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Abstract

The Acidobacteriota is ubiquitous and is considered as one of the major bacterial phyla in

soils. The current taxonomic classifications of this phylum are divided into 15 class-level

subdivisions (SDs), with only 5 of these SDs containing cultured and fully described species.

Within the fynbos biome, the Acidobacteriota has been reported as one of the dominant bac-

terial phyla, with relative abundances ranging between 4–26%. However, none of these

studies reported on the specific distribution and diversity of the Acidobacteriota within these

soils. Therefore, in this study we aimed to first determine the relative abundance and diver-

sity of the Acidobacteriota in three pristine fynbos nature reserve soils, and secondly,

whether differences in the acidobacterial composition can be attributed to environmental

factors, such as soil abiotic properties. A total of 27 soil samples were collected at three

nature reserves, namely Jonkershoek, Hottentots Holland, and Kogelberg. The variable V4-

V5 region of the 16S rRNA gene was sequenced using the Ion Torrent S5 platform. The

mean relative abundance of the Acidobacteriota were 9.02% for Jonkershoek, 14.91% for

Kogelberg, and most significantly (p<0.05), 18.42% for Hottentots Holland. A total of 33

acidobacterial operational taxonomic units (OTUs) were identified. The dominant subdivi-

sions identified in all samples included SDs 1, 2, and 3. Significant differences were

observed in the distribution and composition of these OTUs between nature reserves. The

SD1 were negatively correlated to soil pH, hydrogen (H+), potassium (K+) and carbon (C). In

contrast, SD2, was positively correlated to soil pH, phosphorus (P), and K+, and unclassified

members of SD3 was positively correlated to H+, K, and C. This study is the first to report on

the specific acidobacterial distribution in pristine fynbos soils in South Africa.

Introduction

The Acidobacteriota are considered as one of the most ubiquitous and highly abundant soil

bacteria. This phylum was first described in 1997 with only three cultured representatives [1].

Currently, the Acidobacteriota is divided into 15 class-level subdivisions, of which only 5 sub-

divisions contain the 62 successfully cultured and fully described species of the Acidobacteriota

[2, 3]. The application of 16S rRNA gene sequencing techniques has revealed that this phylum

can represent up to 50% of the total bacterial community, averaging around 10–20% of the
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global soil bacteria [4–7]. Environmental surveys of different biomes indicated that the distri-

bution of the Acidobacteriota is not limited to the soil environment, but can be found in sev-

eral marine habitats, as well as some extreme habitats, such as acid mine drainage and hot

springs [4, 8, 9]. Their prevalence in soils suggest that the Acidobacteriota play an important

role in biogeochemical processes, as microorganisms are an essential part of the terrestrial

environment and are important in maintaining ecological functions [10]. These functions are

especially important in biomes where nutrient availability is low, and plants depend on their

symbiotic relationships with the soil microbiome. One example of such a biome includes the

fynbos biome in the Cape Floristic Region (CFR) of South Africa [11, 12]. Soils in the CFR are

naturally low in nutrients, specifically in nitrogen and phosphorus, and acidic in nature [13,

14]. Fynbos plants have adapted to survive in the CFR, and the most significant contributing

factor to their persistence in this hostile environment, is their symbiotic relationship with soil

inhabiting microorganisms. These symbiotic interactions improve nutrient acquisition for

these plants [11, 12].

In most high-throughput sequencing studies the effect of environmental factors, such as

soil abiotic properties, for the most part is only studied at phylum, or at best class level [15–

17]. However, these observations do not necessarily hold true at lower taxonomic classifica-

tions, as it assumes homogenous characteristics and that all species of the same lineage

responds in a similar manner. One example is the correlation of Acidobacteriota with soil pH,

the most prominent environmental factor that drives bacterial biodiversity [17, 18]. Several

studies have indicated a stronger phylogenetic clustering of the Acidobacteriota as the pH

decreases from neutrality [18–20]. However, not all Acidobacteriota are acidophilic, and the

relative abundance of certain subdivisions, or even taxa within the same subdivision, could

have a positive correlation with soil pH [20–22]. Other environmental factors could also be

related to shifts in acidobacterial community compositions, such as soil organic carbon, phos-

phorus, and calcium [21, 23–25].

So far, studies on the fynbos biome only focused on the bacterial community as a whole

and none have reported on the specific distribution of the Acidobacteriota within these soils or

how environmental factors affect the acidobacterial composition [15, 26–29]. All previous

knowledge of Acidobacteriota diversity in fynbos soils report a relative abundance of between

4–26%, with subdivisions 1 and 3 indicated as the major subdivisions [15, 26–29]. In this

study, acidobacterial community diversity and composition were compared between fynbos

habitats that are pristine, sampled from three fynbos nature reserves. Specifically, we aimed to

first determine the relative abundance and diversity of the Acidobacteriota in three fynbos

nature reserve soils, and secondly, whether differences in the acidobacterial composition can

be attributed to environmental factors, such as soil abiotic properties.

Materials and methods

Experimental sites and sample collection

The collection of soil samples was approved by the Western CapeNature Conservation Board

(permit: CN32-31-7035). Three sampling sites were selected based on their geographical loca-

tion and fynbos types, namely Jonkershoek, Hottentots Holland, and Kogelberg (data in S1

Table, S1 Fig). The Jonkershoek Nature Reserve lies near the town of Stellenbosch and func-

tions as a mountain catchment area for water supply to the town. The Hottentots Holland

Nature Reserve lies on the opposite side of the Jonkershoek Mountains and on the northern

stretch of the Hottentots Holland Mountain range. The Hottentots Holland Nature Reserve

has an important role in the conservation of mountain fynbos. This area has some transformed

areas (pine plantations, cultivation, and informal settlements), but remains mostly pristine
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within the nature reserve. The Kogelberg Nature Reserve, also called the heart of the Cape Flo-

ristic Kingdom, lies on the southern stretch of the Hottentots Holland mountain range, and

contains pristine protected mountain fynbos due to its internationally accepted conservation

principles, guidelines and policies [30]. All three reserves have a main river along the hiking

trails where all soil samples were collected, namely the Eerste River in Jonkershoek, and the

Palmiet River in Hottentots Holland and Kogelberg.

Each site was sampled during the spring season (September-October) in 2019, after the

cold, wet winter season typical of the fynbos biome [31]. In total, 27 bulk soil samples were col-

lected, 10 at Jonkershoek, 8 at Hottentots Holland, and 9 at Kogelberg. Each sample collected

was treated as a replicate for the different nature reserves. The organic layer was removed up

to a depth of 10 cm and approximately 400 g of soil was collected from each sample site. The

soil samples were kept on ice until processed. All samples were processed for DNA extractions

within 24 hours after collection.

Abiotic soil properties

Soil properties can vary considerably in South Africa’s fynbos vegetation [32]. For this reason,

soil abiotic properties were measured to capture any changes in these properties. The soil abi-

otic properties that were measured included soil pH, hydrogen (H+), phosphorus (P), potas-

sium (K+), carbon (C), as well as extractable cations (EC) and base saturations (bs) of Mg2+,

Na+, Ca2+, and K+. The analyses for the soil abiotic properties were conducted at BemLab

(Somerset West, South Africa), using standard quality control procedures [33]. In short, air

dried soil samples were sieved to remove any organic debris and plant roots. The pH of the soil

was measured in a 1.0 M KCl solution (ratio of liquid to soil, 1:1) using an Ohaus Starter 2100

bench pH meter (Ohaus, Switzerland). Phosphorus (Bray II) and extractable cations concen-

trations (extracted with 0.2 M ammonium acetate at a pH of 7) were determined with

ICP-OES analysis. Total C was measured by dry combustion with a Leco Truspec 1 CHN ana-

lyser (SEAL Analytical Ltd., USA).

Soil DNA extraction and sequencing

DNA of soil samples was extracted using the ZR Quick-DNA Fecal/Soil Microbe Kits (Zymo

Research, USA), according to the manufacturer’s instructions. PCR amplification of the suc-

cessfully extracted DNA was performed with primers targeting the 16S rRNA V4–V5 region,

319-F (5’-ACT CCT ACG GGA GGC AGC AG-3’) and 783-R (5’-CTA CCA GGG TAT
CTA ATC CTG-3’) [15]. The total reaction volume (25 μl) contained 1x KAPA Taq Hotstart

Buffer, 1.5 mM MgCl2, 0.5 μl of a 10 mM dNTP mix, 0.25 μM forward and reverse primers, 0.5

U KAPA Taq HotStart DNA Polymerase, and 1.5 μl of template DNA. PCR amplifications

were performed on a 2720 Thermal Cycler (Thermo Fisher Scientific, USA) under the follow-

ing conditions: initial denaturing at 95˚C for 5 minutes, followed by 35 cycles of 95˚C for 30

seconds, 58˚C for 30 seconds and 72˚C for 1 minute. A final extension was completed at 72˚C

for 1 minute and the PCR samples were held at 4˚C. Concentrations and sizes of the PCR

products were verified using the LabChip GX Software, v.5.4 (PerkinElmer Inc., UK). Samples

were loaded onto an Ion 530™ Chip for sequencing using the Ion S5 Sequencing Systems (Ion

Torrent, Thermo Fisher Scientific, USA).

Sequence processing

The raw sequence data was submitted to GenBank as BAM files with accession number

PRJNA682354. After conversion to FASTQ files, the raw sequence data were analysed using

MOTHUR (v.1.44.3), following the tutorial available at http://www.mothur.org/wiki/454_
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SOP, with some modifications [34, 35]. In short, trimmed and quality filtered sequences were

aligned against the SILVA v.132 bacterial reference database released in December, 2017

(http://www.arb-silva.de/). Sequences with errors and chimeric sequences were removed with

the pre.cluster and chimera.uchime [36] commands, respectively, and classified using a cut-off

value of 80. Sequences were clustered into operational taxonomic units (OTUs) and normal-

ised to 13659 sequences. Acidobacterial sequences were retrieved using the get.lineage com-

mand in MOTHUR for further analyses.

Statistical analysis

All statistical analyses were performed in MOTHUR (v.1.44.3) and R (v.4.0.3, R Core Team

2013) using the Vegan package. Non-parametric Kruskal-Wallis H-tests were calculated for all

abiotic soil properties, acidobacterial relative abundances, observed OTUs, and Shannon

diversity indices between the three nature reserves. To determine if any OTUs were signifi-

cantly differentially represented between nature reserves, the metastats command in

MOTHUR was used. Non-metric multidimensional scaling (NMDS) plots were drawn in R

using the Bray-Curtis distance matrix generated in MOTHUR. Further statistical evaluations

of the NMDS plots were evaluated using Analysis of Molecular Variance (AMOVA). Spear-

man correlation tests were performed between soil abiotic properties and the sequence abun-

dances of different subdivisions, as well as correlations between significant soil abiotic

properties and NMDS ordinations, using 9999 permutations. For all statistical evaluations, a

p-Value of 0.05 were considered as significant. Corrections for multiple comparisons were

made using the Bonferroni method.

Results

Soil abiotic properties of different nature reserves

The selected soil abiotic properties and their mean values (± standard deviation) are summa-

rised in Table 1. A significant difference (p<0.05) was observed between all soil abiotic proper-

ties measured, except for Na.bs (sodium base saturation). Predominantly, the Jonkershoek soil

contained higher concentrations of all soil abiotic properties measured, followed by Kogelberg,

and Hottentots Holland. The most pronounced difference was observed with regards to phos-

phorus (P) and potassium (K+), where Jonkershoek had more than double the concentrations

measured for Kogelberg and Hottentots Holland. The mean soil pH values and total carbon

content measured is consistent with the acidic and oligotrophic properties of fynbos soils.

Acidobacteriota community composition and Alpha-diversity

After quality filtering and removal of chimeras, a combined total of 796,584 partial 16S rRNA

gene sequences with a mean amplicon length of 410 bp were obtained (Table 2). Of these, a

total of 104,426 (~13.11%) were Acidobacteriota-affiliated reads, with relative abundances

ranging between 3.43–30.32% in the different samples from Jonkershoek, Hottentots Holland,

and Kogelberg (data in S2 Table). Other major taxa also identified in all nature reserve samples

included the phyla Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes (S2 Fig). The

mean acidobacterial relative abundance was significantly higher (p<0.05) in the Hottentots

Holland samples, with a mean relative abundance observed at 18.42%, followed by Kogelberg

(14.91%) and Jonkershoek (9.02%). Overall, the mean Shannon diversity indices and observed

OTUs were similar and ranged between 2.04–2.19, and 23.67–25.38, respectively.

The OTUs were classified into 33 phylotypes, representing members from various subdivi-

sions (SDs) (Table 3). Fig 1 illustrates the major Acidobacteriota community composition
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based on 16S rRNA gene sequence analysis. The different OTUs were grouped according to

their respective SDs. Subdivisions 1 and 3 were further divided into either classified or unclas-

sified. The majority of the OTUs identified belong to SDs 1, 2, and 3 (Fig 1). In the Kogelberg

samples, SD1 represents up to 55% of the acidobacterial community, followed by SD3 (36%)

and SD2 (7%). In both the Jonkershoek and Hottentots Holland samples, SD3 had the highest

relative abundance, with 44% and 47%, respectively, followed by SD1 (42% and 45%, respec-

tively), and SD2 (12.5% and 6.7%, respectively). Other SDs also identified but with relative

abundances of less than 1%, included SDs 4, 5, 8, 11, 12, 13, 15, and an unclassified SD. Repre-

sentative of SD1 included taxonomically known genera, such as Acidipila, Occallatibacter,
Candidatus Koribacter, Edaphobacter, Granulicella, Terracidiphilus, Acidicapsa, Bryocella, Tel-
matobacter, Acidobacterium, and Terriglobus, and some representatives of SD3, Bryobacter,
Candidatus Solibacter, and Paludibaculum. However, the majority of the OTUs identified are

of unclassified, or not-yet-described, representatives of the Acidobacteriota and are, therefore,

Table 1. Soil abiotic properties for each nature reserve.

Soil properties Jonkershoek Hottentots Holland Kogelberg p-Value

pH 4.17 ± 0.05 a 3.41 ± 0.26 b 3.53 ± 0.28 b ���

H+ (cmol/kg) 3.39 ± 0.42 a 2.92 ± 0.73 ab 2.75 ± 0.68 b �

P (mg/kg) 9.01 ± 7.24 a 1.80 ± 1.07 b 2.67 ± 0.85 b ��

K (mg/kg) 89.20 ± 3.03 a 21.00 ± 3.50 c 41.90 ± 17.20 b ���

C (%) 4.19 ± 0.23 a 3.16 ± 0.65 b 3.39 ± 0.71 b ��

Mg.(EC) (cmol(+)/kg) 0.50 ± 0.09 a 0.35 ± 0.10 b 0.91 ± 0.38 a ��

Na.(EC) (cmol(+)/kg) 0.16 ± 0.04 a 0.09 ± 0.02 b 0.15 ± 0.06 a ��

Ca.(EC) (cmol(+)/kg) 0.98 ± 0.39 a 0.50 ± 0.03 b 1.46 ± 0.84 a ���

K.(EC) (cmol(+)/kg) 0.23 ± 0.01 a 0.05 ± 0.01 b 0.11 ± 0.04 b ���

Mg.bs. (%) 9.62 ± 2.35 b 8.91 ± 1.71 b 16.60 ± 3.01 a ���

Na.bs. (%) 3.04 ± 0.33 2.43 ± 0.81 2.84 ± 0.57 NS

Ca.bs. (%) 18.10 ± 4.85 ab 13.30 ± 3.20 b 25.20 ± 6.40 a ���

K.bs. (%) 4.46 ± 0.77 a 1.32 ± 0.06 c 2.00 ± 0.74 b ���

A significant difference is observed at: � p<0.05; �� p<0.01; ��� p<0.001. NS, not significant.

Letters a-c indicates where the significance lies.

EC–exchangeable cations.

bs–base saturation.

Values are means ± standard deviation (n = 10 for Jonkershoek, n = 8 for Hottentots Holland, n = 9 for Kogelberg).

https://doi.org/10.1371/journal.pone.0248913.t001

Table 2. Sequence results of all three nature reserves and their relative abundances, Shannon diversity indices, and observed OTUs.

Nature Reserve Filtered reads1 Acidobacteriota Reads Relative abundance Shannon Diversity Index Observed OTUs

(%) p-Value2

Jonkershoek 329,133 29,460 9.02 ± 3.54 b 0.004 2.19 ± 0.12 25.00 ± 3.27

Hottentots Holland 245,006 43,691 18.42 ± 6.22 a 2.04 ± 0.18 25.38 ± 2.20

Kogelberg 222,445 31,275 14.91 ± 5.63 ab 2.11 ± 0.14 23.67 ± 1.50

Total 796,584 104,426 - - - 33

1Filtered reads exclude low-quality reads and chimeras.
2A significant difference is observed at p<0.05. Letters a and b indicates where the significance lies.

Values are means ± standard deviation.

https://doi.org/10.1371/journal.pone.0248913.t002
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indicated as Unclassified. These unclassified OTUs represented between 40–52% of the relative

abundances.

The distribution of several acidobacterial OTUs and their observed relative abundances

were significantly different (p<0.05) between the nature reserves (Table 3). For the most part,

these differences were observed between Jonkershoek and Hottentots Holland, and Jonker-

shoek and Kogelberg. For example, the Bryobacter (OTU1; SD3) had a significantly higher

Table 3. OTU classification and relative abundances between Jonkershoek, Hottentots Holland, and Kogelberg.

OTU SD Taxonomic classification Relative abundance (%)2

Family Genus Jonkershoek Hottentots Holland Kogelberg

OTU1 3 Bryobacteraceae Bryobacter 21.99 ± 2.34 32.37 ± 3.57 23.05 ± 4.05

OTU2 1 Unclassified Unclassified 16.60 ± 1.23 15.05 ± 2.87 12.40 ± 1.57
OTU3 3 ‘Solibacteraceae’ Candidatus Solibacter 15.74 ± 1.32 10.67 ± 1.80 9.11 ± 1.77

OTU4 1 Acidobacteriaceae Acidipila 5.38 ± 1.75 9.77 ± 1.65 15.92 ± 3.61
OTU5 1 Acidobacteriaceae Unclassified 6.21 ± 1.12 9.49 ± 1.45 14.90 ± 3.23
OTU6 2 Unclassified Unclassified 12.53 ± 1.97 6.72 ± 1.72 7.02 ± 1.44

OTU7 3 ‘Solibacteraceae’ Unclassified 5.76 ± 0.63 4.41 ± 1.08 3.97 ± 0.62

OTU8 1 Unclassified Unclassified 6.24 ± 1.01 1.81 ± 0.42 2.39 ± 0.73

OTU9 1 Acidobacteriaceae Occallatibacter 1.17 ± 0.22 2.62 ± 1.21 4.19 ± 1.23
OTU10 1 Acidobacteriaceae Unclassified 2.54 ± 0.77 1.38 ± 0.59 0.85 ± 0.39

OTU11 1 Koribacteraceae Candidatus Koribacter 0.96 ± 0.27 1.70 ± 0.39 1.69 ± 0.35

OTU12 1 Unclassified Unclassified 1.02 ± 0.28 1.03 ± 0.39 0.92 ± 0.20

OTU13 1 Acidobacteriaceae Edaphobacter 0.63 ± 0.17 0.51 ± 0.08 1.24 ± 0.17
OTUs with relative abundances < 1%

OTU14 1 Acidobacteriaceae Granulicella 0.90 ± 0.18 0.56 ± 0.12 0.23 ± 0.06
OTU15 8 Thermoanaerobaculaceae Unclassified 0.70 ± 0.19 0.25 ± 0.13 0.29 ± 0.27

OTU16 1 Acidobacteriaceae Terracidiphilus 0.13 ± 0.04 0.41 ± 0.18 0.23 ± 0.05

OTU17 1 Acidobacteriaceae Acidicapsa 0.18 ± 0.07 0.24 ± 0.08 0.20 ± 0.08

OTU18 1 Acidobacteriaceae Bryocella 0.18 ± 0.06 0.16 ± 0.06 0.16 ± 0.06

OTU19 5 Unclassified Unclassified 0.29 ± 0.10 0.16 ± 0.07 0.20 ± 0.40

OTU20 1 Acidobacteriaceae Unclassified 0.10 ± 0.04 0.15 ± 0.06 0.31 ± 0.08

OTU21 13 Unclassified Unclassified 0.04 ± 0.03 0.23 ± 0.10 0.23 ± 0.06
OTU22 UC1 Unclassified Unclassified 0.18 ± 0.06 0.06 ± 0.02 0.09 ± 0.03

OTU23 1 Acidobacteriaceae Telmatobacter 0.09 ± 0.05 0.07 ± 0.04 0.18 ± 0.10

OTU24 3 ‘Solibacteraceae’ Unclassified 0.10 ± 0.03 0.09 ± 0.04 0.05 ± 0.02

OTU25 15 Unclassified Unclassified 0.10 ± 0.02 0.03 ± 0.02 0.03 ± 0.01

OTU26 12 Unclassified Unclassified 0.06 ± 0.04 0.04 ± 0.03 0.02 ± 0.02

OTU27 3 Bryobacteraceae Paludibaculum 0.13 ± 0.06 0.02 ± 0.02 -

OTU28 1 Unclassified Unclassified 0.03 ± 0.01 - 0.03 ± 0.03

OTU29 1 Acidobacteriaceae Acidobacterium - - 0.03 ± 0.03

OTU30 11 Unclassified Unclassified - - 0.07 ± 0.07

OTU31 4 Unclassified Unclassified 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

OTU32 1 Acidobacteriaceae Terriglobus 0.01 ± 0.01 0.01 ± 0.01 -

OTU33 8 Unclassified Unclassified 0.01 ± 0.01 - 0.01 ± 0.01

1UC–Unclassified.
2Values are means ± SD.

A significant difference was observed at p<0.05. Significance between groups are indicated as: Jonkershoek–Hottentots Holland (underlined); Jonkershoek–Kogelberg
(italics); Hottentots Holland–Kogelberg (bold).

https://doi.org/10.1371/journal.pone.0248913.t003
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relative abundance in the Hottentots Holland samples (32.37%), compared to the Jonkershoek

samples (21.99%). In the Jonkershoek samples, OTUs 3 (SD3), and 8 (unclassified SD1) had

significantly higher relative abundances, compared to Hottentots Holland and Kogelberg. Sev-

eral members of SD1 (OTUs 4, 5, 9, and 13) had significantly higher relative abundances in the

Kogelberg samples, compared to the Jonkershoek samples.

Beta-diversity

The non-metric multidimensional scaling (NMDS) revealed different acidobacterial commu-

nity compositions corresponding to the different sites (Fig 2). The observed separation

between the Jonkershoek and Hottentots Holland, as well as Jonkershoek and Kogelberg

Fig 1. The acidobacterial subdivision community composition based on 16S rRNA gene sequence analysis for

Jonkershoek, Hottentots Holland, and Kogelberg.

https://doi.org/10.1371/journal.pone.0248913.g001

Fig 2. A non-metric multidimensional scaling ordination plot, based on the Bray-Curtis distance matrix,

representing the acidobacterial community compositions in various samples examined in this study. Soil abiotic

properties that had a significant correlation (p<0.05) with the acidobacterial communities are indicated with an

overlaid bi-plot.

https://doi.org/10.1371/journal.pone.0248913.g002
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samples examined in this study was statistically significant with a p-Value of 0.021 and 0.008,

respectively (data in S3 Table). Some soil abiotic properties responsible for the significant shift

in acidobacterial community composition were identified as soil pH, phosphorus (P), and

potassium (K, K.(EC), K.bs.). As these soil abiotic properties increased, the acidobacterial com-

munity shifted, with soil pH observed as having the greatest influence, p<0.001 (data in S4

Table).

Further evaluations of the effect of these soil abiotic properties on specific SDs and their rel-

ative abundances were examined using Spearman correlation tests (Fig 3, data in S5 Table).

Significant correlations (p<0.05), positive and negative, were revealed for several soil abiotic

properties and the relative abundances of acidobacterial subdivisions. For SD1 (Acidobacteria-

ceae), significant negative correlations were revealed for soil pH (ρ = -0.404), H+ (ρ = -0.424),

K+ (ρ = -0.475), C (ρ = -0.432) and K.(EC) (ρ = -0.488). As for SD2 and ‘Other’, positive corre-

lations were revealed for soil pH (ρ = 0.505; 0.438), P (ρ = 0.485; 0.326), K+ (ρ = 0.435; 0.432),

K.(EC) (ρ = 0.463; 0.429), and K.bs (ρ = 0.523; 0.433). Although ‘Other’ only had a weak posi-

tive correlation with P. Unclassified representatives of SD3 revealed a positive correlation with

H+ (ρ = 0.430), K+ (ρ = 0.398), and C (ρ = 0.408). Although statistical evaluations revealed

these correlations to be significant, these correlations are only considered as moderate (ρ =

0.4–0.6). Correlations can be considered as strong between ρ = 0.6–0.7, and very strong at

ρ>0.8.

Discussion

In most high-throughput sequencing studies, differences at taxonomic levels between sample

groups are traditionally only reported at phylum, or at best class level [15–17]. However, these

observations ignore the fact that not all species of the same lineage responds in a similar man-

ner, and valuable information is, therefore, lost within these assumptions. In this study we

Fig 3. Spearman correlations between acidobacterial subdivisions and soil abiotic properties. Colour of the square

indicates type of correlation (shades of blue–positive; green to dark red–negative). ‘Other’ contain subdivisions with

relative abundances below 1%. SD1 Unclassified and SD3 Unclassified contain Acidobacteriota OTUs with no

taxonomic classification at genus level. EC–exchangeable cations, bs–base saturation.

https://doi.org/10.1371/journal.pone.0248913.g003
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have examined the Acidobacteriota community composition and distribution between three

different nature reserves and how differences in the soil abiotic properties contributed to the

observed shift in subdivision distribution. Previous studies on fynbos soils only reported on

the microbial diversity as a whole and indicated Proteobacteria, Actinobacteria, Firmicutes,

and Acidobacteriota as the dominant phyla present within these soils [15, 26–28, 37].

All previous knowledge of Acidobacteriota diversity in fynbos soils report a relative abun-

dance of between 4–26%, and all of these studies report SDs 1 and 3 as the major subdivisions

present within these soils [15, 26–28]. The results obtained in this study for fynbos nature

reserve soils agree with these previous studies. The mean relative abundance of the Acidobacter-

iota were the highest in the sandy soils of Hottentots Holland (18.42%) and Kogelberg

(14.91%), and lowest in the clay-loamy soil of Jonkershoek (9.02%) (Table 2). The major SDs

identified in these soils were SDs 1, 2, and 3 (Fig 1, Table 3). These SDs are also among the most

commonly found Acidobacteriota subdivisions in other soil environments [3, 38, 39]. In previ-

ous fynbos studies, the presence of SD2 was not reported. However, their existence within this

biome might have gone unnoticed when examining the bacterial community as a whole, as this

SD had a mean relative abundance of between 6.72–12.53% from acidobacterial affiliated

sequences (Fig 1). The highest relative abundance of this SD was observed in the Jonkershoek

samples, which had significantly higher nutrient availability (Table 1). Previously, SD2 has for

the most part only been reported in colder subarctic soils and currently contain no cultured

representatives [22, 40, 41]. Their reported presence within the fynbos soils, where temperatures

can rise well above 30˚C during the dry, warm summers [42], indicate that they are capable of

tolerating higher temperatures than the cooler subarctic soils. Another study focussing on the

soil acidobacterial distributions between savannah-like Cerrado and Atlantic forest Brazilian

biomes, also indicated a high relative abundance of SD2 in these warmer climates [43]. These

observations are supported by a previous study that focused on the active bacterial community

at different nutrient and temperature cycles of Arctic tundra [40]. They found that different

members of SD2 were more abundant either toward the late summer, or early-summer periods,

or even more so directly after spring thaw when substrates, such as organic carbon and nitro-

gen, are abundant and easily accessible. In Mediterranean climate systems, such as the fynbos

biome, water availability fluctuates over time and soil microbial activity is strongly influenced

by seasonal changes [15, 44, 45]. During wetter seasons, the rewetting of soil triggers strong

microbial activity which increases the mineralisation of nutrient sources that have accumulated

during the dryer seasons [45–47]. A sudden change in osmotic potential may also lead to cell

lysis, resulting in the release of intracellular solutes that are now available [46, 48]. Ivanova et al.

[22], have also reported on the positive correlation of the SD2 relative abundance with soil car-

bon and nitrogen [22]. In this study, soil samples were collected in the early spring period after

abundant rainfall during the wet, winter season in 2019. The observed increase in relative abun-

dance of the SD2 in soils containing relatively higher nutrient concentrations, and its ability to

tolerate a broad temperature range, from cooler subarctic to the warmer Mediterranean and

Brazilian climates, are interesting characteristics of this SD. Future efforts in isolating members

of this subdivision should consider these characteristics as part of their isolation strategy.

As revealed in this study, fynbos soils contain several members of classified and unclassified

acidobacterial sequences, based on the 16S rRNA gene SILVA v.132 classifications (Table 3).

Some of the major classified genera identified with relative abundances of>1%, included from

SD1 Acidipila, Occallatibacter, Candidatus Koribacter, and Edaphobacter, and from SD3 Bryo-
bacter, and Candidatus Solibacter. Their persistence in fynbos soils could be explained by the

physiological characteristics of isolated and described members of these genera. Representa-

tives of the genera Acidipila, Occallatibacter, and Edaphobacter were previously isolated from

forest soils, an acid mine drainage site (AMD), Namibian savannah, and grassland soils [49–
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56]. They are all classified as acidophilic and can grow at temperatures ranging between 10–

40˚C. Several members of the Acidobacteriaceae are capable of degrading complex biopoly-

mers such as xylan, pectin and chitin [3], suggesting an important role in biogeochemical pro-

cesses, especially in the fynbos biome where soil nutrient availability is low, but plants are able

to thrive [13, 14]. Representatives of Candidatus Koribacter (SD1) and Candidatus Solibacter

(SD3) were previously isolated from Australian pasture soils. However, very little information

is available about their physiologies [5, 57, 58]. The only isolated representative of the genus

Bryobacter was isolated from peat bogs, is capable of growth at temperatures between 4–33˚C

and is acidotolerant with growth at pH of 4.5–7.2 [59]. The clear dominance of the genus Bryo-
bacter in these fynbos soils with relative abundances observed between 21–32% (Table 3), is

surprising due to pH levels of below 4.5 measured for these soils (Table 1). As there is currently

only one described member of this genus, Bryobacter aggregatus [59], this observation indi-

cates that other members may be capable of growth at lower pH levels.

The Acidobacteriota community composition was significantly different between the

nature reserves examined in this study (Fig 2). This can be mostly explained by the soil abiotic

properties of these soil samples (Table 1). These soil parameters might not affect the functional

role of the Acidobacteriota, but can influence the community composition [60]. With an

increase in soil pH, phosphorus (P), and potassium (K, K.(EC), and K.bs), the community

composition shifted significantly (Fig 2). Several OTUs from SD1, SD2, as well as SD3 were

markedly different between these samples. The trend observed for described members of the

Acidobacteriaceae (SD1) (Fig 3, data in S5 Table), agrees with our current knowledge of their

affinity for low pH soils and their oligotrophic nature [3, 17, 19, 38, 61]. The negative correla-

tion of SD1 with soil P and K+ is in agreement with a previous study [62]. In contrast, mem-

bers of SD2, SD3 Unclassified and ‘Other’ (subdivisions with relative abundances below 1%)

had significant positive correlations to soil pH and several soil abiotic properties, including

hydrogen (H+), phosphorus (P), potassium (K+, K.(EC), K.bs), and even carbon (C). These

findings are in stark contrast to previous observations of these subdivisions [22, 43, 62], how-

ever, Naether et al. [21] have reported similar observations for SD3 [21]. Our understanding of

the effect of soil abiotic properties on the relative abundance of different Acidobacteriota sub-

divisions is far from complete, as reported studies indicate contrasting results for the same SD

[19, 21, 22, 38, 61–63]. However, these insights might still be helpful for a specific environment

in future cultivation strategies, as different members of Acidobacteriota might have different

survival strategies. It is possible that the Acidobacteriota within these pristine fynbos soils have

adapted to this environment and, therefore, we see these contrasting observations of responses

to soil abiotic properties and soil pH.

Soil abiotic properties are important factors to consider when designing cultivation studies,

as all the subdivisions contain undescribed taxa. Future efforts in culturing these bacteria

could benefit from their perceived ability to thrive under nutrient limitations, the importance

of nutrient compositions to include low concentrations of P and K+, and to possibly include a

wider range of isolation medium pH, as was seen in this study and some other studies [22, 38].

The relatively high occurrence of the Acidobacteriota in these fynbos soils appear to agree with

their phenotypic characteristics. A difficult task still lies ahead, but with each environmental

survey of the Acidobacteriota, we get a glimpse into their metabolic potential and we can

design better experiments to isolate novel species.

Conclusions

The Acidobacteriota is a fascinating phylum that has received considerable interest within the

last decade. Their detection in acidic soils are common, and this was also observed in this
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study. The relative abundance of the Acidobacteriota was significantly higher in the Hottentots

Holland samples, compared to the Jonkershoek samples, and the community composition also

differed significantly between the Jonkershoek and Hottentots Holland nature reserves, and

the Jonkershoek and Kogelberg nature reserves. The major subdivisions detected in these fyn-

bos nature reserve soils, were SDs 1, 2, and 3. The relative abundance of SD2 was significantly

higher in the Jonkershoek samples, possibly due to the higher nutrient availability. The relative

abundance of some classified members of SD1 was significantly higher in Kogelberg, owing to

their acidic and oligotrophic characteristics, whereas the relative abundance of some unclassi-

fied members of SD1 were significantly higher in Jonkershoek. Some interesting results were

revealed with the observed positive correlation of SD2 and unclassified members of SD3

with several soil abiotic properties, including P, K+, H+, and C. Finally, a large percentage of

sequences belonged to unclassified members of the Acidobacteriota. Without cultured repre-

sentatives it becomes increasingly difficult to speculate on the functional role of the Acidobac-

teriota in fynbos soils. Their high relative abundance in nutrient poor fynbos soils, however,

suggest that they play an important ecological role in biogeochemical cycles.
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S2 Fig. Heat tree indicating the major taxonomic representations in the nature reserve

soils. Node sizes indicate OTU count, with larger nodes representing greater OTU representa-
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