

Received 4 March 2015 Accepted 3 April 2015

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; packing polymorphism; 2-nitrobenzyl ester; π - π interactions; C—H···O interactions

CCDC references: 967703; 967704 Supporting information: this article has supporting information at journals.iucr.org/e

Packing polymorphism in the crystal structure of 4,5-dimethoxy-2-nitrobenzyl acetate

Noriko Chikaraishi Kasuga,^a Yusuke Saito,^a Hiroyasu Sato^b and Kazuo Yamaguchi^a*

^aDepartment of Materials Science, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan, and ^bRigaku Corporation 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan. *Correspondence e-mail: kazu@kanagawa-u.ac.jp

The title compound, $C_{11}H_{13}NO_6$, shows two polymorphs, orange and yellow forms, both of which crystallize in the space group $P2_1/c$. The molecular structures in the two polymorphs are essentially similar and adopt a planar structure, the maximum deviations for the non-H atoms being 0.1836 (13) and 0.1276 (13) Å, respectively, for the orange and yellow forms. In the orange crystal, molecules are linked by an intermolecular $C-H\cdots O$ interaction into a helical chain along the *b*-axis direction. The chains are stacked along the *c* axis through a π - π interaction [centroid–centroid distance = 3.6087 (11) Å], forming a layer parallel to the *bc* plane. In the yellow crystal, molecules are connected through $C-H\cdots O$ interactions into a sheet structure parallel to ($\overline{3}02$). No significant π - π interaction is observed. The unit-cell volume of the orange crystal is larger than that of the yellow one, and this accounts for the predominant growth of the yellow crystal.

1. Chemical context

Polymorphism is of interest in crystallization, phase transition, material synthesis and the pharmaceutical industry because differences in the crystal packing and/or conformation of compounds with the same formula can change the chemical and physical properties, including solubility, bioavailability and so forth (Moulton & Zaworotko, 2001; Matsuo & Matsuoka, 2007; Yu, 2010). We have been investigating silane coupling agents and thiols with distal functional groups protected by photolabile 2-nitrobenzyl groups (Edagawa *et al.*, 2012). During the course of photoremoval studies of these materials, we found that the simple ester, 4,5-dimethoxy-2-nitrobenzyl acetate, which releases acetic acid on photo-irradiation, forms two different types of crystals, orange rods and yellow needles. Here, we report the crystal structures of these two polymorphs of the title compound.

The molecular structures of the two crystals are approximately planar and almost identical, as shown in Fig. 1. The C2-C1-C7-O3, C9-C8-O3-C7, C5-C4-O5-C10 and C4-C1

OPEN ACCESS

research communications

Figure 1

The molecular structures of the title compound polymorphs, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

C5-O6-C11 torsion angles in the two crystals are approximately 180°. The dihedral angles between the benzene ring (C1-C6) and the nitro group (O1/N1/O2) are 9.54 (11) and 4.15 (7)° for the orange and yellow polymorphs, respectively.

3. Supramolecular features

Although the two crystals crystallize in the same space group $(P2_1/c)$ with Z' = 1, their packing modes are different. In the orange crystal, the molecules are connected by an intermolecular $C - H \cdot \cdot \cdot O$ interaction $[C11-H11B\cdots O4^{i};$ symmetry code: (i) 1 - x, $-\frac{1}{2} + y$, $\frac{3}{2} - z$; Table 1] between the methoxy group and the carbonyl group, forming a helical chain along the b axis as shown in Fig. 2, left. In addition, a π - π interaction between the benzene rings with a centroidcentroid distance of 3.6087 (11) Å links the chains to be stacked along the c axis. In the vellow crystal, the molecules located in the plane perpendicular to the ac plane are connected by $C-H \cdots O$ interactions (Table 2) between methoxy groups $[C10 - H10B \cdots O6^{ii};$ symmetry code: (ii) 1 - x, 1 - y, 2 - z and between acetyl groups [C9-H9B···O4ⁱⁱⁱ; symmetry code: (iii) -x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$], forming a sheet structure parallel to $(\overline{3}02)$ (Fig. 2, right).

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for orange.	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11B \cdots O4^{i}$	0.98	2.50	3.369 (2)	147

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 2

Hydrogen-bond geometry	(Å, °) for	yellow.

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9B\cdots O4^{iii}$ $C10-H10B\cdots O6^{ii}$	0.98 0.98	2.40 2.51	3.375 (2) 3.472 (2)	174 169

Symmetry codes: (ii) -x + 1, -y + 1, -z + 2; (iii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

In the orange crystal, the molecules are stacked in columnar structures $via \pi - \pi$ interactions along the *c* axis (Fig. 3, left). In contrast, no $\pi - \pi$ interactions are observed in the yellow crystal. The molecules are therefore terraced along the diagonal line of the *a* and *c* axes as shown in Fig. 3, right. As a result of these packing differences, the volume of the unit cell of the orange crystal is larger than that of the yellow one, *i.e.*, the orange crystal contains slightly more void space than the yellow one. This would account for the predominant growth of the yellow crystals.

4. Synthesis and crystallization

4,5-Dimethoxy-2-nitrobenzyl alcohol (0.714 g, 3.35 mmol), acetic anhydride (0.63 ml, 6.66 mmol), Et₃N (1 ml) and CH₂Cl₂ (20 ml) were placed in a 100 mL flask, and the mixture was stirred at ambient temperature overnight. The mixture was extracted with CH₂Cl₂ (20 ml \times 3), washed with brine, dried over MgSO₄, and evaporated to give a yellow solid (0.773 g, 90% yield). The solid was crystallized by slow evaporation from a mixed solution of ethyl acetate and hexane

Figure 2

Intermolecular C-H···O (black dashed lines) and π - π (red dashed lines) interactions in the orange crystal (left), and intermolecular C-H···O interactions (black dashed lines) between methoxy groups and between acetyl groups in the yellow crystal (right). [Symmetry codes: (i) 1 - x, $-\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) 1 - x, 1 - y, 2 - z; (iii) -x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$.]

(1:1). Orange crystals were occasionally obtained in small amounts, but the yellow crystals grew predominantly.

Acknowledgements

We thank Kanagawa University for the general support of our studies.

5. Refinement

Figure 3

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located geometrically and refined using a riding model, with C-H = 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms, C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, and C-H = 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms.

Table 3Experimental details.

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Edagawa, Y., Nakanishi, J., Yamaguchi, K. & Takeda, N. (2012). *Colloids Surf. B Biointerfaces*, **99**, 20–26.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

	orange	yellow
Crystal data		
Chemical formula	C11H12NO6	$C_{11}H_{12}NO_6$
М.	255.22	255.22
Crystal system, space group	Monoclinic. $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	93	93
a, b, c (Å)	8.8751 (13), 19.555 (2), 6.8688 (9)	10.476 (3), 10.714 (3), 10.266 (3)
$\beta(\circ)$	106.298 (6)	105.077 (10)
$V(\dot{A}^3)$	1144.2 (3)	1112.6 (6)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.12	0.13
Crystal size (mm)	$0.45 \times 0.42 \times 0.39$	$0.56 \times 0.54 \times 0.25$
Data collection		
Diffractometer	Rigaku Mercury375R	Rigaku Mercury375R
Absorption correction	Multi-scan (REQAB; Rigaku, 1998)	Multi-scan (REQAB; Rigaku, 1998)
T_{\min}, \dot{T}_{\max}	0.960, 0.970	0.797, 0.970
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11495, 2612, 2098	9498, 2058, 1769
R _{int}	0.047	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649	0.606
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.132, 1.11	0.049, 0.130, 1.13
No. of reflections	2612	2058
No. of parameters	166	166
H-atom treatment	H-atom parameters not refined	H-atom parameters not refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.39, -0.30	0.38, -0.35

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), Yadokari-XG (Wakita, 2001).

Matsuo, K. & Matsuoka, M. (2007). *Cryst. Growth Des.* **7**, 411–415. Moulton, B. & Zaworotko, M. J. (2001). *Chem. Rev.* **101**, 1629–1658. Rigaku (1998). *REQAB*. Rigaku Corporation, Tokyo, Japan.

Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.jp/k-wakita/ yadokari
- Yu, L. (2010). Acc. Chem. Res. 43, 1257-1266.

supporting information

Acta Cryst. (2015). E71, 483-486 [doi:10.1107/S2056989015006714]

Packing polymorphism in the crystal structure of 4,5-dimethoxy-2-nitrobenzyl acetate

Noriko Chikaraishi Kasuga, Yusuke Saito, Hiroyasu Sato and Kazuo Yamaguchi

Computing details

For both compounds, data collection: *CrystalClear-SM Expert* (Rigaku, 2011). Cell refinement: *CrystalClear-SM Expert* (Rigaku, 2011) for orange; *CrystalClear-SM Expert* for yellow. Data reduction: *CrystalClear-SM Expert* (Rigaku, 2011) for orange; *CrystalClear-SM Expert* for yellow. For both compounds, program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *Yadokari-XG* (Wakita, 2001).

(orange) 4,5-Dimethoxy-2-nitrobenzyl acetate

Crystal data

C₁₁H₁₃NO₆ $M_r = 255.22$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.8751 (13) Å b = 19.555 (2) Å c = 6.8688 (9) Å $\beta = 106.298 (6)^{\circ}$ $V = 1144.2 (3) \text{ Å}^{3}$ Z = 4

Data collection

Rigaku Mercury375R (2x2 bin mode) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.960, T_{\max} = 0.970$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.132$ S = 1.112612 reflections 166 parameters F(000) = 536 $D_x = 1.48 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 2655 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 93 KPlatelet, orange $0.45 \times 0.42 \times 0.39 \text{ mm}$

11495 measured reflections 2612 independent reflections 2098 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -25 \rightarrow 25$ $l = -8 \rightarrow 8$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters not refined	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0597P)^2 + 0.5862P]$	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.19328 (19)	0.29434 (8)	0.7664 (2)	0.0124 (3)
C2	0.04911 (19)	0.26435 (9)	0.7614 (3)	0.0139 (3)
C3	0.02606 (19)	0.19342 (8)	0.7577 (3)	0.0140 (3)
Н3	-0.0739	0.1752	0.7541	0.017*
C4	0.1487 (2)	0.15013 (8)	0.7593 (3)	0.0139 (3)
C5	0.29755 (19)	0.17865 (8)	0.7678 (2)	0.0125 (3)
C6	0.31701 (19)	0.24911 (8)	0.7700 (2)	0.0128 (3)
H6	0.4171	0.2673	0.7740	0.015*
C7	0.22141 (19)	0.37064 (8)	0.7674 (3)	0.0138 (3)
H7A	0.1502	0.3919	0.6450	0.017*
H7B	0.2010	0.3916	0.8887	0.017*
C8	0.4225 (2)	0.44786 (9)	0.7575 (3)	0.0155 (4)
С9	0.5882 (2)	0.45412 (9)	0.7490 (3)	0.0218 (4)
H9A	0.5938	0.4425	0.6124	0.033*
H9B	0.6550	0.4227	0.8475	0.033*
H9C	0.6247	0.5012	0.7816	0.033*
C10	-0.0084 (2)	0.05009 (9)	0.7387 (3)	0.0200 (4)
H10A	-0.0436	0.0632	0.8565	0.030*
H10B	0.0007	0.0002	0.7344	0.030*
H10C	-0.0848	0.0660	0.6144	0.030*
C11	0.5657 (2)	0.15867 (9)	0.7809 (3)	0.0187 (4)
H11A	0.5598	0.1883	0.6639	0.028*
H11B	0.6370	0.1205	0.7803	0.028*
H11C	0.6051	0.1850	0.9063	0.028*
N1	-0.08677 (17)	0.30611 (7)	0.7608 (2)	0.0154 (3)
01	-0.08009 (15)	0.36827 (7)	0.7379 (2)	0.0252 (3)
O2	-0.20491 (15)	0.27751 (7)	0.7846 (2)	0.0236 (3)
O3	0.38271 (14)	0.38139 (6)	0.7701 (2)	0.0154 (3)
O4	0.33181 (16)	0.49408 (7)	0.7520 (2)	0.0257 (3)
O5	0.14161 (14)	0.08062 (6)	0.7543 (2)	0.0176 (3)
O6	0.41110 (14)	0.13243 (6)	0.7695 (2)	0.0164 (3)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0128 (8)	0.0155 (8)	0.0088 (8)	0.0001 (6)	0.0027 (6)	0.0011 (6)
C2	0.0112 (8)	0.0174 (8)	0.0137 (8)	0.0022 (6)	0.0046 (6)	0.0009 (6)
C3	0.0121 (8)	0.0174 (8)	0.0127 (8)	-0.0021 (6)	0.0037 (6)	0.0004 (6)
C4	0.0147 (8)	0.0137 (8)	0.0133 (8)	-0.0031 (6)	0.0040 (6)	0.0003 (6)
C5	0.0134 (8)	0.0152 (8)	0.0095 (8)	0.0014 (6)	0.0041 (6)	-0.0001 (6)
C6	0.0113 (8)	0.0160 (8)	0.0117 (8)	-0.0008 (6)	0.0043 (6)	-0.0002 (6)
C7	0.0105 (8)	0.0147 (8)	0.0177 (9)	-0.0003 (6)	0.0065 (6)	0.0002 (6)
C8	0.0161 (8)	0.0149 (8)	0.0164 (9)	-0.0025 (6)	0.0063 (7)	-0.0006 (6)
С9	0.0140 (8)	0.0182 (9)	0.0347 (11)	-0.0021 (7)	0.0094 (8)	-0.0009 (8)
C10	0.0173 (9)	0.0163 (8)	0.0271 (10)	-0.0074 (7)	0.0075 (7)	-0.0016 (7)
C11	0.0120 (8)	0.0170 (8)	0.0277 (10)	-0.0006 (6)	0.0065 (7)	-0.0011 (7)
N1	0.0113 (7)	0.0171 (7)	0.0177 (8)	-0.0005 (5)	0.0041 (6)	-0.0007 (5)
01	0.0179 (7)	0.0159 (6)	0.0437 (9)	0.0031 (5)	0.0119 (6)	0.0037 (6)
O2	0.0133 (6)	0.0236 (7)	0.0364 (8)	-0.0016 (5)	0.0111 (6)	0.0010 (6)
O3	0.0114 (6)	0.0131 (6)	0.0227 (7)	-0.0011 (4)	0.0063 (5)	0.0000 (5)
O4	0.0203 (7)	0.0141 (6)	0.0461 (9)	0.0008 (5)	0.0147 (6)	0.0018 (6)
O5	0.0160 (6)	0.0120 (6)	0.0264 (7)	-0.0022 (5)	0.0085 (5)	-0.0001 (5)
O6	0.0124 (6)	0.0137 (6)	0.0244 (7)	0.0013 (5)	0.0071 (5)	0.0005 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C2	1.399 (2)	C8—O3	1.356 (2)
C1—C6	1.405 (2)	C8—C9	1.494 (2)
C1—C7	1.512 (2)	С9—Н9А	0.9800
C2—C3	1.401 (2)	С9—Н9В	0.9800
C2—N1	1.456 (2)	С9—Н9С	0.9800
C3—C4	1.377 (2)	C10—O5	1.436 (2)
С3—Н3	0.9500	C10—H10A	0.9800
C4—O5	1.361 (2)	C10—H10B	0.9800
C4—C5	1.420 (2)	C10—H10C	0.9800
C5—O6	1.351 (2)	C11—O6	1.446 (2)
С5—С6	1.388 (2)	C11—H11A	0.9800
С6—Н6	0.9500	C11—H11B	0.9800
С7—ОЗ	1.4419 (19)	C11—H11C	0.9800
С7—Н7А	0.9900	N1—O1	1.229 (2)
С7—Н7В	0.9900	N1—O2	1.2390 (19)
C8—O4	1.204 (2)		
C2—C1—C6	116.20 (15)	O3—C8—C9	110.96 (15)
C2-C1-C7	124.21 (15)	С8—С9—Н9А	109.5
C6—C1—C7	119.59 (15)	C8—C9—H9B	109.5
C1—C2—C3	122.90 (15)	H9A—C9—H9B	109.5
C1-C2-N1	121.08 (15)	С8—С9—Н9С	109.5
C3—C2—N1	116.02 (15)	Н9А—С9—Н9С	109.5
C4—C3—C2	119.83 (15)	H9B—C9—H9C	109.5

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	120.1	O5-C10-H10A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	120.1	O5-C10-H10B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C4—C3	125.67 (15)	H10A-C10-H10B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—C4—C5	115.43 (15)	O5—C10—H10C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4—C5	118.90 (15)	H10A-C10-H10C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—C5—C6	125.00 (15)	H10B-C10-H10C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—C5—C4	114.87 (15)	O6—C11—H11A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C5—C4	120.12 (15)	O6—C11—H11B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C1	122.03 (15)	H11A—C11—H11B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—С6—Н6	119.0	O6—C11—H11C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С1—С6—Н6	119.0	H11A—C11—H11C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C7—C1	107.82 (13)	H11B—C11—H11C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C7—H7A	110.1	O1—N1—O2	122.43 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C7—H7A	110.1	O1—N1—C2	119.04 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C7—H7B	110.1	O2—N1—C2	118.53 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С1—С7—Н7В	110.1	C8—O3—C7	114.47 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7A—C7—H7B	108.5	C4—O5—C10	116.93 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—C8—O3	122.58 (16)	C5—O6—C11	117.20 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—C8—C9	126.45 (16)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C1—C2—C3	-0.7 (2)	C7—C1—C6—C5	-179.55 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C1—C2—C3	179.08 (16)	C2-C1-C7-O3	-179.18 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C1-C2-N1	178.95 (15)	C6—C1—C7—O3	0.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C1—C2—N1	-1.2 (3)	C1-C2-N1-O1	9.5 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—C3—C4	0.1 (3)	C3—C2—N1—O1	-170.83 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3—C4	-179.59 (15)	C1-C2-N1-O2	-170.13 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—C4—O5	-179.39 (16)	C3—C2—N1—O2	9.6 (2)
05C4C506 0.1 (2) $C9C803C7$ -176.69 (15) $C3C4C506$ 179.78 (15) $C1C703C8$ 175.79 (14) $05C4C5C6$ 178.91 (14) $C3C405C10$ 2.4 (3) $C3C4C5C6$ -1.4 (2) $C5C405C10$ -177.96 (15) $06C5C6C1$ 179.47 (15) $C6C506C11$ 2.1 (2) $C4C5C6C1$ 0.8 (2) $C4C506C11$ -179.17 (15)	C2—C3—C4—C5	1.0 (2)	O4—C8—O3—C7	2.5 (2)
C3-C4-C5-O6179.78 (15)C1-C7-O3-C8175.79 (14)O5-C4-C5-C6178.91 (14)C3-C4-O5-C102.4 (3)C3-C4-C5-C6-1.4 (2)C5-C4-O5-C10-177.96 (15)O6-C5-C6-C1179.47 (15)C6-C5-O6-C112.1 (2)C4-C5-C6-C10.8 (2)C4-C5-O6-C11-179.17 (15)	O5—C4—C5—O6	0.1 (2)	C9—C8—O3—C7	-176.69 (15)
O5-C4-C5-C6 $178.91 (14)$ $C3-C4-O5-C10$ $2.4 (3)$ $C3-C4-C5-C6$ $-1.4 (2)$ $C5-C4-O5-C10$ $-177.96 (15)$ $O6-C5-C6-C1$ $179.47 (15)$ $C6-C5-O6-C11$ $2.1 (2)$ $C4-C5-C6-C1$ $0.8 (2)$ $C4-C5-O6-C11$ $-179.17 (15)$	C3—C4—C5—O6	179.78 (15)	C1—C7—O3—C8	175.79 (14)
C3-C4-C5-C6 -1.4 (2) C5-C4-O5-C10 -177.96 (15 O6-C5-C6-C1 179.47 (15) C6-C5-O6-C11 2.1 (2) C4-C5-C6-C1 0.8 (2) C4-C5-O6-C11 -179.17 (15	O5—C4—C5—C6	178.91 (14)	C3—C4—O5—C10	2.4 (3)
O6—C5—C6—C1 179.47 (15) C6—C5—O6—C11 2.1 (2) C4—C5—C6—C1 0.8 (2) C4—C5—O6—C11 -179.17 (15)	C3—C4—C5—C6	-1.4 (2)	C5—C4—O5—C10	-177.96 (15)
C4—C5—C6—C1 0.8 (2) C4—C5—O6—C11 -179.17 (15	O6—C5—C6—C1	179.47 (15)	C6—C5—O6—C11	2.1 (2)
	C4—C5—C6—C1	0.8 (2)	C4—C5—O6—C11	-179.17 (15)
C2-C1-C6-C5 0.3 (2)	C2—C1—C6—C5	0.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11 <i>B</i> ···O4 ⁱ	0.98	2.50	3.369 (2)	147

Symmetry code: (i) -x+1, y-1/2, -z+3/2.

(yellow) 4,5-Dimethoxy-2-nitrobenzyl Acetate

Crystal data	
C ₁₁ H ₁₃ NO ₆	Hall symbol: -P 2ybc
$M_r = 255.22$	a = 10.476 (3) Å
Monoclinic, $P2_1/c$	<i>b</i> = 10.714 (3) Å

Cell parameters from 2424 reflections

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.13 \text{ mm}^{-1}$

Neecle, yellow

 $0.56 \times 0.54 \times 0.25 \text{ mm}$

9498 measured reflections

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ $h = -12 \rightarrow 12$

2058 independent reflections 1769 reflections with $I > 2\sigma(I)$

T = 93 K

 $R_{\rm int} = 0.033$

 $k = -12 \rightarrow 12$

 $l = -12 \rightarrow 12$

c = 10.266 (3) Å $\beta = 105.077 (10)^{\circ}$ $V = 1112.6 (6) \text{ Å}^3$ Z = 4 F(000) = 536 $D_x = 1.52 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$

Data collection

Rigaku Mercury375R (2x2 bin mode) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ profile data from ω -scan Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{min} = 0.797, T_{max} = 0.970$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters not refined
$w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.4454P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.22297 (15)	0.82305 (16)	0.58154 (16)	0.0158 (4)	
C2	0.29963 (16)	0.88543 (15)	0.69423 (17)	0.0154 (4)	
C3	0.37895 (16)	0.82230 (16)	0.80564 (16)	0.0168 (4)	
H3	0.4307	0.8681	0.8801	0.020*	
C4	0.38181 (16)	0.69396 (16)	0.80717 (16)	0.0167 (4)	
C5	0.30317 (15)	0.62775 (16)	0.69555 (17)	0.0154 (4)	
C6	0.22676 (16)	0.69258 (16)	0.58567 (16)	0.0158 (4)	
H6	0.1754	0.6469	0.5109	0.019*	

C7	0.13844 (16)	0.88840 (15)	0.45857 (17)	0.0166 (4)
H7A	0.0754	0.9456	0.4852	0.020*
H7B	0.1948	0.9379	0.4140	0.020*
C8	-0.01205 (16)	0.83679 (16)	0.25084 (16)	0.0175 (4)
C9	-0.08377 (18)	0.73342 (16)	0.16403 (18)	0.0216 (4)
H9A	-0.1781	0.7378	0.1603	0.032*
H9B	-0.0481	0.6529	0.2022	0.032*
H9C	-0.0721	0.7418	0.0728	0.032*
C10	0.53711 (16)	0.68572 (16)	1.02246 (16)	0.0186 (4)
H10A	0.6026	0.7354	0.9923	0.028*
H10B	0.5826	0.6245	1.0895	0.028*
H10C	0.4834	0.7409	1.0630	0.028*
C11	0.22990 (18)	0.43083 (16)	0.59702 (17)	0.0211 (4)
H11A	0.1368	0.4538	0.5832	0.032*
H11B	0.2410	0.3417	0.6185	0.032*
H11C	0.2574	0.4480	0.5146	0.032*
01	0.23683 (12)	1.08224 (11)	0.60592 (12)	0.0219 (3)
O2	0.36433 (12)	1.07109 (11)	0.80903 (12)	0.0228 (3)
O3	0.06713 (11)	0.79354 (11)	0.36698 (12)	0.0186 (3)
O4	-0.02320 (12)	0.94638 (11)	0.22241 (12)	0.0229 (3)
O5	0.45330 (11)	0.62196 (11)	0.90924 (12)	0.0183 (3)
O6	0.30975 (12)	0.50251 (11)	0.70663 (12)	0.0187 (3)
N1	0.30069 (14)	1.02142 (14)	0.70366 (14)	0.0175 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0163 (8)	0.0161 (8)	0.0155 (8)	0.0025 (6)	0.0052 (7)	0.0004 (6)
C2	0.0196 (8)	0.0084 (8)	0.0189 (9)	0.0000 (6)	0.0064 (7)	-0.0011 (6)
C3	0.0179 (8)	0.0159 (8)	0.0154 (8)	-0.0026 (7)	0.0023 (7)	-0.0015 (6)
C4	0.0189 (8)	0.0155 (9)	0.0149 (8)	0.0008 (7)	0.0031 (7)	0.0008 (6)
C5	0.0163 (8)	0.0136 (9)	0.0158 (8)	-0.0006 (6)	0.0033 (7)	-0.0002 (6)
C6	0.0177 (8)	0.0137 (9)	0.0153 (8)	-0.0009 (6)	0.0033 (7)	-0.0023 (6)
C7	0.0193 (8)	0.0115 (8)	0.0163 (8)	-0.0006 (6)	0.0000(7)	-0.0022 (6)
C8	0.0169 (8)	0.0188 (9)	0.0148 (8)	0.0001 (7)	0.0006 (7)	0.0014 (7)
C9	0.0233 (9)	0.0158 (9)	0.0212 (9)	0.0007 (7)	-0.0025 (7)	0.0003 (7)
C10	0.0199 (8)	0.0181 (9)	0.0144 (8)	-0.0017 (7)	-0.0018 (7)	-0.0009 (7)
C11	0.0278 (9)	0.0134 (9)	0.0188 (9)	-0.0016 (7)	0.0000 (7)	-0.0029 (6)
01	0.0277 (7)	0.0145 (6)	0.0204 (7)	0.0032 (5)	0.0009 (5)	0.0035 (5)
O2	0.0307 (7)	0.0153 (7)	0.0189 (7)	-0.0016 (5)	-0.0001 (5)	-0.0052 (5)
O3	0.0215 (6)	0.0127 (6)	0.0173 (6)	0.0004 (5)	-0.0027 (5)	-0.0002 (5)
O4	0.0277 (7)	0.0140 (6)	0.0229 (7)	0.0001 (5)	-0.0008(5)	0.0031 (5)
O5	0.0222 (6)	0.0131 (6)	0.0146 (6)	-0.0007 (5)	-0.0040 (5)	0.0008 (5)
O6	0.0245 (6)	0.0095 (6)	0.0183 (6)	-0.0001 (5)	-0.0013 (5)	-0.0001 (4)
N1	0.0195 (7)	0.0153 (8)	0.0168 (7)	-0.0007 (6)	0.0029 (6)	-0.0007 (6)

Geometric parameters (Å, °)

C1—C2	1.395 (2)	C8—O3	1.345 (2)	
C1—C6	1.399 (2)	C8—C9	1.496 (2)	
C1—C7	1.512 (2)	С9—Н9А	0.9800	
С2—С3	1.401 (2)	С9—Н9В	0.9800	
C2—N1	1.460 (2)	С9—Н9С	0.9800	
C3—C4	1.375 (3)	C10—O5	1.4344 (19)	
С3—Н3	0.9500	C10—H10A	0.9800	
C4—O5	1.359 (2)	C10—H10B	0.9800	
C4—C5	1.416 (2)	C10—H10C	0.9800	
C5—O6	1.347 (2)	C11—O6	1.437 (2)	
С5—С6	1.388 (2)	C11—H11A	0.9800	
С6—Н6	0.9500	C11—H11B	0.9800	
С7—ОЗ	1.4524 (19)	C11—H11C	0.9800	
C7—H7A	0.9900	O1—N1	1.2368 (19)	
С7—Н7В	0.9900	O2—N1	1.2339 (19)	
C8—O4	1.208 (2)			
C2-C1-C6	116.61 (15)	O3—C8—C9	111.81 (14)	
C2—C1—C7	123.79 (16)	С8—С9—Н9А	109.5	
C6—C1—C7	119.60 (14)	С8—С9—Н9В	109.5	
C1—C2—C3	122.48 (16)	H9A—C9—H9B	109.5	
C1-C2-N1	121.72 (15)	С8—С9—Н9С	109.5	
C3—C2—N1	115.79 (15)	H9A—C9—H9C	109.5	
C4—C3—C2	119.91 (15)	H9B—C9—H9C	109.5	
С4—С3—Н3	120.0	O5—C10—H10A	109.5	
С2—С3—Н3	120.0	O5—C10—H10B	109.5	
O5—C4—C3	125.62 (15)	H10A—C10—H10B	109.5	
O5—C4—C5	115.33 (15)	O5—C10—H10C	109.5	
C3—C4—C5	119.04 (15)	H10A—C10—H10C	109.5	
O6—C5—C6	124.98 (15)	H10B—C10—H10C	109.5	
O6—C5—C4	115.13 (14)	O6—C11—H11A	109.5	
C6—C5—C4	119.89 (16)	O6—C11—H11B	109.5	
C5—C6—C1	122.05 (15)	H11A—C11—H11B	109.5	
С5—С6—Н6	119.0	O6—C11—H11C	109.5	
С1—С6—Н6	119.0	H11A—C11—H11C	109.5	
O3—C7—C1	107.90 (13)	H11B—C11—H11C	109.5	
O3—C7—H7A	110.1	C8—O3—C7	115.31 (13)	
C1—C7—H7A	110.1	C4—O5—C10	116.94 (13)	
О3—С7—Н7В	110.1	C5—O6—C11	117.37 (13)	
С1—С7—Н7В	110.1	O2—N1—O1	122.61 (15)	
H7A—C7—H7B	108.4	O2—N1—C2	118.78 (14)	
04—C8—O3	123.19 (15)	O1—N1—C2	118.60 (13)	
O4—C8—C9	125.01 (15)			
	1.0 (0)			
$C_{0} - C_{1} - C_{2} - C_{3}$	1.2 (2)	C' - C1 - C6 - C5	179.61 (14)	
C/-C1-C2-C3	-178.75(15)	C2-C1-C7-O3	-176.32 (14)	

C6-C1-C2-N1 C7-C1-C2-N1 C1-C2-C3-C4 N1-C2-C3-C4 C2-C3-C4-C5 O5-C4-C5-O6 C3-C4-C5-O6 O5-C4-C5-C6 O5-C4-C5-C6 O6-C5-C6-C1 C4-C5-C6-C1 C4-C5-C6-C1	-178.07 (14) 2.0 (2) -0.8 (2) 178.48 (15) -179.33 (14) -0.4 (2) 0.4 (2) -178.65 (15) -179.73 (14) 1.3 (2) 179.03 (15) -0.9 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.7 (2) $0.8 (2)$ $-178.75 (13)$ $-179.24 (13)$ $-2.8 (2)$ $178.28 (13)$ $-1.0 (2)$ $178.91 (13)$ $175.79 (14)$ $-3.5 (2)$ $-3.7 (2)$ $177.02 (14)$
C4—C5—C6—C1 C2—C1—C6—C5	-0.9(2) -0.3(2)	C3—C2—N1—O1	177.02 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9 <i>B</i> ···O4 ⁱ	0.98	2.40	3.375 (2)	174
C10—H10 <i>B</i> ···O6 ⁱⁱ	0.98	2.51	3.472 (2)	169

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x+1, -y+1, -z+2.