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Abstract It is well established that variations in genes

can alter the pharmacokinetic and pharmacodynamic pro-

file of a drug and immunological responses to it. Early

advances in pharmacogenetics were made with traditional

genetic techniques such as functional cloning of genes

using knowledge gained from purified proteins, and can-

didate gene analysis. Over the past decade, techniques for

analysing the human genome have accelerated greatly as

knowledge and technological capabilities have grown.

These techniques were initially focussed on understanding

genetic factors of disease, but increasingly they are helping

to clarify the genetic basis of variable drug responses and

adverse drug reactions (ADRs). We examine genetic

methods that have been applied to the understanding of

ADRs, review the current state of knowledge of genetic

factors that influence ADR development, and discuss how

the application of genome-wide association studies and

next-generation sequencing approaches is supporting and

extending existing knowledge of pharmacogenetic pro-

cesses leading to ADRs. Such approaches have identified

single genes that are major contributing genetic risk factors

for an ADR, (such as flucloxacillin and drug-induced liver

disease), making pre-treatment testing a possibility. They

have contributed to the identification of multiple genetic

determinants of a single ADR, some involving both phar-

macologic and immunological processes (such as pheny-

toin and severe cutaneous adverse reactions). They have

indicated that rare genetic variants, often not previously

reported, are likely to have more influence on the pheno-

type than common variants that have been traditionally

tested for. The problem of genotype/phenotype discordance

affecting the interpretation of pharmacogenetic screening

and the future of genome-based testing applied to ADRs

are also discussed.

Key Points

Adverse drug reactions can often result from

underlying genetic factors.

Human genomes harbour many rare genetic variants

that may contribute to unusual drug responses or

adverse drug reactions.

The application of modern genomic methods such as

genome-wide association studies and next-

generation sequencing is helping to clarify these

genetic risk factors.

As generation of genomic data becomes more

routine in the clinical setting, knowledge of genetic

variation that contributes to adverse drug reactions

could be of predictive value, even for adverse drug

reactions that are rare.
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1 Introduction

The variability between individuals in their response to

drugs has been recognised for several decades. Historically,

pharmacogenetic effects were noted as early as 510 B.C.

when Pythagoras noted that ingestion of fava beans resul-

ted in the acute sickness and death of some individuals [1].

Twenty centuries later, it was discovered that a defect in

the glucose-6-phosphate dehydrogenase enzyme was

associated with haemolytic anaemia after exposure to fresh

fava beans or drugs such as primaquine, aspirin or phena-

cetin [1]. This discovery was followed by the characteri-

sation of genetic variation in the pseudocholinesterase

enzyme underlying the prolonged response to choline

esters during anaesthetic induction [2, 3], and later the

genetic variation in acetylator enzymes resulting in vari-

able response to the drug isoniazid [4]. The discovery of

polymorphic cytochrome P450 enzyme (CYP)2D6, was not

until the late 1970s [5, 6] to late 1980s when mutations

associated with debrisoquine metabolism were charac-

terised [7, 8]. These genetic variants caused changes in the

pharmacokinetic or pharmacodynamic profile of a drug,

therefore impacting efficacy and often resulting in drug-

induced toxicity [7].

Our understanding of genetic factors that underpin

adverse drug reactions (ADRs) has grown through the last

few decades as genetic technologies have become

increasingly sophisticated. Although the primary focus of

these technologies has been the mapping, identification and

analysis of genes that contribute to disease, these tools

have also been applied to explore the variability in human

drug responses. Pharmacogenetics, like human genetics in

general, began with the analysis of traits encoded by a

single gene, simply because such traits were more amen-

able to study. These traits, referred to as being monogenic

or Mendelian in nature, arise from mutation of a single

causative gene, and they generally display clear familial

inheritance patterns. One example of such a Mendelian

pharmacogenetic trait is the ryanodine receptor mutations

that cause malignant hyperthermia after administration of

general anaesthetics, in an autosomal dominant fashion

(meaning only one copy of the gene, or allele, need be

mutated) [9, 10]. However, we now recognise that rela-

tively few traits are truly monogenic, and most result from

the interaction of many genetic and environmental factors.

Most common diseases and other phenotypes such as

height and weight fall into this category, and we refer to

these as complex traits. There is increasing evidence that

many drug responses are also complex traits. Although we

have yet to completely describe the genetic architecture of

any complex human trait, it is clear that in general many

genes, each of small effect size, contribute to such phe-

notypes (Fig. 1).

2 Genetic Technologies and ADRs

2.1 Linkage Mapping

One of the most productive early methods for exploring

monogenic traits was linkage analysis, which involved

tracking the pattern of inheritance of DNA markers within

families displaying the trait or disease, to map the location

of the underlying causative gene [11]. Although a very

productive approach in studies of human genetic disease

[12], linkage mapping has not been an avenue widely

available for pharmacogenetic studies simply because it is

rare for pharmacogenetic phenotypes to be defined in all

members of large families. Even those ADRs that may

result from the effect of a single major gene will often not

be recognised as such, unless multiple members of a family

have been exposed to the same or similar drugs.

2.1.1 Early Genetic Studies on ADRs

Despite the inability to widely apply linkage methods to the

analysis of pharmacogenetics, some important early

advances were made using functional candidate gene

analysis, where variation in genes functionally linked to the

relevant phenotype were studied in groups of subjects. For

example, the debrisoquine/sparteine metabolism pheno-

type, which essentially behaves as a monogenic trait, was

first observed in individuals [5, 6], then further charac-

terised using a gene cloning and identification method that

depended on an understanding of the function of the gene

of interest, leading to the description of CYP2D6 and the

main poor metaboliser variants [7, 8].

Similarly, the thiopurine methyltransferase (TPMT)

gene was isolated after purification and amino-acid

sequencing of the protein, which provided information that

led to molecular cloning of the gene [13, 14]. Neither of

these classic pharmacogenes, which can contribute to

ADRs, was identified in linkage studies, although the

phenotypes they caused were recognised to track within

families. Rather, detailed prior pharmacological investi-

gation was required to pinpoint the relevant protein, which

then led to isolation of the genes.

Such candidate gene studies, where ‘‘educated guesses’’

of genes likely to underpin a phenotype, were the pre-

dominant approach in genetics and pharmacogenetics [15,

16] until the advent of genome-wide association studies

(GWAS) [17–19].
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2.1.2 Genome-Wide Association Studies

GWAS have enabled the precise and effective discovery of

genes underpinning complex diseases and traits, including

drug treatment responses [20, 21]. These studies require the

high-throughput analysis of single nucleotide polymor-

phisms (SNPs), i.e., variations in single base pairs,

throughout the genome. SNPs can impact the way a protein

is coded in a particular gene, the way it is spliced,

expressed, or regulated. When these changes occur in

genes coding for enzymes, transporters, cell membrane

receptors, intracellular receptors, or components of ion

channels, they may change the pharmacokinetic or phar-

macodynamic profile of a drug, affecting its efficacy and its

likelihood of causing ADRs [22, 23]. These SNPs are

catalogued by unique identifiers (called Reference SNP

cluster ID, or ‘‘rs’’ numbers, as listed in Table 1) [24].

GWAS methodology was made possible by the con-

vergence of several lines of investigation. First, the efforts

directed at cataloguing human genetic variation, particu-

larly SNPs, allowed development of very rich maps

illustrating the correlations (linkage disequilibrium)

between alleles of SNPs in the human genome [25, 26].

Second, commercial interests led to the development of

several platforms for massively parallel analysis (geno-

typing) of SNPs on ‘‘gene chips’’. Third, the mathematical

and computational tools necessary for processing the very

large datasets generated by genotyping many thousands of

SNPs in hundreds or thousands of subjects were devel-

oped [27]. One further factor was essential for the success

of GWAS. It became increasingly clear that for truly

complex traits, large cohorts of cases and controls would

be needed to identify the many genes of small effect

underlying each trait; this realisation drove extensive

international collaborations on human complex disease

studies, in a way not previously seen in biomedical sci-

ence [28].

Since the first application of GWAS technology [29],

over 2000 genes contributing to complex traits have been

identified using this method [20, 21]. Although the primary

application of GWAS has been to the understanding of

human diseases and other complex traits, the method has

been increasingly employed to study the genetics of drug

responses and adverse drug reactions [22, 30, 31]. A major

challenge for the application of GWAS to ADRs is the

problem of collecting sufficient samples, given the rarity of

these phenotypes. This requires concerted international

collection and aggregation of samples, such as is being

mediated by the International Serious Adverse Events

Consortium [32], EUDRAGENE [33], and other national

and international consortia [34, 35]. One of the surprises

resulting from the application of GWAS to ADRs has been

that even with small numbers of subjects relative to those

needed for studies of complex disease, single genes have

Fig. 1 Monogenic and complex

traits. Monogenic traits arise

from mutation of a single gene,

and usually display clear

familial patterns of inheritance,

reflecting whether the trait

occurs when one allele

(dominant) or both alleles

(recessive) are disrupted.

Complex traits arise from the

input of polymorphic variation

in several to many genes, each

of which contributes a small

effect to the trait. Complex traits

have some degree of familiality,

but do not display the classical

patterns of inheritance seen in

monogenic traits. Modified from

[165]
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been clearly identified as contributing risk factors for some

ADRs. Good examples are the association of variants in

SLC01B1, the gene for the organic anion-transporting

polypeptide OATP1B1, with statin-induced myopathy [36],

and the association of human leukocyte antigen (HLA)-

B*5701 variants with drug-induced liver injury (DILI)

from flucloxacillin [37].

As well as discovering genetic variants underpinning

several ADRs, GWAS have also extended existing

knowledge of pharmacogenetic processes. For example,

in warfarin dose response, variants of VKORC1 and

CYP2C9 had long been recognised as major factors.

GWAS initially confirmed the role of these two genes [38]

and then revealed an additional gene, CYP4F2, with a

relatively minor role [39]. The range of GWAS studies

now published in pharmacogenetics makes it clear that

technology is no longer the main limiting factor for

understanding genetic factors influencing ADRs [22, 30],

but rather it is often the timely identification, consenting

and collection of subjects to add into such studies that

limits progress.

2.1.3 Next-Generation Sequencing Methods

Over the past decade, methods for DNA sequencing have

undergone dramatic improvements. These methods,

appropriately named next-generation sequencing (NGS)

technologies, have vastly increased the scale of DNA

sequencing while also reducing the unit cost [40, 41].

Although the first human genome project took over a

decade and cost some USD 3 billion, NGS advances now

mean that a human genome can be sequenced in a few

hours for less than USD $2000.

Although whole genome sequencing (WGS) is now

possible [42, 43], the datasets that result and the processing

power required to effectively analyse them, means that

they have not yet been widely employed. Instead, analysis

of only a subset of the genome, known as the exome, has

been the preferred method for many initial studies [44]

(Fig. 2). The exome spans all exons, or protein coding

regions, of an individual’s DNA, and the process of whole

exome sequencing (WES) allows physical ‘‘capture’’ and

then sequencing of most exons from an individual in one

NGS work flow. Application of WES means that variations

in protein-coding regions of any gene can be identified,

rather than focusing on one or a few genes as in traditional

candidate gene studies [44, 45]. Although it has been a very

informative technology, WES has some significant limita-

tions, the most important of which is its inability to identify

variants located outside of exons, in regulatory regions

(introns), or in regions not known to be associated with any

genes [46, 47]. In addition, exome data are not well suited

to the identification of major structural variations seen in

the genome, known as copy number variations. These

limitations, combined with the recent availability of newer

massive-throughput DNA sequencers, mean that WGS is

gaining in popularity and this, rather than WES, may soon

become the dominant approach for genome analysis [48].

Below we summarise current knowledge of genetic loci

that have been identified as significant pharmacogenetic

markers for pharmacokinetic or pharmacodynamic drug

profiles or individual immunologic responses to drugs

leading to ADRs. Where available, we will identify

advances in pharmacogenomics that have arisen through

application of the newer genetic technologies, including

GWAS and NGS.

Table 1 Common CYP2D6

variants. Table modified from

[53, 156]

Allele Major nucleotide variation dbSNP number Effect on CYP2D6 protein

*1 Wild type

*xN Gene duplication or multiplication Increased protein expression

*3 2549delA rs35742686 aFrameshift—protein not expressed

*4 100C[T,

1846G[A

rs1065852,

rs3892097

Protein not expressed

*5 Gene deletion N/A Gene deletion—protein not expressed

*6 1707delT rs5030655 aFrameshift—protein not expressed

*10 100C[T rs1065852, Reduced function

*17 1023C[T

2850C[T

rs28371706,

rs16947,

Reduced function

*41 2850C[T

2988G[A

rs16947,

rs28371725,

Reduced function

a Frameshift mutations either insert or delete one or more bases so that the correct protein is no longer

produced
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3 Drug-Metabolising Enzymes

The initial focus of pharmacogenetics was the polymor-

phisms affecting drug-metabolising enzymes (DMEs). Up

to 60 % of all drug-induced toxicity is associated with

polymorphic CYPs, also referred to as ‘phase one

enzymes’ [49]. The CYP gene superfamily account for the

majority (86 %) of all DMEs. Polymorphisms in CYP

genes result in four major phenotypes with respect to drug

metabolism, poor metaboliser, intermediate metaboliser,

extensive metaboliser or ultra-rapid metaboliser. A partic-

ular polymorphism may therefore result in therapeutic

failure or toxicity, with a reverse effect if the drug is a pro-

drug [50].

Although to date there are relatively few publications

that use NGS methods to investigate drug-induced ADRs

and associations with variants in CYP enzymes, a study by

Gordon et al. applied targeted NGS of multiple genes from

over 14,000 subjects, to illustrate the extent of potentially

deleterious variation in 12 CYP genes. The authors focus-

sed on a set of 12 CYP genes that they described as being

responsible for 75 % of all drug metabolism through oxi-

dation reactions [51]. A total of 219 likely functional

variants across 12 CYP genes were discovered, and variants

were found to be abundant, occurring at an average of one

per 17 bases sequenced [51].

Below we summarise clinically important polymor-

phisms affecting widely used drugs metabolised by

CYP2D6, CYP3A4, CYP2C9 and CYP2C19.

3.1 CYP2D6

The gene coding the CYP2D6 enzyme is one of the best

studied pharmacogenes. Approximately 25 % of all drugs,

including a number of antidepressants, anti-arrhythmics,

beta-blockers, opioid analgesics and anti-cancer agents, are

metabolised through CYP2D6, which also happens to be

one of the most polymorphic enzymes with over 100

known allelic variants. A 20-fold inter-individual variation

in steady-state plasma concentrations of nortriptyline, a

substrate for CYP2D6, following a standard daily dose

over 2 weeks, was first reported in 1967 [52]. It is now

Fig. 2 The evolution in genomic technologies. Pharmacogenetic

analysis has evolved from analysing one gene (in a few patients) and a

few single nucleotide polymorphisms (SNPs) in a candidate gene

study, to genome-wide association studies (GWAS), which look

through a library of up to a million SNPs in groups of patients by

using high-throughput genotyping systems (referred to as a SNP chips

or SNP array). Next-generation sequencing has now taken a further

step by enabling researchers to sequence the protein coding part of the

genome (approximately 1 %)—whole exome sequencing (WES), or

even the entire genome—whole genome sequencing (WGS)
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known that polymorphisms in the CYP2D6 gene can result

in a range of effects from complete loss of enzyme activity

through deletion of the gene (poor metaboliser status), or

extensive activity, through duplication of the gene (ultra-

rapid metaboliser status) [50]. Common CYP2D6 variants

are shown in Table 1.

Commonly prescribed analgesics such as codeine,

dihydrocodeine, tramadol and morphine, are largely

metabolised through hepatic CYP2D6. The Clinical Phar-

macogenetics Implementation Consortium (CPIC) guide-

lines for codeine recommend using alternative analgesics

in patients who have been genotyped as ultra-rapid

metabolisers (an individual carrying more than two

functional alleles) or poor metabolisers (an individual

carrying no functional CYP2D6 alleles) [53]. Ultra-rapid

metabolisers are likely to excessively metabolise the parent

compound, in the case of codeine to morphine resulting in

ADRs ranging from mild nausea, vomiting and drowsiness

to more severe, but rare circulatory depression, shock or

cardiac arrest [53–55]. In contrast, poor metabolisers have

low codeine-morphine conversion and complain of poor or

no analgesia [56, 57]. The CPIC has also recommended

that poor and ultra-rapid metabolisers use morphine and

non-opioid analgesics instead of tramadol, oxycodone and

hydrocodone, as their metabolism is also affected by

CYP2D6 polymorphisms [58].

A large proportion of antidepressant and antipsychotic

drugs are metabolised predominantly through the activity

of CYP2D6. CPIC dosing guidelines are currently avail-

able for several such drugs, mostly tricyclic antidepres-

sants. These guidelines recommend a 25–50 % reduction in

dose for intermediate-poor metabolisers, and an alternative

drug for ultra-rapid metabolisers [59]. Studies conducted in

patients taking amitriptyline showed that CYP2D6 poor

metaboliser status resulted in impaired drug metabolism,

hence elevated amitriptyline plasma concentrations and an

increased risk of ADRs, discontinuation of therapy or

switching to another drug [60, 61]. According to the cat-

alogue of published GWAS [62], a study in 435 patients

with major depressive disorder found single nucleotide

polymorphisms in the CYP2D6 and CYP2C19 genes to be

significantly associated with measured plasma concentra-

tions of citalopram, escitalopram and their metabolites

[63].

A difference in the CYP2D6*4 allele frequency was

noted between 75 patients with atorvastatin-related

myopathy and 188 atorvastatin-tolerant controls and

between 61 patients with simvastatin-related myopathy and

188 controls although the difference was only significant

for atorvastatin. Other studies have not confirmed this

association but the possible effect on a particular statin may

have been masked by several statins being studied as a

group [59].

3.2 CYP3A4

Compared with CYP2D6, CYP3A4 is responsible for the

metabolism of a greater proportion of drugs, up to

50–60 %, but is ‘‘strongly conserved’’, meaning that the

CYP3A4 gene is not as polymorphic as the CYP2D6 gene.

While several polymorphisms within the CYP3A4 gene

have been identified, current consensus is that SNPs

affecting this gene generally have minimal clinical signif-

icance. While SNPs within the CYP3A4 gene may con-

tribute to inter-individual differences, they occur at low

population allele frequencies and are not reported to affect

the pharmacokinetics and/or pharmacodynamics of

CYP3A4 substrates in a major way [64]. However, while

being extremely rare (\0.06 % in Caucasians) [65], the

CYP3A4*20 variant was recently identified in a cohort of

eight patients who had experienced severe paclitaxel-in-

duced neuropathy, which is known to be dose dependent

[66]. Using WES, two patients were found to have the rare

CYP3A4*20 allele, a premature stop codon that leads to an

abnormally shortened protein, and one patient had a

CYP3A4*25 variant, a missense mutation causing the

substitution of a different amino acid in the resulting pro-

tein. Both variants confer significantly reduced CYP3A4

expression. Analysis of DNA from an independent cohort

of 228 patients treated with paclitaxel indicated a 1.3- to

2.0-fold increased risk of paclitaxel-induced neuropathy in

patients carrying CYP3A4 variants that reduced enzyme

expression compared with wild-type CYP3A4 [66].

A related enzyme, CYP3A5, is considered to have

similar substrate specificity to CYP3A4. However, it is

subject to more polymorphisms. Only the CYP3A5*1 (WT)

allele is recognised as functional, the remaining CYP3A5

variants (*2–*11) are non-functional. With respect to

clinical significance, differences in tacrolimus [67] con-

centrations were reported in subjects with the CYP3A5*3

variant compared with those with CYP3A5*1 and it was

concluded that a higher dose of the drug may be required to

maintain optimal blood concentrations in expressors of the

functional variant [67].

Atorvastatin is a substrate for CYP3A5. Evidence that

CYP3A5 polymorphisms are clinically important in the

metabolism of this drug is conflicting but in an exploratory

analysis of patients with atorvastatin-related myopathy, the

CYP3A5*3 allele was associated with the degree of serum

creatine kinase (CK) elevation [68].

3.3 CYP2C9

The enzyme CYP2C9 metabolises approximately 15 % of

all clinical drugs including some oral hypoglycaemics,

nonsteroidal anti-inflammatory drugs, diuretics,

antiepileptic drugs, angiotensin converting enzyme
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inhibitors and, in particular, several drugs with a narrow

therapeutic index such as warfarin (S-warfarin) and

phenytoin [64]. Two commonly occurring missense muta-

tions in the CYP2C9 gene,*2 and *3, decrease enzyme

function by 30 and 90 %, respectively. Two large, recent

randomised controlled studies applied rapid turnaround

CYP2C9 genotyping tests to assess the benefits of geno-

type-guided dosing of warfarin. Pirmohamed et al. con-

cluded that genotyping (CYP2C9*2, CYP2C9*3) prior to

initiation of warfarin therapy resulted in a significantly

(P\ 0.001) greater number of patients remaining within

the target therapeutic range and significantly (P\ 0.001)

fewer incidences of over-anticoagulation, defined as an

international normalized ratio (INR)[4 [69]. However, a

similarly designed trial, the Clarification of Optimal Anti-

coagulation through Genetics (COAG) trial did not show

any benefit of genotype-guided dosing [70]. Similarly,

various meta-analyses have reported mixed results. For

example, a meta-analysis of nine trials conducted in

2001–2013 concluded that there was no significant clinical

benefit of genotype-guided warfarin dosing on either time

in the recommended therapeutic range or the risk of an

INR[4. The authors noted that the nine trials used dif-

ferent genotyping methods as well as different genotype-

based warfarin dosing algorithms, which may have resulted

in skewed outcome definitions [71]. However, a further

meta-analysis of 10 studies concluded that genotype-based

dosing of warfarin increased the percentage of time in the

therapeutic range and reduced the risk of haemorrhagic

complications [72]. CPIC guidelines on genotype-guided

warfarin dosing were last published in 2011 [73], and are

currently under review based on the findings discussed

above. The guidelines published in 2011 recommended the

use of genetic-guided algorithms available on http://www.

warfarindosing.org. Dosing algorithms taking genetics into

account outperform non-genetic algorithms [73].

Polymorphisms in CYP2C9 have also been associated

with phenytoin ADRs. Chung et al. used a GWAS to

investigate genetic variants associated with phenytoin-re-

lated severe cutaneous adverse reactions. They discovered

a cluster of 16 SNPs within the CYP2C gene locus [74]

associated with phenytoin-related ADRs. Further

sequencing of alleles in this region identified a significant

association between the missense variant rs1057910

(CYP2C9*3) and the severe forms of phenytoin-related

cutaneous adverse reactions often referred to as SCARs

This SNP-ADR association was then validated through

analysis of further samples from 210 patients with pheny-

toin-related SCARs and 3655 controls, and an odds ratio of

11.0 (95 % confidence interval 6.2–18.0, P\ 0.00001)

was reported [74]. Delayed plasma clearance of phenytoin

was detected in patients with SCARs, especially

CYP2C9*3 carriers.

3.4 CYP2C19

The enzyme CYP2C19 is known to metabolise 10 % of all

commonly used medicines including proton pump inhibi-

tors, tricyclic antidepressants, SSRIs, SNRIs, barbiturates,

and the antiplatelet drugs clopidogrel, ticlopidine, and

prasugrel. The CYP2C19 gene has at least 24 known

variants with CYP2C19*2 and CYP2C19*3 the major

polymorphisms resulting in poor metaboliser status and

CYP2C19*17, a polymorphism resulting in increased

CYP2C19 expression and activity [64]. There is substantial

literature on the association between CYP2C19 poor

metaboliser status and diminished response to clopidogrel,

and therefore an increased risk of further cardiovascular

events [75]. As clopidogrel is a prodrug it requires bio-

transformation to its active form in the liver by CYP2C19,

CYP1A2 and CYP2B6. A GWAS (Pharmacogenomics of

Antiplatelet Intervention) reported an association with 13

SNPs in the genomic region where the CYP2C18-

CYP2C19-CYP2C9-CYPC8 genes are located [76]. Further

analysis showed that the variant rs12777823 was strongly

correlated with the CYP2C19*2 variant, and was associated

with a greater number of cardiovascular events or death

within 1 year of follow-up (20.9 %) compared with con-

trols (10 %) [76].

Meta-analyses of randomised clinical trials evaluating

CYP2C19 genotype status and the increased risk of sec-

ondary cardiovascular events have reported mixed results.

Mega et al. conducted a meta-analysis of nine studies

incorporating 9685 patients who had undergone percuta-

neous intervention and/or had acute coronary syndrome

[77]. In the population studied, 71.5 % were non-carriers

(i.e., CYP2C19 WT), 26.3 % had one reduced function

allele (*2 or *3), and 2.2 % had two reduced functional

alleles. The authors reported a significantly increased risk

of major cardiovascular events, particularly stent throm-

bosis in patients with one (P\ 0.0001) or two

(P = 0.001) CYP2C19 reduced function alleles [77].

Similarly, Hulot et al. reported that CYP2C19*2 allele

was associated with a 30 % increased risk of a major

cardiovascular event and increased mortality in patients

on clopidogrel therapy. Like the previous study, subjects

with either heterozygote or homozygote CYP2C19*2

alleles were adversely affected [78]. However, two further

meta-analyses have reported that the genetic association

between CYP2C19 genotype and clinical efficacy of

clopidogrel is not consistent or substantial enough to

recommend genotyping prior to therapy [79, 80]. The

CPIC guidelines for clopidogrel indicate that clinicians

should consider alternative anti-platelet agents (prasugrel

or ticagrelor) in patients genotyped to be CYP2C19

intermediate (*1/*2, *1/*3, *2/*17) or poor (*2/*2, *3/*3

or *2/*3) metabolisers [81].
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4 Phase II Enzymes

Polymorphisms in genes for phase II DMEs are a further

source of variation in drug response. Polymorphic phase

two DMEs include N-acetyl transferase type 2 (NAT2)

associated with isoniazid toxicity; thiopurine methyltrans-

ferases (TPMT) associated with thiopurine toxicity; dihy-

dropyrimidine dehydrogenase (DPD) associated with

5-fluorouracil toxicity, and uridine diphosphate-

glucuronosyl transferases (UGT) associated with irinotecan

toxicity [82, 83]. TPMT and NAT2 are discussed below

and DPD and UGT are summarised in Table 2.

4.1 TPMT

Depending on ethnicity, it is estimated that one in 150–300

individuals carry two deficient TPMT alleles resulting in

lack of TPMT activity [84]. As TPMT catalyses the

s-methylation of thiopurine drugs, which are highly toxic

and have a narrow therapeutic index, accumulation of

parent drug and/or metabolites can lead to thiopurine tox-

icity in haematopoietic tissues [14, 85]. Expression of non-

functional and/or reduced function alleles (Table 3) has

been associated with a range of adverse events ranging

from cessation of therapy in up to 25 % of patients to

severe and life-threatening myelosupression [86–88].

CPIC have published guidelines on the prescribing of

three drugs (azathioprine, mercaptopurine and thioguanine)

known to be influenced by TPMT polymorphisms [89].

The CPIC guidelines indicate that pre-emptive TPMT

genetic testing can provide customised dosing to reduce the

likelihood of serious and fatal ADRs such as myelosu-

pression [88, 90, 91]. A recent retrospective study con-

ducted in a French university hospital concluded that pre-

emptive TPMT genotyping improved non-compliance and

allowed the identification of patients at high risk of toxicity

[92].

4.2 NAT

N-Acetyltransferase enzymes, NAT1 and NAT2 metabolise

and detoxify therapeutic drugs through acetylation.

Notably, variability in response to the antituberculosis drug

isoniazid is associated with polymorphisms in the NAT2

gene [93]. Phenotypically, NAT2 polymorphisms confer

either slow or fast acetylator status. Slow acetylators, often

expressing two reduced function and/or inactive alleles, are

reported to be at a greater risk of isoniazid toxicity, par-

ticularly DILI and peripheral neuropathy. In contrast, fast

acetylators are likely to show reduced efficacy [93, 94].

Several retrospective studies have sought to determine

whether genotyping of NAT2 status may have prevented

isoniazid induced toxicity. One such study conducted by

Ng et al. genotyped 26 patients with a history of liver

injury as a result of a drug regimen containing isoniazid.

Patients and ethnically matched controls were genotyped

for three major NAT alleles (NAT2*5, NAT2*6 and

NAT2*7), and it was observed that NAT2 genotypes pre-

dictive of slow acetylator phenotype were associated with

an increased risk of isoniazid-induced DILI [95]. Azuma

et al. also showed that NAT2 genotype-based dosing of

isoniazid compared with standard treatment was beneficial.

The clinical trial showed that with genotype-guided dosing

there were no cases of isoniazid-induced DILI amongst

slow acetylators, compared with 78 % of slow acetylators

in the standard treatment group. With respect to fast-

acetylators and treatment failure, genotyping resulted in a

lower incidence of treatment failure (15 %) when com-

pared with the standard treatment group (38 %) [96].

4.3 Drug Transporters

Polymorphisms also affect transporters and therefore drug

distribution. For example, polymorphisms in the organic

anion transporting polypeptides, also referred to as the

solute carrier organic anion transporters (SLCOs), are one

of the most discussed polymorphisms known to affect the

transport (influx) of statins, and hence impaired efficacy

and/or toxicity [97–99]. Two SNPs in the SLCO1B1 gene,

rs2306283 and rs4149056 are associated with statin-asso-

ciated myopathy [100]. These variants were initially

identified through a GWAS conducted on the SEARCH

(Study of the Effectiveness of Additional Reductions in

Cholesterol and Homocysteine) cohort of 80 confirmed

Table 2 DPD and UGT

variants implicated in

chemotherapy toxicity

Phase II enzyme Variant(s) Drug(s) ADR

DPD [163] rs3918290

rs67376798

rs1801158

rs55886062

Fluoropyrimidine Diarrhoea, mucositis, neutropenia (Grade 3–4)

UGT [164] rs34815109 Irinotecan Diarrhoea, myelosuppression, neutropenia

ADR adverse drug reaction, DPD dihydropyrimidine dehydrogenase, UGT uridine diphosphate-

glucuronosyl transferases
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cases of myopathy and 90 controls [36]. Further GWAS of

similar cohorts such as GoDARTs (Genetics of Diabetes

Audit and Research in Tayside) and STRENGTH (Statin

Response Examined by Genetic Haplotype Markers) have

replicated the results. The composite endpoint was any

adverse effect that led to discontinuation or myalgia or

serum creatine kinase level more than three times the upper

limit of normal. For this endpoint there was a gene–dose

effect relationship with 19, 27 and 50 % of patients

affected with no, one or two SLCO1B1*5 alleles respec-

tively [101, 102]. Interestingly, the association of

rs4149056 with statin-induced myopathy has only been

clearly established for simvastatin [100].

Further studies have identified polymorphisms in other

drug transporters such as the ATP-binding cassette family

(ABC), specifically ABCB1 and ABCG2, which are efflux

transporters that modulate intestinal drug absorption and

tissue penetration [103] and have been associated with

statin-induced muscle myopathy as shown through eleva-

tions in plasma creatine kinase measurements. As expec-

ted, adverse reactions to a range of drugs (Table 4) have

been linked with transporter polymorphisms, mainly by

way of candidate gene association studies.

Zolk and Fromm also identified polymorphisms in four

genes, SLCO1B1, SLC22A2, ABCB11 and ABCB1, which

are associated with increased susceptibility to ADRs in

general [104].

5 Pharmacodynamic Responses

5.1 Drug-Induced Long QT Syndrome

Long QT syndrome (LQTS) is a condition with symptoms

of syncope, seizures and often fatal ventricular arrythmias

of the torsade de pointes type. Initially, by studying

patients with congenital LQTS, genes that code for sodium

and potassium ion channels within cardiomyocytes were

implicated in the disorder [105]. The first mutations in the

potassium channel genes KCNQ1 and KCNH2 (HERG) and

the SCN5A cardiac sodium channel gene (originally named

LQT1, LQT2 and LQT3 respectively), were first discovered

in the 1990s [106]. Individuals with drug-induced (also

referred to as acquired) LQTS present with the same

symptoms and are often carriers of KCNH2 or SCN5A

mutations [105, 106]. Various drug classes (antibiotics,

antipsychotics, chemotherapeutics, antiemetics, opioid

analgesics and anti-arrhythmics) have been associated with

drug-induced LQTS [107]. The association of KCNH2 and

SCN5A mutations with LQTS has been confirmed through

four major GWAS published in the last decade [108–111].

Recently, Weeke et al. identified, through whole exome

sequencing, rare amino acid coding variants that further

increase the risk of drug-induced LQTS. There were more

unique or rare amino acid coding variants (37 %) in a

cohort of 65 patients with previously confirmed drug-in-

duced LQTS compared with 148 (21 %) drug-exposed

controls [112]. Similarly, Ramirez et al. have used NGS

methodology to assess the presence of rare variants in a

cohort of patients with drug-induced LQTS. It was reported

that 11 of the 31 patients carried a novel missense mutation

that matched a known congenital LQTS mutation [113].

5.2 Warfarin and Vitamin K Epoxide Reductase

Complex

Warfarin exerts its anticoagulant effect by inhibiting the

vitamin K epoxide reductase complex, subunit 1

(VKORC1), part of an enzyme that had long been sought as

a target of warfarin but for which the gene was not iden-

tified until 2004 [114]. The identification of this enzyme, as

well as linkage studies carried out in warfarin-resistant rat

strains, rapidly led to identification of variants in the

VKORC1 gene, which impacted on warfarin response

[115], and in some patients, warfarin resistance [116].

The missense mutations CYP2C9 *2 and *3 and the

VKORC1 variants identified are evidence of a combined

effect of pharmacogenes influencing both the pharma-

cokinetics and pharmacodynamics of a medicine. GWAS

initially confirmed the role of these two genes [38] and

revealed an additional gene, CYP4F2, with a minor role

[39].

5.3 HLA Locus

The HLA, also known as the human major histocompati-

bility complex (MHC), is a family of over 200 genes that

are located close together on chromosome 6. The MHC

genes are categorised into three classes, of which class I

(HLA-A, HLA-B and HLA-C genes) and class II (HLA-

Table 3 TPMT functional

alleles
Functional status Alleles

Normal and or wild type *1, *1S

Non-functional, or mutation resulting in no activity *2, *3A, *3B, *3C, *4

Reduced function or decreased activity *5, *6, *8, *9,*10, *11, *12, *13, *16, *17, *18.

TPMT thiopurine methyltransferase
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DPA1, HLA-DPB1, HLA-DQA1, HLA-DRA and HLA-

DRB1) are relevant to this review (Fig. 3).

It is estimated that up to a third of drug-induced ADRs

are unpredictable hypersensitivity reactions, i.e. Type B

ADRs [117, 118], and a large proportion of these are

mediated through the interaction of the drug and/or

metabolite with HLA proteins. Importantly, this interaction

only occurs when specific HLA alleles are present [118,

119]. The HLA-drug (hapten) complex can go on to elicit

an immune response. One mechanism proposed is presen-

tation of the hapten to a naı̈ve lymphocyte via its T-cell

receptor, which may initiate an immunological response

dependent on the HLA molecule, antigen-presenting cell

and cytokine environment [118].

One HLA–ADR association with considerable clinical

utility is that of the haplotype (group of alleles) called

HLA-B*5701 and hypersensitivity to the antiretroviral drug

abacavir [120]. This was originally described by two

groups who essentially used a candidate gene approach, by

careful HLA typing of subjects who experienced the

hypersensitivity reaction and recognition that a specific

haplotype of HLA-B was over represented in this group

[120, 121]. DNA tests for HLA-B*5701 alleles are now

widely employed before prescription of abacavir [122,

123].

More recently, application of GWAS methodology has

revealed other associations of drug hypersensitivity with a

range of HLA alleles. The strongest pharmacogenetic

associations have been reported for flucloxacillin-associ-

ated hepatotoxicity (also referred to as DILI) with HLA-

B*5701, carbamazepine-induced Stevens-Johnson syn-

drome (SJS)/toxic epidermal necrolysis (TEN) with HLA-

B*1502 in Han Chinese, allopurinol-induced severe cuta-

neous ADRs with HLA-B*5801 in Han Chinese and

abacavir-induced hypersensitivity syndrome with HLA-

B*5701 [118, 124].

In the case of carbamazepine-induced SJS, Chung et al.

showed complete penetrance of the HLA-B*1502 allele, i.e.

all individuals with the mutation exhibited SJS, giving a

positive predictive value of 93.6 %. In this particular study

of Han Chinese, 100 % of the cohort of 44 patients

expressed the HLA-B*1502 allele in comparison to 3 % in

Table 4 Transporter polymorphisms (modified from [104])

Transporter Gene (rs numbers) Drugs ADRs

OATP1B1 SLCO1B1 (rs4149056, rs2306283) Statins, irinotecan Myopathy leukopenia, anaemia,

thrombocytopenia

OCT1,

OCT2

SLC22A1 (rs12208537, rs34130495, rs35167514,

rs34059508)

SLC22A2 (rs316019)

Metformin, cisplatin Hyperlactacidemia nephrotoxicity, ototoxicity

ABC ABCG2 (rs2622604, rs2231137) Irinotecan Myelosuppression

MDR1 ABCB1 (rs1128503, rs2032582, rs1045642) Calcineuron

inhibitors

Loperamide

Nephrotoxicity, neurotoxicity, respiratory

depression

OAT1 SLC22A6 (rs11568626, rs4149170) Antiviral drugs Nephrotoxicity

MRP2 ABCC2 (rs2273697, rs3740066 Irinotecan,

methotrexate

Diarrhoea, nephrotoxicity

ADRs adverse drug reactions

Fig. 3 Location and structure of the human leukocyte antigen (HLA)

locus. The large cluster of genes that comprise the major histocom-

patibility complex (MHC) is located on the short arm of chromosome

6. This region includes some 240 genes and spans some 3.6 million

base pairs of DNA. The class I and class II genes are most relevant for

adverse drug reactions. There are three main class I genes, called

HLA-A, -B and -C, and the class II region includes the genes for the a
and b chains of the antigen-presenting MHC class II molecules HLA-

DR, -DP, and -DQ
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the carbamazepine-tolerant population (3/101) and 8.6 %

in the general Han Chinese population (8/93) [125]. For

flucloxacillin-induced DILI, a GWAS (the DILIGEN

study) conducted in 51 cases and 282 controls showed that

the rs2395029 SNP was significantly associated with flu-

cloxacillin-induced DILI. The SNP was confirmed to be in

linkage disequilibrium with the HLA-B*5701 allele, and

carriers of this polymorphism were at 80-fold greater risk

of developing flucloxacillin-induced DILI. Unlike the

previously discussed HLA allele (HLA-B*1502), which

was common in the Han-Chinese population, HLA-B*5701

has a high allelic frequency in northern European popula-

tions when compared with African or Asian populations

[37]. Other ADRs associated with the HLA locus derived

from GWAS are listed in Table 5.

Other genetic associations of HLA alleles with ADRs

were recognised as early as the 1990s. For example,

clozapine-induced agranulocytosis has been associated

with haplotypes of HLA-B38, HLA-DR4 and HLA-DQ3

[126]. Recently, WES and GWAS methods have identified

an association between clozapine-induced agranulocyto-

sis/granulocytopenia and the HLA-DQB1 and HLA-B alle-

les. This latest study by Goldstein and colleagues confirms

previous studies [127–129] and provides further evidence

to attribute the association to two amino acids, a glutamine

at position 126 of HLA-DQB1, and a threonine at position

158 of HLA-B [130]. Furthermore, the authors used

molecular docking to show that clozapine binds with high

affinity to the HLA-B*39 antigen-presenting peptide.

Docking studies showed that clozapine had low affinity for

HLA-A proteins. However, the authors noted that the set of

variants identified may not be robust enough to identify a

‘‘safe-clozapine’’ group, as the sensitivity and specificity

was low (0.36 and 0.89, respectively) [130].

With respect to thiopurine drugs (azathioprine or mer-

captopurine), pancreatitis is an unpredictable ADR

reported to occur in up to 4 % of patients. A recent study

identified an association between azathioprine and mer-

captopurine-induced pancreatitis with two HLA alleles

(HLA-DQA1*02:01–HLA-DRB1*07:01 haplotype) in the

class II region. It was reported that patients heterozygous

for a specific SNP (rs2647087) had a 9 % risk of devel-

oping pancreatitis, whereas homozygotes had a 17 % risk

[131].

HLA genotyping prior to the commencement of carba-

mazepine or allopurinol prescription is becoming an

indispensable tool to prevent ADRs in patients of south-

east Asian descent. In fact, several drugs now have updated

safety labels, or boxed warnings recommending HLA

genotyping prior to drug prescription [132–134]. CPIC

guidelines are currently available for four drug-induced

ADRs with HLA allele associations, allopurinol-HLA-

B*5801, carbamazepine HLA-B*1502, abacavir-HLA-

B*5701 and phenytoin-HLA-B*1502 [59].

6 ADRs Determined by Multiple Pharmacogenes

By grouping genotypes according to their kinetic, dynamic

or immunological influences on the development of ADRs

there is the danger of not seeing the complexity of the

genetic influences that may lead to the development of one

ADR. Recent studies have revealed some hitherto unex-

pected associations which identify more than one phar-

macogene associated with a single ADR. As previously

discussed, algorithms generated from warfarin dosing

studies and GWAS have identified variants of CYP2C9 and

VKORC that demonstrate clinical utility in warfarin dosing

[39].

Similarly, the association between CYP2C9*3 and

phenytoin-related severe cutaneous adverse reactions dis-

covered by a GWAS is unlikely to be a complete

Table 5 Genome-wide

association studies on ADRs

associated with the HLA locus

Drug Gene ADR Odds ratio

Ximelagatran [157] HLA-DRB180701 DILI 4

Lumiracoxib [158] HLA-DQA1*0102 DILI 5

Flucloxacillin [37, 159] HLA-B*5701 DILI 81

HLA-DRB1*0107

HLA-DQB1*0103 7

Carbamazepine [125, 160] HLA-B*1502

HLA-A*3101

SJS 2504

Rash 17

Abacavir [120] HLA-B*5701 Hypersensitivity syndrome 33

Sulfomethoxazole [161] HLA-B*3802 SJS 76

Allopurinol [162] HLA-B*5801 SJS 580

ADRs adverse drug reactions, DILI drug-induced liver injury, SJS Stevens-Johnson syndrome, HLA human

leukocyte antigen
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explanation because these reactions have immunological

characteristics. In a study by Chung et al., an association

between HLA-B*1502 and phenytoin-related SJS/TEN was

also shown. Chung et al. proposed that interplay between

delayed clearance and the accumulation of reactive

phenytoin metabolites due to genetic variants of DMEs

together with individual immunogenicity might facilitate

the development of phenytoin-related cutaneous adverse

reactions [64]. The CPIC guidelines recommend at mini-

mum, a 25 % reduction in the starting dose of phenytoin in

CYP2C9 intermediate metabolisers, and at minimum, a

50 % reduction in phenytoin dose in poor metabolisers.

Additionally, regardless of CYP2C9 status, the CPIC

guidelines recommend using an anticonvulsant other than

carbamazepine or phenytoin if the patient is a carrier of

HLA-B*1502 unless the benefits of treatment outweigh the

risks of developing SJS/TEN [135].

Statins are another group of drugs known to have a

number of pharmacogenes associated with altered drug

disposition [136]. Statins are associated with myopathy,

ranging in severity from asymptomatic increases in cre-

atine kinase to myalgia or muscle weakness, to fatal

rhabdomyolysis. Even the less serious forms can lead to

non-adherence. However, members of this therapeutic

group vary in their degree of lipophilicity and metabolic

pathways. Recently, concerns have been raised about a

disproportionate increase in the risk of myopathy with

high-dose simvastatin. As discussed, for statins, SLCO1B1

variants affecting SLCO influx transporter activity appear

to be the most important genetic determinants for the

development of myopathies, although the strongest evi-

dence is for simvastatin [36, 101, 137]. There is also evi-

dence of a contribution from polymorphisms in the ABCB1

and ABCG2 efflux transporter genes. Surprisingly for the

statins, which are substrates for CYP3A4 and 5 enzymes,

the evidence that variants of CYP3A4 and 5 may contribute

to myopathy is not conclusive and may vary between sta-

tins. An interesting development comes from a study which

reported potential protection against statin-related myopa-

thy through a variant (rs1719247) of the gene for the gly-

cine amidinotransferase (GATM) mitochondrial enzyme

that catalyses the rate-limiting step in the biosynthesis of

creatine. This hypothesis was tested in two groups of

patients with a resulting meta-analysis odds ratio of 0.6

(95 % confidence interval 0.45–0.81) for the association of

this GATM SNP with myopathy [138].

The finding that the strongest relationship between

SLCO1B1*5 and statin-related myopathy is for simvastatin

is interesting and has practical implications as a study of

clinical trial data and reported ADRs concluded that high-

dose simvastatin (80 mg daily) carries a greater risk of fatal

myopathy than 80 mg atorvastatin and lower doses of

rosuvastatin. Because the SEARCH study did not

demonstrate a difference in the development of cardio-

vascular events between low- and high-dose simvastatin,

the US Food and Drug Administration advised that sim-

vastatin 80 mg daily should not be prescribed for patients

who had not already tolerated it for a year, and that alter-

native agents should be used if lipid targets could not be

reached with lower doses of simvastatin [139].

Recently, there have been reports of patients expressing

autoantibodies to the HMG-CoA reductase enzyme which

results in immune-mediated myositis and necrotising

myopathy. In a recent study of patients with idiopathic

inflammatory myopathy, the presence of anti-HMGCR

antibodies was significantly (P\ 0.0001) associated with

statin exposure and HLA-DRB1*11 [140].

Last, it is important to note that patients may sometimes

carry novel variants that affect drug disposition. For

example, a recent study described the whole-gene

sequencing of CYP2D6 and CYP2C19 in a patient with

severe adverse effects to venlafaxine or combined therapy

with nortriptyline and fluoxetine. Chua et al. identified one

novel mutation in the CYP2D6 gene and three novel

mutations in the CYP2C19 gene, meaning the function of

both genes was compromised hence providing an expla-

nation for their reported adverse effects to anti-depressants

[141]. This case reinforces the notion that rare genetic

variants, often not previously reported, are likely to have

more substantial phenotypic effects than common variants.

Had traditional genetic testing solely of ‘‘known’’ common

variants [142] been conducted in this case, the patient may

have been incorrectly classified as having intermediate

CYP2D6 metabolic status, and normal CYP2C19 function.

Although this study was conducted with Sanger sequenc-

ing, NGS methods make the wider analysis of all relevant

variation in pharmacogenes, beyond solely the common

variants, a much more accessible prospect.

7 Limitations of Using Genome Sequencing
in Clinical Decision Making

As pharmacogenetic testing makes its way into the clinical

setting, it is not likely to entirely displace standard thera-

peutic drug monitoring or measurement of other pheno-

typic variables for narrow-therapeutic index drugs or drugs

intended for the treatment of life-threatening diseases, such

as azathioprine, phenytoin and warfarin. The concordance

between genotype and phenotype is not absolute as the

phenotype can be influenced by other factors such as drug–

drug interactions, age, sex and co-morbid conditions [143].

For example, azathioprine-treated patients are at risk of

dose-dependent myelosuppression. Neither pre-emptive

TPMT genotyping nor phenotyping by enzyme activity in

red blood cells can be regarded as sufficiently predictive
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methods. However, they can be complementary [144].

Identifying patients with null TPMT activity through

genotyping (TPMT*3 and TPMT*2) can identify up to

95 % of such patients but this concordance rate drops to

86 % when classifying patients with intermediate enzyme

activity. The results of genotyping can be used to make

recommendations about azathioprine avoidance or dose

reductions. However, it is important to note that the TPMT

genotype is not the sole reason for increased risk of

myelosuppression in patients taking azathioprine and

determining TPMT enzyme activity and/or monitoring of

6-thioguanine nucleotide concentrations is still recom-

mended [145, 146].

Phenoconversion, the transient conversion of genotypic

extensive metabolisers to phenotypic poor metabolisers, is

a phenomenon that needs to be considered in the context of

genotype/phenotype concordance. Phenotypic changes

may occur during the course of treatment because of co-

prescription of other interacting drugs [147]. Phenocon-

version has also been clinically associated with elevated

cytokines present during inflammatory disease states. Shah

and Smith have summarised probe studies showing rates of

phenoconversion of genotypic CYP2D6 EMs to phenotypic

PMs for various CYP2D6 inhibitors. They also discuss co-

morbidities and present evidence for conversion of geno-

typic EMs to phenotypic PMs because of reduced

CYP2D6, NAT2 and CYP3A4 activity in some human

immunodeficiency virus-infected patients, and reduced

CYP2C19 activity in studies of patients with liver disease

or advanced cancer [147, 148].

8 Conclusion: Personal Genomes and the Future
of Pharmacogenetic Testing

It is clear that application of new genetic technologies is

enhancing our understanding of pharmacogenetics, and

clarifying the genetic underpinnings of various ADRs.

Although many ADRs are likely to be complex pheno-

types, resulting from interactive effects of numerous

genetic susceptibility alleles and environmental factors, a

surprising range of ADRs appear to have a less complex

genetic basis, and in many demonstrated cases, only one or

a few genes appear to largely determine susceptibility to

the specific ADR.

Clarification of genetic susceptibility factors for ADRs

is clearly of fundamental importance, and such knowledge

extends our understanding of pharmacology, genetics and

immunology. Beyond such intrinsic value, however, will it

ever be possible to routinely apply such knowledge to

predict and prevent occurrence of ADRs? Given the rarity

of many relevant gene variants, the relatively slow turn-

around times and costs of conventional tests (if they are

even accessible), and often limited evidence base to sup-

port the clinical utility of predictive testing, it is unlikely

that many of the genetic variants described in this review

could currently be used to predict likelihood of an ADR

(within the conventional testing paradigm). However,

genomic medicine is moving apace, and the application of

NGS methods, including WES and WGS, is being explored

in many areas [45, 149–151] with a number of centres

evaluating the prospective application of high-throughput

pharmacogenetic analysis, with decision support, in the

hospital setting [152, 153]. It is foreseeable that a single

NGS test spanning all clinically actionable genotypes,

including those relevant to drug responses, could be

established [154, 155]. Such a test would need to be carried

out only once, and it could include variants that are rare

and therefore uneconomic to test for in a traditional diag-

nostic pathology setting. Establishment of such a genome-

based test will require resolution of many problems, par-

ticularly relating to Mendelian disease, such as the man-

agement of incidental findings, the problem of assigning

function to novel variants, and storage and management of

the data. However, it is conceivable that such a test could

provide information on all variants likely to impact on

pharmacokinetics and ADRs, in an affordable format. An

important interim step on the path to such a goal, therefore,

is to build an extensive and robust evidence base for all

genetic factors that may contribute to good or bad drug

responses.
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