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Introduction
Pseudouridine (Ψ) is the first discovered1 and the most abun-
dant RNA modification2 that has been widely studied in the 
past decades. To date, 13 pseudouridine synthases (PUSs) have 
been identified, which are responsible for the catalytic reactions 
of Ψ sites in various RNA types,3-7 as well as its differential 
functions in nuclear miRNA processing.8 It has been shown 
that pseudouridylation in the rRNA and tRNA can maintain 
the ribosome entry sites9 and stabilize its structure.10 
Pseudouridylation of tRNA-derived fragments were also found 
to impact stem cell commitment during early embryogenesis 
through translation control.11 In mRNA, Ψ is contributed to 
the regulation of transcript stability,12 translation efficiency, and 
RNA immune response.13 The mRNA structure was proved to 
be recognized as the target of PUS 1, which implicates that 
modulation of RNA structure may be a possible mechanism to 
regulate mRNA pseudouridylation.14 Pseudouridine was also 
found to be responded to environmental changes like serum 
starvation and been regulated by those signals accordingly.15 In 
the mouse model, the associations between diseases and abnor-
mal pseudouridylation have been reported.16-18 For example,  
the sequence-specific pseudouridylation of ribosomal RNAs is 

linked to the growth and metastasis of xenograft tumors.16 The 
mutation of DKC1, a Ψ synthase (PUS) that affects the accu-
mulation of telomerase RNA,17 can lead to dyskeratosis con-
genita (DC) and cancer.18

Currently, the transcriptome-wide distribution of Ψ RNA 
modification has been profiled by several types of high-
throughput sequencing techniques, which contains Pseudo-
seq,15 Ψ-seq,12 PSI-seq,19 CeU-seq,20 and ribosomal binding 
site (RBS)-seq.21 The first 4 approaches were developed with 
similar principles, in which RNA is treated with the 
N-cyclohexyl-N′-(2-morpholinoethyl)-carbodiimide-metho-
p-toluenesulfonate (CMC), and the reverse transcription is 
stopped on Ψ position by the presence of a bulky group. As a 
recently developed novel Ψ site-detection approach, the RBS-
seq21 is realized based on a modified version of the RNA 
bisulfite sequencing, which could result in better sensitivity. 
Although thousands of experimentally validated Ψ sites were 
revealed by the 5 sequencing techniques mentioned above, only 
2 mouse Ψ data sets are publicly available, while both of them 
are identified by CeU-seq technique. Several computational 
models have been developed22-27 to support the prediction of 
mouse Ψ sites in a given RNA transcript. However, all those 
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methods are based on sequence-derived features. The pub-
lished prediction models were reported to have reasonable per-
formances, but their accuracy still has room for improvement. 
Moreover, it is worth noting that, in a more recent study, Dou 
et  al applied a feature extraction approach bi-profile Bayes 
(BPB)28 to obtain sequence information from both positive 
and negative RNA sequences.29 Interestingly, their results con-
cluded that the overall performances for Ψ identification using 
BPB features as well as the combined features (a combination 
of sequence and BPB features) were not obviously enhanced, 
with the general accuracies ranging from 60% to 70%. 
Therefore, it is highly desirable to develop a high-accuracy 
approach for the identification of Ψ modification in mouse 
transcriptome, not only for taking the best use of experimen-
tally detected data but also to further improve the real-life bio-
logical usages of Ψ predictors.

In this study, we first introduced genome-derived informa-
tion to the predictive framework of Ψ RNA modification in 
the mouse transcriptome. The genomic feature was first 
introduced and implemented in research for human m6A site 
prediction,30 which achieved a marked improvement in per-
formance compared with previously sequence-based only 
predictors. In a more recent study, the combination of genomic 
and sequence features was applied to site prediction work of 
human Ψ RNA modification,31 which validated the consist-
ent performance of genome-derived information in a differ-
ent type of human RNA modification. However, both these 2 
studies focused on human transcriptome only, no evidence 
was found if genome-derived features work equally effective 
in a species other than human. In our study PSI-MOUSE, we 
extracted 38 genomic features from mouse transcripts. 
Combining the hand-crafted features with conventional 
sequence-based information, a high-accuracy mouse Ψ site 
predictor was established. We further trained and validated 
our predictive framework in the yeast genome and compared 
the performance with other competing methods. PSI-
MOUSE also systematically checks whether the putative Ψ 
sites localize in regions with various post-transcriptional reg-
ulation factors, that is, RNA-binding protein (RBP)-binding 
regions, miRNA targets, and splicing sites, which can serve as 
a useful computational approach to facilitate the study of 
mouse Ψ RNA modification. The web-based server of PSI-
MOUSE is freely accessed at www.xjtlu.edu.cn/biologicals-
ciences/psimouse and http://psimouse.rnamd.com.

Materials and Methods
Training and testing data

The known base-resolution mouse Ψ sites used for training 
and benchmarking were obtained from CeU-seq (Table 1) 
downloaded from Gene Expression Omnibus (GEO), we then 
filtered the experimentally validated Ψ sites to remain only 
those located on known transcripts for the extraction of 
genomic features. For the extraction of negative data, the 
unmodified U sites located on the same transcripts of positive 
Ψ sites were randomly selected. To fully utilize the underrepre-
sented positive data, we match 10 negative sites for each of the 
positive site, from which 10 separate predictors were estab-
lished with 1:1 positive-to-negative ratio, and their prediction 
performances were averaged during the evaluation. The known 
mouse Ψ sites from CeU-seq were detected under 2 independ-
ent conditions (brain and liver, see Table 1). In order to perform 
data set-level leave-one-out cross-validation, data set M1 was 
used for training first, while its performance was validated by 
data set M2 generated under another condition. Subsequently, 
data set M2 was used for training, with data set M1 for inde-
pendent testing.

In order to faithfully compare the performance of our 
approach with competing methods, we further used the mouse 
and yeast Ψ data sets collected from Chen et  al’s23 study 
(Supplementary Table S1), which were also applied as bench-
mark data sets in many previous published studies.25-27

Feature extraction

Genome-derived features. The previous Ψ predictors were all 
developed by extracting sequence-based information from 
RNA segments. Inspired by the successful application of 
genomic features used in human m6A prediction, a total of 38 
mouse and 22 yeast genome-derived features were generated to 
capture the attributes of the transcriptomic topologies for Ψ 
sites. The Genomic Features R/Bioconductor package with 
transcript annotations mm10 TxDb package and sacCer3 
TxDb package32 were used to generate Genomic Features 
1-16, which are dummy variables indicating the overlapping 
state with the corresponding transcriptomic regions. We 
checked whether the uridine sites localize in a variety of types 
of topological features, that is, 5′UTR, 3′UTR, and intron. In 
order to overcome the isoform ambiguity from the annotation, 
only the transcript sub-regions on the primary (longest) 

Table 1. Base-resolution data set used for Ψ site prediction.

SPECiES DaTa SET iD CELL LiNE SiTE # OVERLaPPED # TEChNiqUE SOURCE

Mouse M1 Brain 1566 46 CeU-Seq Li et al20

M2 Liver 1484

all the mouse Ψ data sets from CeU-Seq can be freely downloaded from PSi-MOUSE website. Only the Ψ sites not previously used as training data were considered 
during performance evaluation, so the training sites and testing sites did not overlap.

www.xjtlu.edu.cn/biologicalsciences/psimouse
www.xjtlu.edu.cn/biologicalsciences/psimouse
http://psimouse.rnamd.com
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transcripts of each gene were extracted. The second category of 
features (number 17-20) calculates the relative position of uri-
dine sites in the transcript regions. The features are real num-
bered values between 0 and 1, where the value close to 0 
indicates the relative approximation with the 5′ start of the 
region. The values are set to 0 if the sites do not belong to this 
region. Genomic features 21 to 25 calculate the length of the 
corresponding transcript regions where uridine sites localize. 
The values are also set to 0 for the sites not overlapping with 
the transcript region. The distances between uridine to the 
splicing junctions and the nearest Ψ site are captured in fea-
tures 26 to 29. The clustering status of uridine sites was pre-
sented in features 30 and 31, which were defined by the number 
of neighboring uridine sites within the 100 bp and 1000 bp 
flanking regions of the target uridine sites. Besides, the RNA 
secondary structures around the uridine site are predicted using 
RNAfold with the Vienna RNA package33 and presented in 
features 32 and 33. Finally, the various functional properties of 
the transcripts containing the Ψ RNA modification were rep-
resented by features 34 to 38, such as the number of isoforms 
and the transcript types of the coding. The detailed informa-
tion of all genomic features we used in the Ψ site prediction 
was listed in Table 2.

Sequence-derived feature. To try to achieve the best perfor-
mance in accuracy, 2 kinds of sequence-based features were also 
extracted and combined with genomic features mentioned 
above. The chemical properties of nucleotides and nucleotide 
density were first created and used for splice site prediction34 
and then being widely used in the predictive framework of 
RNA modification.35-37 For chemical properties, the 4 types of 
nucleotides were classified into 3 categories. First, the adeno-
sine and guanosine have 2 rings in their structure, while the 
cytidine and uridine only have one ring. Second, the guanosine 
and cytidine have stronger hydrogen bonding than that of 
adenosine and uridine. And finally, adenosine and cytidine 
contain the amino group, while guanosine and uridine contain 
the keto group. Based on these 3 principles, the ith nucleotide 
from sequence S may be encoded by a vector S x y zi i i i= ( , , )
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Thus, the A, C, G, U can be encoded as a vector (1,1,1), 
(0,1,0), (1,0,0), and (0,0,1), respectively. For the nucleotide 
density, the cumulative nucleotide frequency of nucleotide in 
ith position is calculated. The density of nucleotide in ith posi-
tion is defined as the occurrences of the nucleotide Ai  before 
i +1  position divided by its position i: d A i.i i= /  If we take 
the RNA fragment “GAUACGCUA” as an example, the 
cumulative frequency of adenosine at the second, fourth, and 

ninth position is encoded as .50 (1/2), .50 (2/4), and .33 (3/9), 
respectively; and for cytidine is .20 (1/5) and .29 (2/7) at the 
fifth and seventh position of the example sequence.

Machine-learning approach used for Ψ site 
prediction

Support vector machine (SVM) has been widely applied for 
the prediction of genomic and proteomic data in computa-
tional biology, such as the microRNA target prediction,38 and 
protein phosphorylation prediction.39 In terms of RNA modi-
fication, the SVM was also used in previous m6A,40 m5C,41 
and m1A42 prediction and was shown to be a robust and effec-
tive machine-learning algorithm. In this project, the R inter-
face of LIBSVM was used to build the predictor using the 
kernel of radial basis function.43 In the data set-level leave-
one-out experiment, only the Ψ sites not previously used as 
training data were considered in independent testing, which 
avoided the leakage between the training and testing data. 
Consequently, the performance evaluated on the testing data 
can justly reflect the ability of the purposed predictor to iden-
tify unknown Ψ sites.

Model performance evaluation

To evaluate the performance, we calculated the receiver operat-
ing characteristic (ROC) curve (sensitivity against 1-specific-
ity) and the area under ROC curve (AUROC) as the main 
performance evaluation metric. The sensitivity (Sn), specificity 
(Sp), Matthews correlation coefficient (MCC), and overall 
accuracy (ACC) were calculated as other indicators to evaluate 
the reliability of the model. All the prediction processing is 
based on R language. To compare the performance of the newly 
proposed model with the existing Ψ site predictors, we repro-
duced the machine learning scaffold of PPUS, iRNA-PseU, 
and PseUI by realizing each of their sequence-based encoding 
methods, and the predictors are learned with the training data 
used in our study

 Sn TP
TP FN

=
+

 (2)

 Sp TN
TN FP

=
+

 (3)

 MCC TP TN FP FN
TP FP TP FN TN FP
TN FN

=
× − ×

+ × + × +
× +
( ) ( ) ( )

( )

 (4)

 ACC TP TN
TP TN FP FN

=
+

+ + +
 (5)

where TP represents the true positive, while TN represents the 
true negative; FP is the number of false positives, and FN the 
number of false negatives.
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Table 2. Genome-derived features used for mouse and yeast Ψ site prediction.

iD NaME DESCRiPTiON NOTE SPECiES

1 UTR5 5′ UTR Dummy variables indicating 
whether the site is 
overlapped to the 
topological region on the 
major RNa transcript.

Mouse only

2 UTR3 3′ UTR

3 cds Coding sequence Mouse and yeast

4 Stop_codons Stop codons flanked by 100 bp

5 Start_codons Start codons flanked by 100 bp

6 TSS Downstream 100 bp of TSS

7 TSS_A Downstream 100 bp of TSS on A

8 exon_stop Exons containing stop codons

9 alternative_exon alternative exons Mouse only

10 constitutive_exon Constitutive exons Mouse and yeast

11 internal_exon internal exons Mouse only

12 long_exon long exons (exon length ⩾ 400 bp) Mouse and yeast

13 last_exon 5′ last_exon

14 last_exon_400 bp 5′ 400 bp of the last exons

15 last_exon_sc400 5′ 400 bp of the last exons containing stop codons Mouse only

16 intron intron

17 pos_cds Relative position on coding sequence Relative position on the 
region

Mouse and yeast

18 pos_UTR5 Relative position on 5′ UTR Mouse only

19 pos_UTR3 Relative position on 3′ UTR

20 pos_exons Relative position on exon Mouse and yeast

21 length_UTR5 5′ UTR length The region length in bp. Mouse only

22 length_UTR3 3′ UTR length

23 length_gene_ex Mature transcript length Mouse and yeast

24 length_cds Coding sequence length

25 length_gene_full Full transcript length

26 dist_sj_5_p2000 Distance to the 5′ splicing junction Nucleotide distances toward 
the splicing junctions or the 
nearest neighboring sites.27 dist_sj_3_p2000 Distance to the 3′ splicing junction

28 dist_nearest_p200 Distance to the closest neighbor truncated at 200 bp Mouse only

29 dist_nearest_p2000 Distance to the closest neighbor truncated at 2000 bp

30 clust_f100 Clustering information at 100 pb Clustering information of 
modification sites

Mouse and yeast

31 clust_f1000 Clustering information at 1000 pb

32 struc_hybridize Predicted RNa hybridized region RNa secondary structures Mouse only

33 struc_loop Predicted RNa loop region

34 sncRNa sncRNa Genomic properties

35 lncRNa lncRNa

36 isoform_num number of isoforms Mouse and yeast

37 exon_num number of exons

38 GC_cont_genes GC composition of genes

Genomic features generated from both mouse and yeast genome are in bold.
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Estimate the probability of mouse Ψ RNA 
modification

In our study, the likelihood ratio (LR) is used to indicate how 
likely the computationally predicted result to be a true Ψ 
RNA modification. A LR of “100” suggests that it is an exper-
imentally validated ψ site. The calculation of LR is showed as 
follows

 LR
P observation
P observation

=
( )
( )

|

|

Ψ
U  (6)

The statistical significance of LR is assessed by an upper 
bound of the p value. It indicates how extreme the observed LR 
is among all the mouse transcriptome U sites. It is calculated 
from the relative ranking of the putative Ψ sites, that is, if only 
0.1% of U sites have an LR score larger than a specific U site, 
then the upper bound of the p value of this site is .001. A tran-
scriptome-wide prediction of mouse Ψ site was applied using 
PSI-MOUSE, a putative Ψ site is considered as high confi-
dence if its LR within top 0.5% of LR (corresponding to p 
value < .005) of all the transcriptome U sites, followed by 
medium confidence (.005 < p value < .05) and low confidence 
(p value > .05).

Gene annotation and posttranscriptional regulation 
association analysis

To help academic users gain a more comprehensive under-
standing of the predicted mouse Ψ sites, various types of func-
tional genomic information were automatically annotated in 
PSI-MOUSE for each putative Ψ site using ANNOVAR 
package,44 that is, gene symbol, Ensembl gene ID, gene region, 
and gene type. PSI-MOUSE also checks whether the putative 
Ψ sites localized in regions with RBPs, miRNA-RNA targets, 
and splice sites, which help users to explore the potential effect 
of Ψ RNA modification on posttranscriptional regulation. The 
RBPs regions were obtained from POSTAR2,45 the miRNA-
RNA targets were downloaded from miRanda46 and star-
Base2,47 and the Canonical splice sites (GT-AG) from UCSC32 
annotations. For splicing sites analysis, specifically, we expanded 
100 bp upstream region from 5′ splicing sites and 100 bp down-
stream region from 3′ splicing sites, the putative Ψ sites were 
then mapped with these regions. The Supplementary Table S2 
shows detailed information related to posttranscriptional regu-
lation analysis.

Results
As the process of RNA library preparation for existing data sets 
was based on polyA selection, to avoid the under-representation 
of the intronic Ψ sites in the data, we designed 2 modes for 
mouse Ψ site prediction. For the mature mRNA mode, the 
positive and negative Ψ sites mapped to intron regions were 
both filtered to only remain the sites localized on the mature 
mRNA transcripts. While for the full transcript mode, all Ψ 

sites were considered in the prediction. Consequently, the per-
formance of the predictor was evaluated under these 2 modes, 
respectively. In addition, we applied feature selection to identify 
the most significant subset of features, which was implemented 
using Perturb method.48 The functional insights of genomic 
features in our tool can be reflected by the feature importance 
plot. The feature importance scores can indicate the scientific 
significance of genomic markers in terms of its predictability for 
Ψ. According to the rank of the importance, the N most signifi-
cant features were reserved in the prediction and evaluated with 
5-fold cross-validation. In the process of feature selection, the Ψ 
sites from mouse brain data set were used as training data, while 
the mouse liver Ψ sites were used for testing purposes. Finally, 
the top 26 and 28 genomic features contribute to the best pre-
diction performance under mouse full transcript and mature 
mRNA model, respectively (see Figure 1).

We observed that our approach PSI-MOUSE achieved 
remarkable improvement in prediction accuracy compared with 
existing encoding methods for Ψ prediction when tested on 
5-fold cross-validation and independent data sets (see Table 3). 
Besides, the SVM algorithm applied in our PSI-MOUSE 
model, we further re-built predictors using 4 other machine-
learning approaches, which are Random Forest, Naïve Bayes, 
decision tree, and generalized linear model. When tested on 
independent data sets, our model, PSI-MOUSE, achieved a 
better performance than the competitive predictors in all condi-
tions (Table 4). This result suggested that the features used by 
the prediction model contribute to most of the predictive power, 
and the impact of machine-learning algorithm is limited. The 
detailed evaluation by the sensitivity, specificity, ACC, and 
MCC were summarized in Supplementary Table S3 and S4 for 
the full-transcript model and mRNA model, respectively.

Besides, the study of iPseU-CNN,27 iPseU-NCP,25 and 
XG-PseU26 all used data sets from Chen et al’s study to develop 
and validate their predictive pipelines. To faithfully compare 
the performance of our approach with these competing meth-
ods, we further trained and tested our predictive framework 
using data sets from Chen et al’s study. For mouse Ψ site pre-
diction, data set M_944 was used for training purpose and 
tested on 5-fold cross-validation. Consistent with previous 
results, PSI-MOUSE achieved a major improvement in all 
conditions compared with other state-of-the-art predictors 
(Table 5), suggesting the reliability of the approach. For Ψ site 
prediction in yeast genome, data set S_628 was used to train 
the predictor, while its performance was tested on independent 
testing data set S_200. When tested on 5-fold cross-validation 
and independent data set, we observed that our approach, 
which integrated additional genomic features besides the con-
ventional sequence features, achieved reasonable improvement 
in prediction performance compared with other competing 
predictors, respectively (Supplementary Table S5). To sum up, 
for the first time, we generated genome-derived features from 
mouse and yeast transcriptome, respectively. The predictive 
framework achieved satisfactory improvement compared with 
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Table 3. Performance evaluation of mouse Ψ site predictors (aUROC).

MODE TESTiNG METhOD PREDiCTOR BaSE-RESOLUTiON TEChNiqUE aND DaTa SET iD

CeU-Seq

BRaiN LiVER aVERaGE

Full transcript Cross-validation PSi-MOUSE 0.982 0.982 0.982

iRNa-PseU 0.798 0.791 0.795

PPUS 0.795 0.789 0.792

PseUi 0.715 0.701 0.708

independent data set PSi-MOUSE 0.981 0.981 0.981

iRNa-PseU 0.779 0.778 0.778

PPUS 0.791 0.789 0.790

PseUi 0.698 0.703 0.701

Mature mRNa Cross-validation PSi-MOUSE 0.943 0.948 0.945

iRNa-PseU 0.799 0.790 0.794

PPUS 0.794 0.789 0.792

PseUi 0.676 0.664 0.670

independent data set PSi-MOUSE 0.932 0.927 0.929

iRNa-PseU 0.784 0.786 0.785

PPUS 0.775 0.777 0.776

PseUi 0.653 0.657 0.655

abbreviation: aUROC, area under ROC curve.
Using the sequence-based encoding methods described in each existing predictor, we faithfully reproduced the iRNa-PseU, PPUS, and PseUi using the same training 
data of PSi-MOUSE. The 5-folds cross-validation and independent data set testing were performed to evaluate prediction accuracy under full-transcript and mature 
mRNa modes, respectively. When the independent data set testing was performed, the observations used for testing were excluded from the training data.

Figure 1. Feature selection of the genome-derived features for mouse Ψ site prediction. Top 26 and 28 genomic features were used in further prediction 

under mouse full transcript model (a) and mouse mature mRNa model (B), respectively. mRNa indicates messenger RNa.
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previous published predictors, marking the reliable contribu-
tions of genomic features for the prediction of RNA modifica-
tions in species other than human.

Web server interface

A web server for our newly purposed model was built using 
Hyper Text Markup Language (HTML), cascading style sheets 
(CSSs), and hypertext preprocessor (PHP). All the components 
of PSI-MOUSE can be easily accessed through the homepage 
of PSI-MOUSE (see Figure 2). The webserver of PSI-MOUSE 
provides different prediction modes, which allows users to cus-
tomize their prediction under different pipelines, that is, 2 fea-
ture sets, various combinations of annotation methods. Users can 
upload either genome coordinate in txt format, or the FASTA 
file containing RNA sequences as the input of PSI-MOUSE. 
The database of PSI-MOUSE collected 3282 experimentally 
validated mouse Ψ sites, users can also query the database by 

Gene and Chromosome region. All the materials presented in 
the database and web server can be freely downloaded. PSI-
MOUSE is freely accessed at www.xjtlu.edu.cn/biologicals-
ciences/psimouse and http://psimouse.rnamd.com.

Discussion
With the massive amount of data generated from various types of 
high-throughput sequencing techniques, many computational 
methods have been developed to facilitate the research of RNA 
modification, such as site prediction and data collection works,49-53 
RNA modification-associated genetic variants analysis tools,54,55 
as well as functional annotation tools.56-59 In this study, we innova-
tively represented 38 RNA topological features on the mouse 
genome, and a prediction framework PSI-MOUSE was built 
upon them. Compared with existing works that based on 
sequence-derived features only, PSI-MOUSE achieved a signifi-
cant improvement in performance accuracy, indicating the suc-
cessful application of genome-derived features in the mouse 

Table 4. Performance on an independent data set using different machine-learning algorithms (aUROC).

iNDEPENDENT TESTiNG (aVERaGE)

PSi-MOUSE iRNa-PseU PPUS PseUi

Full transcript SVM 0.981 0.778 0.790 0.701

RF 0.984 0.787 0.789 0.802

GLM 0.977 0.777 0.775 0.724

NB 0.976 0.684 0.774 0.684

DT 0.967 0.710 0.687 0.658

Mature mRNa SVM 0.929 0.785 0.776 0.655

RF 0.945 0.782 0.788 0.796

GLM 0.942 0.777 0.772 0.719

NB 0.898 0.684 0.772 0.706

DT 0.901 0.719 0.704 0.670

abbreviations: aUROC, area under ROC curve; DT: decision tree; GLM: generalized linear model; NB: Naïve Bayes; RF: random forest; SVM: support vector machine.
The iRNa-PseU, PPUS, and PseUi were rebuilt using the same training data of PSi-MOUSE with their own sequence-based encoding methods.

Table 5. Performance evaluation of mouse Ψ predictors using data set M_944.

MODEL TRaiNiNG DaTa SET 5-FOLD CROSS-VaLiDaTiON

aCC (%) MCC Sn (%) Sp (%)

PSi-MOUSE M_944 91.97 0.84 86.62 97.31

iRNa-PseU 69.07 0.38 73.31 64.83

PseUi 70.44 0.41 74.58 66.31

iPseU-CNN 71.81 0.44 74.49 69.11

iPseU-NCP 71.82 0.44 67.37 76.27

XG-PseU 72.03 0.45 76.48 67.57

abbreviations: aCC, accuracy; MCC, Matthews correlation coefficient; Sn, sensitivity; Sp, specificity.

www.xjtlu.edu.cn/biologicalsciences/psimouse
www.xjtlu.edu.cn/biologicalsciences/psimouse
http://psimouse.rnamd.com
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transcriptome. In addition, 3282 experimentally validated mouse 
Ψ sites with functional annotations were also collected in our 
work.

However, the mouse experimentally validated Ψ sites are 
only available in 2 conditions detected from the same sequenc-
ing technique, and thus, the prediction performance may be 
over-estimated. Besides, we further validated our approach 
using mouse and yeast Ψ data sets collected from Chen et al’s 
study, which were also applied in many state-of-the-art Ψ site 
prediction studies. We observed a remarkable improvement of 
prediction accuracy in the mouse genome, as well as a rela-
tively minor bonus in the yeast genome. The genomic features 
derived from annotation file of yeast transcript were obviously 
less than that of from mouse transcript; therefore, the applica-
tion of genomic features in yeast can be further studied, and 
the performance of yeast Ψ site predictor can still be improved 
by deriving more informative genomic patterns from yeast 
genome. In future research, PSI-MOUSE will be further 
updated with more experimental identified Ψ sites detected 
under multiple technical contexts. In addition, the PSI-
MOUSE scheme can be further expanded to the prediction of 
other RNA modification such as m1A60 and m7G.61
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