help guide decision making and allow
for alternate strategies to be explored. Usually, the meas-
urements of replicate samples are averaged to derive a sin-
gle measurement. This value is then used for example
when building a classification system which may play a
critical role in the decision making process. Unfortu-
nately, an average measurement (or median value) hides
the uncertainty or heterogeneity present in the replicates,
and may thus lead to decision making rules which are too
reliant on this pooled data. This process may lead to a
model that is not sufficiently robust to work in an inde-
pendent dataset.

TMA studies represent a context where the issue of biolog-
ical heterogeneity is particularly relevant. Where gene
expression microarray experiments provide researchers
with quantitative evaluation of transcripts, TMA evaluate
DNA, RNA or protein targets through in situ investigations
(analyses performed on tissues). In situ evaluations are
characterized by the fact that the morphology of the ana-
lyzed samples is intact and therefore the potential biolog-
ical heterogeneity within tumor tissue can be analyzed.
TMAs allow for large scale profiling of tissue samples. For
example, TMAs can be used to investigate panels of pro-
teins that may play a role in tumor progression. They have
the potential to be easily translatable to a clinical applica-
tion such as the development of diagnostic biomarkers,
e.g., AMACR [1] or to access a therapeutic target, e.g., Her-
2-neu [2].

TMA datasets usually include replicate core biopsies of the
same tissue from the same individual to ensure that
enough representative tissue is available in each experi-
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ment and to better represent the biological variability of
the tissue itself and of the protein activity (i.e. accurate
sampling). Most TMA datasets are evaluated using
straightforward pooling of the data from replicates, thus
ignoring variations among biopsies from the same patient
(the so called within sample variability). The mean, the
maximum or the minimum is usually adopted and the
strategy may be based on biological knowledge or on
known protein associations. However, it has been found
that different choices can lead to covariates with different
significance levels in Cox regression [3]. Interestingly,
when multiple biomarkers are evaluated, one approach is
chosen and applied for all of them regardless of the bio-
logic implications.

However the degree of heterogeneity of the tumor tissue
may be an important biological parameter. In a probabil-
istic framework, for example, accounting for the within
sample variability caused by the tumor tissue heterogene-
ity, could alter the probability of a case belonging to a cer-
tain class (even changing the predicted class), providing
insight into the particular case study. When measurement
occurs at different levels, i.e. different biopsies of the same
tumor or different tumors, standard statistical techniques
are not appropriate because they either assume that
groups belong to entirely different populations or ignore
the aggregate information entirely.

Hierarchical models (multilevel models) provide a way of
pooling the information for the different groups without
assuming that they belong to precisely the same popula-
tion [4]. They are typically used when information is
available but the observation units differ (i.e., meta-anal-
ysis of separate randomized trials).

Herein we propose a classification model, which accounts
for the tumor within sample variability in a probabilistic
framework, relying on Bayesian hierarchical models. Hier-
archical Bayes models have been used for modeling indi-
vidual effects in several experimental contexts, ranging
from toxicology to tumor risk [4]. For this reason, their
use in the classification context seems particularly suitable
to handle TMA data and tumor heterogeneity.

The paper is structured as follows: we first provide relevant
background on Bayesian classifiers (specifically on the
Naive Bayes classifiers) and on Bayesian hierarchical
models. Then we describe the proposed method and com-
pare its performances to a Naive Bayesian classifier, in
which we applied standard pooling strategies. The results
will be shown on simulated datasets characterized by dif-
ferent ratios of within and between samples variability
and on a real classification problem based on TMA data
we generated in our laboratory from a prostate cancer pro-
gression array (TMA Core of Dana Farber Harvard Cancer
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Center, Boston, MA) developed to identify proteins that
can distinguish aggressive from indolent forms of this
common tumor type.

Bayesian classifiers and the Naive Bayes

In this paper we focus on classification problems, where,
given the data coming from a target case, we must decide
to which class the case belongs. For example, given the set
of tumor marker values measured on biopsies of a tissue
of a given patient, we must decide if the patient is affected
by a particular kind of tumor.

From a Bayesian viewpoint, a classification problem can
be written as the problem of finding the class with maxi-
mum probability given a set of observed attribute values.
Such probability is seen as the posterior probability of the
class given the data, and is usually computed using the
Bayes theorem, as P(C|X) = P(X|C) P(C)/P(X), where C is
any of the possible class values, X is a vector of Ny
attribute values, while P(C) and P(X|C) are the prior prob-
ability of the class and the conditional probability of the
attribute values given the class, respectively. Usually Baye-
sian classifiers maximize P(X|C)P(C), which is propor-
tional to P(C|X), being P(X) constant given a dataset.

Bayesian classifiers are known to be the optimal classifi-
ers, since they minimize the risk of misclassification.
However, they require defining P(X|C), i.e. the joint prob-
ability of the attributes given the class. Estimating this
probability distribution from a training dataset is a diffi-
cult problem, because it may require a very large dataset
even for a moderate number of attributes in order to sig-
nificantly explore all the possible combinations.

Conversely, in the framework of Naive Bayes classifiers,
the attributes are assumed to be independent from each
other given the class. This allows us to write, following
Bayes theorem, the posterior probability of the class C as:
p(CIX) = I, _ Neawre p(XI|C) p(C)/P(X). The Naive Bayes
classifier is therefore fully defined simply by the condi-
tional probabilities of each attribute given the class. The
conditional independence property largely simplifies the
learning process of the model from data. In presence of
discrete and Gaussian data this process turns out to be
straightforward. Despite its simplicity, the Naive Bayes
classifier is known to be a robust method, which shows on
average good performance in terms of classification accu-
racy, also when the independence assumption does not
hold [5,6]. Due to its fast induction, the Naive Bayes clas-
sifier is often considered as a reference method in classifi-
cation studies. Several approaches have been proposed to
generalize such classifier [7] and there has been a recent
interest in applying hierarchical models to Bayesian clas-
sification, such as in the field of expression array analysis
[8,9]. In this paper we present a step forward, describing a
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hierarchical Naive Bayesian model which can be conven-
ientln used for classification purposes in the presence of
replicated measurements, as for TMA data.

Bayesian Hierarchical Models

Bayesian hierarchical models (BHM) [4] are powerful
instruments able to describe complex interactions
between the parameters of a stochastic model. In particu-
lar, BHMs are often used to describe population models,
in which the parameters characterizing the model of an
individual are considered to be related to the parameters
of the other individuals belonging to the same popula-
tion. In this paper we will cope with the problem of clas-
sifying tumors of different patients for which repeated
measurements of tumor markers are available. The proba-
bility distribution of such measurements will depend on
the patient; however, all the patients suffering from the
same disease will be assumed to be related to each other
in terms of tumor marker probability distributions.

Bayesian hierarchical models provide a natural way to
represent this relationship by specifying a suitable condi-
tional independence structure and a suitable set of condi-
tional probability distributions.

The simpler structure of a BHM can be summarized as fol-
lows: let us suppose that a certain variable x (e.g. a tumor
marker) has been measured n,, times in m patients
belonging to the same population, i.e. they have the same
tumor type. Let us also suppose that x is a stochastic vari-
able depending on a set of parameter 6, so that for the i-th
subject, such dependency is expressed by the probability
p(x;] 6). The assumption that the individuals are "related"
to each other can be then represented by introducing the
conditional probability p(6,|p), where ¢ is a set of hyper-
parameters typical of a population. In this way, each sub-
ject is characterized by a probability distribution that
depends on population parameters which are common
for all individuals of the same population. If we assign a
prior distribution to ¢, say p(¢), the joint prior distribu-
tion will be p(¢,0) = p(6|@)p(¢), where 6= {6,, 6,, ..., 6,}.
Once a data set X = {X,..., X,,} is observed on all m

patients, where X; = (x;;, Xjp,..., Kitt g ) is the measurement

vector for the i-th patient, the joint posterior distribution
p(@, 6|X) can be computed by applying the Bayes theo-
rem. It is easy to show that such distribution is propor-
tional to p(X|6) p(6l¢) p(p). Since the population
parameters are usually unknown, the integral of such
equation over ¢ allows to calculate the posterior distribu-
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tions for the model parameters 0 given the data coming
from all patients.

BHMSs have been applied in a variety of contexts, ranging
from signal processing [10] to medicine and pharmacol-
ogy [11,12] and to bioinformatics. [13-16]. Moreover,
several computational techniques for specifying and fit-
ting BHMs have been introduced also to deal with discrete
responses, multivariate models, survival models and time
series models. Useful reviews can be found in papers and
books [17,18]. Recently, hierarchical models have been
applied to extend the Naive Bayes model in order to relax
the assumptions of conditional independence between
attributes [19]. In our paper we will use hierarchical mod-
els to handle repeated measurements and their heteroge-
neity.

Results

The Hierarchical Naive Bayes approach

From a probabilistic perspective, a classification problem
can be viewed as the selection of the class which has the
highest (posterior) probability given the available data.
Here we explicitly handle data with multiple replicate val-
ues.

In the case of TMA, we can think of one case as being the
tumor tissue of one patient and replicates being the mul-
tiple biopsies from that patient. Therefore, the evaluation
of a target protein (feature) on a TMA section will provide
the pathologist with multiple evaluations of protein
expression for each patient (case).

Let xfjk be the j-th replicate measurement of the I-th fea-

ture of the i-th case corresponding to class k. For the sake
of simplicity, given a class k and a feature I, we will write
itasx; j=1,.,My, i=1,.,Ng, where Ng, is the number
of cases in the class C,.

Let us assume that the values of replicates of the generic
case i are normally distributed around a mean value g;
with a variance o2 (independent from i, but dependent on
the class k), i.e. x;~N(g;, 0?). The mean values y; are, at
their turn, normally distributed around a "population”
mean value M with variance 22, i.e. y~N(M, 72). The
assumption that the variance is the same for all patients
belonging to the same class reflects the intuitive notion
that the variability over replicates, due for example to the
tissue heterogeneity, is a property of the disease. Such an
assumption, which is realistic in TMA data, turns out to be
convenient when estimating the variance from the data:
the reliability of the estimate is increased by the higher
number of measurements exploited. The resulting hierar-
chical model is presented in Fig. 1.
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Given this probabilistic model, we here describe how to
classify a new case, supposing that the class model param-
eters M, 72, o2 are known for each class. In the Methods
section we detail how to learn the model parameters from
a training dataset. Moreover, the same section reports the
classification and the learning phase of Standard Naive
Bayes (StNB) classifier, in order to highlight the differ-
ences.

To classify a new case in the Bayesian framework it is nec-
essary to evaluate the posterior probability of each class
given the case data. Let us define the vector X; = (x;;, X;5,...,
Xinrepi). Which represents the replicate measurements of the
i-th case for a given feature (univariate case). For sake of
simplicity, we omit the sub-index i hereafter.

By applying the Bayes' theorem, the posterior probability
for the class C given the set of data is

P(X |Gy, 0°, M,T*)P(Cy)
p(X)

P(C, | X,0%,M,1%) = OP(X|Cy,02,M12)P(Cy).

To evaluate the posterior probability, the marginal likeli-
hood P(X| C,, 62, M, 72) can be computed exploiting the
conditional independence assumptions described in the
hierarchical model of Figure 1 as:

P(X|C,,0%,M,1%) = [P w,0%)P(u | M,T%)du.
u

The marginal likelihood can be written as (for sake of
readability the subscript k and the model parameters M,

IIII=|=4 ‘FE.‘F"
i=1 @ 4y~ N(M LT
offoflcRoRc e

Figure |

Structure of a hierarchical model. The replicates j of the
generic subject i are normally distributed around a mean
value £ with a within sample variance o2, i.e. x;~N(, 0?).
The mean values z;are normally distributed around a "popu-
lation" mean value M with between sample variance 7, i.e.
H~NM, ).
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72, 0? have been omitted in the left hand side of the equa-
tion):

1

PX|C)= ————[
(o) ()

o, , 1 ,0
exp-——% (% ~1)" —— (4 -M)" Qi
; 212

H 20° B

Applying simple algebra (details are reported Additional
file 1), we obtain:

O 12,2 2 2,2 O
0y x? O T MrepXime o°M
- 025 a2 O B S g M) O
PX|C)= n exp- Tt Perg g Tz 2 O
TN . i 2Ayt” +07) .

Finally, given the model parameters, the new case X can be
classified into the class that maximize the posterior prob-
ability, which is proportional to the marginal likelihood if
the classes are a priori equally likely.

It is interesting to note that the main novelty of the
method is that the classification rule (through the mar-
ginal likelihood) includes the information on the within
sample heterogeneity. Such information is expressed by
the parameter o2, which may therefore guide decisions
when there is a clear difference between the within sample
heterogeneity of cases belonging to the different classes.
Let us note that standard approaches, such as the StNB or
the quadratic discriminant analysis, can take into account
only between samples variability, expressed in our model
by the parameter 2. Moreover, since the classification
rule can be calculated in closed-form, it can be used in
real-time applications, such as the StNB classifier.

The generalization for the multivariate case, i.e. X = (X,
X2,...,XNfeawre) can be obtained by assuming, as in the
StNB classifier, the conditional independence of the fea-

_ Nfeature
tures given the class, i.e. P(X|C) = |_| P(XZ |C)
=1

In this case, the posterior probability of class k is

Nfeature

PXICIP(G) [ P |CGP(Cy)
=1

P(X)
Results on simulated and real data
We present the results we obtained using both computa-

tionally generated datasets and a real TMA protein expres-
sion dataset.

P(C, | X) =

A first set of simulated data was generated to represent the
best scenario, by incrementally varying the within sample
variance o? for one class only. A second set of normally
distributed data was generated using a variety of parame-
ter values (see Additional file 2). The training and classifi-
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cation properties of the proposed algorithm were
evaluated in both cases. Finally, we analyzed a set of real
TMA protein expression data, in order to evaluate the
potentials of the method for the analysis of real data.

In both studies, being the Hierarchical Naive Bayes
(HierNB) classifier an extension of the StNB classifier to
cope with replicate measurements, results are compared
with the StNB classifier to highlight, without introducing
additional bias due to the different classification tech-
niques, the advantage of the new approach. However, the
real data were analyzed by several other classification
methods and the results are reported in the Additional file
3.

The classifiers are compared on the basis of two indexes:
the accuracy (defined as the ratio of the properly classified
and the total classified cases) and the Brier score [20],
measuring the difference between the probability of an
event and its occurrence, expressed as 0 or 1 depending on
if the event has occurred or not. Confidence intervals of
accuracy are evaluated by repeating several times learning
and classification after a suitable data randomization
[21]. Moreover, in the case of the real TMA dataset, we use
sensitivity (defined as the ratio of the true positive classi-
fied cases and all positive cases), specificity (defined as the
ratio of the true negative classified cases and all negative
cases) and the area under the ROC curve [21].

The data analysis reported in this paper has been imple-
mented in the R statistical package [22].

Simulated data

Data description

We generated simulated datasets with 4000 patients
(2000 for class 1 and 2000 for class 2), 5 replicates each
and a number of independent features ranging from 1 to
10. For each feature, the values of the five replicates were
randomly extracted from a normal distribution with fixed
variance ¢? (dependent on the class and on the feature)
and mean randomly generated from a normal distribu-
tion with fixed mean M and variance #2, again dependent
on the class and on the feature.

A first set of experiments was run for the univariate case
(one feature), so that the two classes basically had the
same parameter values, but for the within sample variance
parameter o2 that is assumed bigger in the second class. In
particular they had a similar population mean M and
exactly the same class variance 72 (M; = 100, M, = 105, 7,2
= 7,2=300, 0,2 = 10). The parameter o,2 varied from 15 to
75.

A second set of experiments was run simulating both uni-

variate case studies and multivariate case studies (here we
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report results for two, three and ten features). The values
of the first feature were generated for all these experiments
using 90, 300 and 100 as M, 72 and &2 for class 1 and 140,
600 and 400 as M, 72 and &2 for class 2.

The complete set of parameter values used for the model
in the multivariate set of experiment is reported in the
Additional file 2.

We assessed the performances of the two classifiers by
equally dividing the dataset into training and test set.

Data results

The results of the first experiment are shown in Tables 1.
There is an enormous advantage (both in term of accuracy
and Brier score) in the HierNB model, respect to the
standard approach, where basically no distinction can be
made between the two classes (the two classes are not well
separated). The advantage of the HierNB increases as the
difference between the variance of the replicates in the
two classes increases. This first experiment shows that the
proposed method is able to extend the current classifica-
tion approaches by taking advantage from the informa-
tion which can be derived from within sample
heterogeneity.

Results for the second set of four experiments are pre-
sented in Table 2. For each experiment we report the
number of features, the accuracy and Brier Score for both
the HierNB and the StNB classifier.

The HierNB classifier performs better in all the experi-
ments, showing higher accuracy and lower Brier score.

In Figure 2, the posterior probabilities of both the classifi-
ers evaluated on the test datasets of one experiment (Table
2, experiment #3) are shown.

The HierNB classifier shows a better separation between
the two classes not only in term of accuracy but also in
term of credibility of the classification (as highlighted by
the Brier Score). The confidence intervals of the estimated
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accuracy confirm that in all the experiments the proposed
method outperforms the standard classifier. This second
experiment shows that, even if the experimental context is
complex since the classes show an overlap due to the val-
ues of the within and between sample variability, the
method is able to perform equal or better than the StNB.

Real data

Data description

We used a research dataset obtained from a recently con-
structed prostate progression TMA, as previously
described [23].

The TMA was constructed to test molecular differences
between localized and metastatic prostate cancer samples,
on a total of 288 core biopsies. In this paper, we explore
the expression of two proteins, i.e. EZH2 and AMACR
known to be differentially expressed in non aggressive or
localized tumors (class 1 or negative class) versus aggres-
sive or metastatic prostate cancers (class 2 or positive
class). The Polycomb Group protein, EZH2, is over-
expressed in hormone-refractory and metastatic prostate
cancer [24] and may play a role in the progression of pros-
tate cancer as well as serve as a marker distinguishing
indolent prostate cancer from those at risk of lethal pro-
gression. a-Methylacyl CoA racemase (AMACR) is a
biomarker that was identified by both differential display
and expression array analysis as a gene abundantly
expressed in prostate cancer relative to benign prostate
epithelium [25-27]. AMACR is used as a clinical marker to
diagnose prostate cancer [1]. Prostate cancers that pro-
duce lower levels of AMACR have a worse clinical out-
come even after controlling for other clinical parameters
[28].

The TMA dataset includes 72 patients (samples), 36 for
each class, each case having four replicates. After the
processing of the TMA slides, 35 and 34 cases were suita-
ble for analysis for class 1 and class 2 respectively (69
cases) and each case was characterized measuring from 1
to 4 times for two proteins. The assumption that the data
have a Gaussian distribution given the class has been ver-

Table I: Results on simulated data for | feature with different level of within sample heterogeneity in the different classes.

HierNB Classifier

StNB Classifier

Exp o2 Acc Brier Acc Brier
| 15 0.620 [0.604 0.636] 0.449 0.559 [0.539 0.580] 0.490
2 30 0.762 [0.740 0.790] 0.307 0.560 [0.540 0.580] 0.490
3 45 0.830 [0.813 0.849] 0.228 0.554 [0.537 0.570] 0.490
4 60 0.878 [0.866 0.888] 0.176 0.556 [0.531 0.582] 0.490
5 75 0.899 [0.883 0.914] 0.147 0.560 [0.534 0.586] 0.490

Exp = experiment number, Acc = Accuracy, Brier = Brier Score. In brackets the 95% confidence intervals for the estimate of the accuracy.
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Table 2: Results on simulated data: experiments were done using increasing number of features.

HierNB Classifier

StNB Classifier

Exp N Feat. Acc

[ 0.925 [0.917, 0.933]
2 0.966 [0.960, 0.971]

|
2
3 3 0.987 [0.983, 0.990]
4 10 0.998 [0.997, 0.999]

Brier

0.112
0.052
0.020
0.002

Acc Brier
0.874 [0.864, 0.884] 0.184
0.921 [0.912, 0.929] 0.118
0.946 [0.938, 0.952] 0.082
0.985 [0.981, 0.989] 0.023

Exp = number of experiment, N. Feat = Number of features, Acc = Accuracy, Brier = Brier Score. In brackets the 95% confidence intervals for the

estimate of the accuracy.

Histograms of Posterior Probabilities
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Figure 2

Posterior probabilities of the three feature simulated experiment. Histograms of posterior probabilities of the three
feature experiment (Exp.3, Table 2) on a simulated dataset. Panels A and B show the results obtained with the HierNB classi-
fier for class | and 2 respectively; panels C and D show results obtained with the StNB classifier. In the upper right corner of
each panel the frequency of the bin corresponding to the highest posterior probability range is reported.
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ified by applying the Kolmogorov-Smirnov test. Table 3
describes the dataset through the model parameters M
and 2 estimated according to the StNB and o2 estimated
as the average within case variance for the two classes.
Since the estimate of ¢?is different in the two classes, this
classification problem may benefit from the use of the
HierNB approach.

We assessed the performances of the two classifiers by
applying one hundred times a 10 fold cross-validation
procedure with different fold randomization and then by
computing the average results.

Data results

Results obtained for the prostate cancer dataset are pre-
sented in Table 4. We report accuracy, specificity, sensitiv-
ity, area under the ROC curve (ROC curves are shown in
the Additional file 4) and Brier Score for the HierNB and
for the StNB classifier. In Figure 3, we report histograms of
posterior probabilities obtained by the two models.

The classification performance of the HierNB model
clearly outperforms the StNB one, for what concerns all
the evaluation parameters considered. In particular, both
accuracy and the Brier score are significantly better in the
HierNB case than in the StNB one, also considering the
95% confidence interval of the estimates. The fact that
classification accuracy in distinguishing localized prostate
cancer from metastases is only about 60% is not surpris-
ing. The complexity of this classification problem has
been recently discussed in Bismar, Demichelis et al. [23].

The HierNB classifier also shows a significantly higher
specificity, and a similar sensitivity. We note from the his-
togram of posterior probabilities (Figure 3) that the
HierNB method has better performances for metastatic
cancer (panel B) than the StNB approach (which shows
uncertain classification for many patients, panel D).

Discussion

Few studies have dealt with the problem of uncertain data
in classification [29,30]. In the bioinformatics arena, sev-
eral recent studies addressed the topic of uncertain data, in
particular on DNA microarrays data. However, their main

http://www.biomedcentral.com/1471-2105/7/514

emphasis is related to the management of uncertainty
when applying feature selection strategies [16,31].
Another example of handling uncertainty in classification
is provided by Bhattacharyya et al., where they character-
ize each data point with an uncertainty model based on
ellipsoids [32].

In this paper we have proposed a classifier based on Baye-
sian hierarchical models and have applied it on TMA data-
sets. The approach permits embedding in the
classification model the tumor variability (heterogeneity
of protein levels across tumor tissue), using the tuple of
protein level measurements of each case instead of unique
representative value as done by conventional approaches.

Bayesian hierarchical models have two main advantages
with respect to other methods: i) they coherently manage
uncertainty in the framework of probability theory; ii)
they make explicit the assumptions which the model
relies on. The implementation of the Bayesian classifier
presented in this paper is an extension of the well known
Naive Bayes classifier. It assumes that all the attributes are
independent among each other given the class. Moreover,
we have also assumed that the probability distributions
are conditionally Gaussian.

Preliminary performance tests on simulated data give us
some clues about the applicability of the proposed model.
With respect to classification, we observed that when
classes have similar within sample variances no differ-
ences in terms of classification accuracy are obtained, as
expected. However, increasing differences in the posterior
distributions are detected as the difference of the within
sample variability increases, e.g. 0,2<<0,2. In this case the
HierNB model outperforms the standard approach.

On TMA real data, we saw that the hierarchical model may
improve specificity, which is part of the clinical question,
and emphasizes the information available at every level,
accounting for the spread of the replicate measures and
thus may provide interesting insights into the biology of
the tumor samples being analyzed. Rather interestingly, in
this case the classification model is able to improve the
data comprehension, highlighting if the heterogeneity of

Table 3: TMA data description: model parameters of localized (class 1) and metastatic prostate cancer tumors (class 2) for two

proteins.
M 2 o2
Class | 2 | 2 | 2
AMACR 155.2 148.8 201.2 208.8 49.1 85.7
EZH2Int 146.2 141.6 86.7 107.9 135.7 53.9
M = class mean; 72 = class variance; o? = averaged within sample variance.
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Table 4: Results on TMA dataset for the two proteins.

http://www.biomedcentral.com/1471-2105/7/514

Sens AUC Brier

Acc Spec
HierNB Model 0.65 [0.62-0.68] 0.71 [0.66-0.74]
StNB Model 0.58 [0.54-0.61] 0.58 [0.54-0.62]

0.60 [0.56-0.62]
0.57 [0.53-0.61]

0.69 [0.689-0.693]
0.62 [0.617-0.622]

0.41 [0.39-0.42]
0.47 [0.46-0.48]

Acc = Accuracy, Spec = specificity, Sens = Sensitivity, Brier = Brier Score. In brackets the 95% confidence intervals for the estimates, AUC = area

under the ROC.

the tumor tissue sample is critical or not in the decision
making process. Moreover, hierarchical models are also
able to exploit the information on the lack of heterogene-

1ty.

Heterogeneous and homogeneous protein expression
may reflect different biological processes occurring in
tumors. Exploiting this data may be critical in understand-
ing the underlying biology.

Finally, the HierNB presents interesting robustness prop-
erties when comparing the results obtained in the data-
rich case of the simulation study (4000 samples) with the
relatively data-poor real one (69 samples). The real case is
much more difficult than the simulated one, due to the
lower number of samples and the smaller difference of the
mean values of the markers in the two classes. Such a dif-
ficulty results in more spread posterior distributions and

in lower accuracy and higher Brier score values of all
tested classification models. However, in both the simu-
lated and the real cases the HierNB shows nearly the same
gain in accuracy with respect to the StNB, taking advan-
tage from the within sample variability information to
better separate classes.

From a practical point of view, in TMA experiments in
which hundreds of cases are evaluated and only a fraction
do not fit well into one class or another, one can imagine
that by using the hierarchical Naive Bayes model, cases
with a posterior probability within a certain window
around 0.5 would be classified as ambiguous and would
require re-review.

From a methodological point of view, in order to general-
ize the proposed approach, we are now working on the
following aspects:
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1) Learning: while the classification step fully follows the
Bayesian approach, the learning phase of the proposed
method is not fully Bayesian. This choice was motivated
by the need to perform fast learning from potentially large
datasets for the needed probability distributions. How-
ever, it is also possible to resort to a more rigorous learn-
ing procedure by paying the price of implementing
iterative procedures, such as Expectation Maximization
(EM) or Monte Carlo Markov chain (MCMC) approaches
[33]. Future versions of our tool will include also such
kind of estimation algorithms [34].

2) Non Gaussian distributions: we have also imple-
mented a version of the hierarchical Naive Bayes
approach for discrete variables, relying on multinomial
and Dirichlet probability distributions [34,35]. This
extension allows managing arbitrary data distributions
after proper discretization.

Conclusion

We have proposed a novel approach for dealing with
uncertain data in classification, with applications to TMA
microarrays. The proposed model has, as its unique prop-
erty, the capability of handling data heterogeneity in a
sound probabilistic way, without requiring additional
computational burden with respect to the standard Naive
Bayes approach. Based on the results obtained on simu-
lated and real data, we can conclude that the proposed
approach is particularly useful when the within sample
heterogeneity differs between classes. Its application to
TMA data has been shown to provide more insight into
the information available in the database and to improve
the decision making process also in presence of a very lim-
ited number of features. The proposed model can be con-
veniently applied and extended to deal with other
application domains in Bioinformatics.

Methods

Tissue microarray technology

TMAs were recently developed to facilitate tissue-based
research [36]. TMAs can be used for any type of study
where standard tissue slides had previously been used.
However, they present numerous advantages [37]. TMAs
allow for screening of a large number of tissue samples
under similar experimental conditions (large scale proc-
ess) while conserving tissue and resources. Typically a
TMA block contains up to 600 tissue biopsies, depending
on the needle diameter used to transfer the samples (from
0.6 to 2 mm). TMA sections are serially obtained at 4-5
micrometers thickness with a microtome. TMA sections
are then processed as conventional histological tissue sec-
tions.

Cylindrical tissue biopsies are transferred with a biopsy
needle from carefully selected morphologically represent-

http://www.biomedcentral.com/1471-2105/7/514

ative areas from original paraffin blocks (donor blocks),
each containing tumor tissue from a patient. Core tissue
biopsies are then arrayed into a new "recipient" paraffin
block by using a tissue arrayer using a precise spacing pat-
tern along x and y axis, which generates a regular matrix of
cores. Typically, more than one biopsy from each patient
is included in a TMA block; replicates allow for good rep-
resentation of the patient's tumor and to potentially
detect heterogeneous expression of markers (e.g. proteins)
of interest within the tumor. How well TMA samples rep-
resent entire tumors has been the focus of several recent
studies [38]. The results of those studies are dependant on
tumor types and study purposes. A biomarker with
homogenous expression throughout the entire tumor will
not require as many replicates as a biomarker that is only
focally expressed by the target tissue.

Learning the Hierarchical Naive Bayes Model

The classification algorithm described in the Results sec-
tion assumes that the model parameters (M, 7, ¢2) have
been estimated from a training dataset. In the implemen-
tation of the method presented in this paper, we have
adopted an approximation of the maximum likelihood
estimation approach, called empirical learning [39].

Following such approach, the within sample means and
variances are estimated as:

I:]i =] and d’z = J , while the pop-
Mrep; i=1 ch Mrep;
ulation mean and variance as:
Ne, «
g
. ~ 52
M, ; =——1 and
pool Z 1
A2
7 Oj
ch NCk nrep 5
N ~ 2 -y
z (&4 _Mpool) Z Z (xl] Hi)
2., = N - 5 where
Cr NG, rep,
A2
N g
6?7 = .
Mrep;

The estimate of the population variance includes two
terms, representing between samples and within sample
variances (expressing the inter-subject variability and the
intra-subject variability, respectively). The estimate of 7 is
particularly critical: it is valid as far as the within sample
variability is less than the between sample one, i.e. under
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the assumption that the measurements heterogeneity is
not too large [4]. In case such assumption does not hold,
other learning strategies can be conveniently applied,
such as the EM estimate. We note that empirical learning
allows the exploitation of the HierNB approach without
additional computational burden with respect to the
standard (non hierarchical) approach.

Classification by standard Naive Bayes Model

Also in this case the classification of a new case requires
the evaluation of the posterior probability of each class
given the case data. However, the standard Naive Bayes
classifier does not consider the replicate measurements,
but only their aggregate value (standard pooling strategy,
e.g. mean value). Let X be the mean value of a given fea-
ture (univariate case) of the case to classify. The likelihood
of X, X € R, is P(X|C)= ﬁe}(p(—#(}( -M)?),
being 7 and M, the variance and the mean of the distribu-
tion of the feature values in the class C. By Bayes' theorem,
the posterior probability of each class can be easily evalu-
ated and the new instance classified into the class with
maximal posterior probability. The generalization for the
multivariate case can be obtained by exploiting the
assumption of conditional independence of the features
given the class as discussed in the Background section.

Learning of standard Naive Bayes Model

Also in this case, the model parameters (M, 72) have to be
estimated from a training dataset. They can be computed
as:

Ng, Ne, -
> A > (= M)
M=t and 72 = ¢
G ch
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