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Abstract

The 3d organization of the genome — in particular, which two regions of DNA are in contact with each other
— plays a role in regulating gene expression. Several factors influence genome 3d organization. Nucleosomes
(where ⇠ 100 basepairs of DNA wrap around histone proteins) also bend, twist and compactify chromosomal
DNA, altering its polymer mechanics. How much does the positioning of nucleosomes between gene loci in-
fluence contacts between those gene loci? And, to what extent is polymer mechanics responsible for this? To
address this question, we combine a stochastic polymer mechanics model of chromosomal DNA including twists
and wrapping induced by nucleosomes with two data-driven pipelines. The first estimates nucleosome position-
ing from ATACseq data in regions of high accessibility. Most of the genome is low-accessibility, so we combine
this with a novel image analysis method that estimates the distribution of nucleosome spacing from electron
microscopy data. There are no free parameters in the biophysical model. We apply this method to IL6, IL15,
CXCL9, and CXCL10, inflammatory marker genes in macrophages, before and after immune stimulation, and
compare the predictions with contacts measured by conformation capture experiments (4C-seq). We find that
within a 500 kilo-basepairs genomic region, polymer mechanics with nucleosomes can explain 71% of close
contacts. These results suggest that, while genome contacts on 100kbp-scales are multifactorial, they may be
amenable to mechanistic, physical explanation. Our work also highlights the role of nucleosomes, not just at the
loci of interest, but between them, and not just the total number of nucleosomes, but their specific placement. The
method generalizes to other genes, and can be used to address whether a contact is under active regulation by
the cell (e.g., a macrophage during inflammatory stimulation). Importantly, our findings suggest that gene func-
tion may have evolved through selective pressures that co-opted contact-mediated regulatory mechanisms reliant
largely on polymer mechanics.
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Introduction

The 3d organization of the genome — in particular, which two regions of DNA are in contact with each other
— plays a role in regulating gene expression [1–3]. Many complex, interdependent factors influence genome 3d
organization [2, 4–9], beginning with the polymer mechanics of chromosomal DNA, and including cohesins (in
conjunction with DNA binding factors such as CTCF), lamins, phase separation, and nucleosomes, to name just a
few. How DNA contacts are formed and how those contacts support chromatin accessibility through nucleosome
remodeling for the binding of regulatory factors remains largely unknown. The full set of biophysical factors that
influence genome organization presents a formidable challenge to study. Therefore, to disentangle this complexity,
we ask, how much can be explained by nucleosome positioning and polymer mechanics alone?

Nucleosomes are genomic structures comprising ⇠ 100 basepairs of DNA wrapped around octameric assemblies
of histone proteins [7]. While one established role of nucleosomes is to directly control access to a locus [1],
nucleosomes also bend, twist and compactify chromosomal DNA, altering its polymer mechanics [7]. This raises
two possibilities: first, that the number of nucleosomes in between two loci could modulate their contact; Second,
that specific placement of these nucleosomes, even at approximately the same total number of nucleosomes (i.e.,
nucleosome frequency), could induce either the formation of new contacts or the loss of existing contacts, as shown
in Figure 1. Furthermore, nucleosome positions change rapidly (within minutes to hours) in response to cellular
stimuli, for example during macrophage exposure to pro-inflammatory stimuli [10, 11]. We asked, to what degree
are polymer mechanics and nucleosome positioning predictive of contact after a cell undergoes a functional change
(e.g., inflammatory activation in macrophages)? And could these dynamics in nucleosome occupancy coordinate
long-range (> 10 kilo-basepair, kbp) contacts between putative regulatory regions associated with active nearby
gene promoters?

We address the first possibility by using a stochastic polymer model. Addressing the second possibility requires
the polymer model be combined with knowledge of the specific placement of nucleosomes in a particular genomic
region of interest. We achieve this with two data-driven pipelines. The first estimates nucleosome positioning from
ATAC-seq data in regions of high accessibility [12, 13]. Most of the genomic regions are low-accessibility, so we
combine this with a novel image analysis pipeline that estimates the distribution of nucleosome spacing from in vivo
electron microscopy data [14]. With the aid of these two data-drive pipelines, there are no free parameters in the
biophysical model.

We apply this method to gene loci for CXCL9, CXCL10, IL6 and IL15, which are inflammatory marker genes that
are dynamically regulated in human macrophages following immune stimulation [15]. We compare model predic-
tions with contacts measured experimentally by viewpoint-targeted chromatin conformation capture followed by
sequencing (4C-seq). We find that within a 500 kilo-basepairs genomic region, polymer mechanics with nucleo-
some positions can explain 71% of close contacts (p = 4 ⇥ 10�7). Notably, we also find that the formation of
polymer-mechanics-predicted contacts also harboring actively bound regulatory factor binding motifs likely pre-
cedes the formation of new sites of genome accessibility as captured through classical ATAC-seq experimental data.
These results suggest that, while genome contacts on 100kbp-scales are multifactorial, they may be amenable to
mechanistic, physical explanation.

Results

Varying nucleosome positioning within the physiologically-observed parameter range leads to order-

of-magnitude changes in contact probability

We use an existing model of the polymer mechanics of chromosomal DNA [7] to ask, how much do contacts
change when nucleosome positioning is varied within the physiologically-observed parameter range? This model
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Figure 1: Nucleosomes (pink) between loci introduce “kinks” in chromosomal DNA, potentially driving contacts between
distant genomic loci. We find that this is sufficient to significantly modulate the contact of genomic loci on ⇠ 100 kilobasepair
scales, and specifically that the positioning of nucleosome, even while holding constant the total number of nucleosomes, can
introduce or reduce long-range contacts. Schematic of data driven mechanistic model pipeline: We combine ATAC-seq [18] and
electron microscopy [14] data with a mechanistic model of the polymer physics of chromosomal DNA [7] to predict contacts
between loci, and validate these predictions with 4C-seq. (Example EM image is synthetic test data.) We find that contact with
some transcription factor binding motifs (e.g., LEF1) are gained and some (e.g., CTCF) are lost during inflammatory response
in macrophages (“+LPS”).

accounts for twisting and bending mechanics of DNA, as well as the entry and exit angles as DNA interacts with
a nucleosome, taken from known molecular structure of nucleosomes from crystallography and cryo-EM [16] and
mechanical properties of DNA from experiments including optical tweezer experiments [17] (see Beltran et al. [7]
for full details).

Here, we repurpose this model to look at contact probabilities as a function of distance between two loci. For
convenience, we refer to one locus as the locus of interest. Typically, we choose the transcriptional start site (TSS)
or a nearby locus. We define the contact probability as the proportion of configurations with the two loci within
10nm. As shown in Supplemental Figure S1, our results are not sensitive to this choice.

Before exploring contact probabilities with nucleosome positions extracted directly from experimental data (next
section), here in Figure 2, we perform an ab initio study with simplified assumptions for nucleosome positions. In
this work, we specify nucleosome positions by specifying the sequence of nucleosome spacings, also called linker
lengths, which is the number of basepairs between adjacent nucleosomes, and which does not include 147 base-
pairs assumed to be occupied by the nucleosome itself. We consider three scenarios: First, we assume nucleosomes
are evenly spaced (A, D). Second, we assume nucleosomes are randomly spaced according to a uniform random
distribution with a fixed mean, and a range of ±10bp (B,E) following Beltran et al. [7]. Finally, we assume nucle-
osomes are spaced according to an exponential distribution (C, F). This exponential distribution could arise from a
spatially-independent (Poisson) process, or the equilibrium of a 1-dimensional lattice gas.

In the simulations where there is no random variation in nucleosome spacing (Figure 2A), contact probability is
largely controlled by the twist persistence length of DNA. This contact probability increases to a local maximum as
the nucleosome spacing increases every 10.5 bp.
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Figure 2: DNA polymer contact probability of different nucleosome spacing (i.e., linker length) models, defined as the propor-
tion of configurations with the two loci within 10nm, shown as heatmaps (A-C) and families of curves (D-F). A,D Evenly-spaced
nucleosomes with no variation result in a repeated pattern of high contact (red ridges) every 10.5 bp, consistent with the twist
persistence of DNA. B. Introducing variation into the uniform model results in the loss of the 10.5 bp spaced ridges, and reveals
larger regions of increased and decreased contact probability. C. Exponentially-distributed nucleosome spacings (i.e., a spatial
Poisson process or lattice gas) result in a smoother contact probability profile. Contact probabilities are highly sensitive to
changes in nucleosome spacing, for example changing from 30 bp to 90 bp results in a 88% decrease in contact probability 1
kbp away from the TSS in the Poisson process contact probability model (F, dashed black arrows). The magenta dashed vertical
line in C and curve in F indicate the best-fit estimate from our analysis of electron microscopy data (Figure 3).

Next, we allow variation where nucleosome spacing is distributed uniformly with a mean ±10 basepairs (Figure 2B).
Here, the local maxima that arose from the twist persistence are “averaged-out”, resulting in a more smoothed-
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out contact probability profile. We see a local maximum ⇠ 1 kbp. This maximum occurs when the distance is
approximately equal to the persistence length, at which the chromosomal DNA can loop back on itself most easily.

Finally, we allow variation where nucleosome spacing is distributed exponentially (Figure 2C). Many of the qual-
itative features of the previous nucleosome placement models are preserved, but with a larger region of increased
contact around the locus of interest.

Taken together, these results demonstrate that contact probabilities are highly sensitive to changes in nucleosome
spacing. For example, changing from 30 bp to 90 bp results in a decrease in contact probability 1 kbp away from the
TSS of 88%, almost ten-fold (Figure 2F, dashed black arrows).
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Analysis of existing electron microscopy images allows learning nucleosome spacing in low-ATAC-

coverage regions

To put the previous results into the context of a specific gene, in a cell undergoing regulated changes in gene expres-
sion, we require a method to extract nucleosome positions from data. This is possible using the DNA accessibility
sequencing method ATAC-seq [18] and algorithms such as NucleoATAC [12] or NucPosSimulator [13]. However,
we found that most of the genomic landscape (e.g. ⇡ 98% for within ±200 kbp of IL6 TSS) has insufficient ATAC-
seq data coverage, defined as any region that of the ATAC-seq data that is not identified as a peak region by MACS2
peak calling [39]. Therefore, for these low-ATAC-coverage regions, we develop a nucleosome spacing learning
algorithm that uses electron microscopy (EM) images of chromosomal DNA, combined with existing EM images
[14].

The full method is described in the Methods. Briefly, we first binarize this data to a threshold such that only the dark
core of the nucleosome remains, and perform 3D connected components analysis to identify each distinct candidate
nucleosome. We then apply a novel iterative pathfinding algorithm on the original, unbinarized image. This algo-
rithm weighs all paths by both their path-length and their intensity under EM (where darker, i.e., denser regions are
weighted less), and returns the minimal path between candidate nucleosomes identified from the binarized image.
This proved advantageous: A method that simply computes shortest paths between detected nucleosomes would
ignore DNA curvature, while a method that only considers EM intensity fails on many nucleosome pairs where the
path is disjoint (due to imaging noise).

We test the method on synthetic data with a known ground-truth distribution of nucleosome spacings (Figure 3A-D),
finding that the learned distribution is similar to the ground truth in terms of its mean and interquartile range, with
larger tails in the learned distribution (Figure 3C,D). Testing on synthetic data is further elaborated in Methods and
Figures S2-S6.

We then apply the method to EM images from Ou et al. [14], taken from heterochromatin in U2OS cells. We use
a region of 328 ⇥ 328 ⇥ 119.72 nm, resulting in ⇡ 1400 nucleosomes (Figure 3E). We find a nucleosome spacing
distribution that is well-approximated as exponential, with a mean of ⇡ 43 bp, as shown in Figure 3G and indicated
in Figure 2C,F. This learned distribution of exponential with mean of 43 bp is in the range of values predicted and/or
assumed in previous work [8, 19, 20].

To validate the learned nucleosome spacing distribution, we simulated the polymer mechanics model at the learned
distribution and parameters. We see small local clusters of nucleosomes forming (Figure 3I), similar to the observa-
tions made in Ou et al. [14]. We quantitatively validate by repeating the erosion analysis in Ou et al. [14] on both the
real data (Figure 3H) and synthetic data (Figure 3J). We find that both linear fits to the erosion curve share similar
axis intercepts.
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Figure 3: Learning nucleosome spacing distribution from electron microscopy data. A-D Validation of image analysis pipeline
on synthetic data. A. Sample conformation of synthetic DNA with basepair spacing distributed uniform randomly with mean
60 bp ±20bp, shown as a synthetic EM image with varying voxel intensity. B. Sample nucleosome spacing paths estimated
by novel Dijkstra’s algorithm pipeline, overlayed on image after estimated nucleosome cores are subtracted (see Methods). C.

Comparison of ground truth distribution of nucleosome spacing and learned distribution for 100 random synthetic EM images.
D. The learned nucleosome spacing, summarized by the mean and inter-quartile range (IQR), for various Gaussian blurs. Pink
vertical dashed line indicates the Gaussian blur estimated from the data of Ou et al. [14]. Vertical magenta line indicates the
estimated noise level that is seen in real ChromEMT data. E. Sample slice of 3D EM microscopy data from Ou et al. [14], F.

Same as E, after binarization for analysis. G. Learned distribution of nucleosome spacings. Data fits an exponential distribution
with a mean of 43 bp. We also fit a Weibull distribution to the data, where we find our scale parameter to be 1.196, which
indicates that our distribution is close to exponential. H. Erosion analysis on EM data, following method described by Ou
et al. [14] I. Sample conformation of synthetic DNA using our learned nucleosome spacing distribution. Data exhibits similar
qualitative “clumping” of chromosomal DNA that was identified in Ou et al. [14]. J. Erosion analysis, same as H, on synthetic
data.
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An ATAC/EM-informed polymer model to understand the effects of nucleosome positioning and

polymer mechanics on long-range contact probabilities and loci of high-contact for specific genes

The above method allows the study of nucleosome-driven contacts for a specific gene. We first apply the method
to CXCL9, a gene that is upregulated in response to immune stimulation [15]. The full pipeline for simulation
uses ATAC-seq to place nucleosomes on regions of high-ATAC-coverage with the NucleoATAC algorithm [12], and
then uses the EM-informed model presented above for regions of low-ATAC-coverage, resulting in a complete map
of nucleosome placements around the CXCL9 TSS. Our algorithm for sampling nucleosome placements from Nu-
cleoATAC in regions of high-ATAC-coverage is described in Methods. In Supplemental Figures S7-S9 we show
that our nucleosome placement algorithm is consistent with the NucleoATAC data. We can then perform the same
stochastic polymer mechanics calculation as in Figure 2 but with data-informed nucleosome positions. Using pub-
lished ATAC-seq data from Zhang et al. [11], we perform this simulation for ATAC-seq data from both unstimulated
macrophages, and from macrophages stimulated with bacterial lipopolysaccharide (LPS) for 1 hour. Crucially, there
are no free parameters in the biophysical model.

The configurations, as viewed by radius of gyration and root-mean-square distances, show discrepancy from the 0.5
power-law predicted by the simplistic Gaussian chain assumption (Supplemental Figure S10). We plot the data-
informed contact probabilities in Figure 4C. For comparison, we overplot the contact probabilities predicted for
exponentially-distributed nucleosome spacing distribution estimated from EM data alone (so, same as Figure 2F),
which approximately obeys Gaussian chain statistics. The discrepancies between these two nucleosome placement
assumptions demonstrates that real nucleosome placement can indeed significantly modulate contact, both quantita-
tively and in introducing new qualitative features, e.g., a sudden reduction in contact around -25kbp.

The raw contact probabilities show significant differences between the contact probabilities before and after LPS
stimulation (blue and red curves in Figure 4C). One example locus is shown in contact with the transcriptional start
site in Figure 4D. This contact probability quadruples upon LPS-stimulation, suggesting that nucleosome placement
alone is sufficient to significantly alter contact probabilities. Note that this is not simply a consequence of increasing
or decreasing the number of nucleosomes, since the total number of nucleosomes varies less than 2% between the
two conditions.
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Figure 4: Simulation of polymer mechanics of CXCL9 with nucleosomes placed according to ATAC-seq and EM data. A.

Example ATAC-seq coverage (top) and NucleoATAC output probability density function (bottom) centered at CXCL9 TSS
±250 kbp. Peaks correspond with a higher probability of nucleosome presence in transcriptionally active DNA. ATAC-seq and
NucleoATAC maps are sparse and require EM data to fill in low coverage regions. B. The MACS2-identified high-coverage
regions are analyzed using NucleoATAC [12], which gives a probability distribution of nucleosome center positions in all
peak regions (orange). We sample these regions for nucleosomes, then fill the remaining EM-informed regions (blue) with
nucleosomes according to the learned distribution (described in Figure 3). This list of nucleosome spacings for the genomic
region of interest of DNA is provided to the polymer mechanics model [7], and we perform Monte Carlo sample of the 3D
conformation of DNA in thermal equilibrium. C. Contact probability profiles for unstimulated (pre-LPS; blue) and 1-hour
post-LPS stimulated macrophages (red) within a ±50kbp window around the transcriptional start site of CXCL9. EM-only
(black) and open ATAC-seq (green) is shown for comparison. Open ATAC-seq corresponds to not placing any nucleosomes in
MACS2-identified high-coverage regions as seen in B. The EM-only probability profile approximately behaves as a Gaussian
chain. Inset is the same data but plotted on a ±250kbp window to demonstrate the genomic domain of simulation. D. Sample
conformations of CXCL9 before and after LPS-stimulation. One example locus is shown in contact with the transcriptional
start site; this contact probability quadruples upon LPS-stimulation, suggesting that nucleosome placement alone is sufficient
to significantly alter contact probabilities.
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The ATAC/EM-informed polymer model is predictive of long range genomic contacts observed by

4C-seq

We next sought to identify specific loci that we could categorize as in “close contact” with the locus of interest,
namely the CXCL9 transcriptional start site. We perform background removal, smoothing, and normalization to
produce a contact signal (see Methods and Supplemental Figure S11). We then use wavelet peak finding [21] to
identify “peaks” in the contact signal, which we then refer to as predicted close contacts.

Note that while the biophysical model that predicted the contact probabilities shown in Figure 4C has no free pa-
rameters, there are 2 hyperparameters in the wavelet peak finding algorithm. To avoid overfitting, we optimize these
hyperparameters on 4C data before LPS stimulation (Figure 5ACE, “Unstimulated”, which serves as the training
data set of LPS-treated human macrophages at zero hours), and then use the same peak-finding hyperparameters on
one hour post-LPS-treated cells (Figure 5BDF, “Stimulated”, which therefore serves as the validation data set).

A straightforward way to assess the predictive power of this model is via two quantities: the proportion of polymer-
mechanics-predicted contacts that are within a tolerance distance of a 4C contact (that is, the accuracy of the model);
and the proportion of 4C contacts that are within a tolerance distance of a polymer-mechanics-predicted contact
(that is, the precision of the model, specifically 1 � FDR where FDR is the false discovery rate). These are shown
in Figure 5EF for various tolerance distances. At high tolerance, prediction becomes perfect, as expected. At the
genomic distance of 10 kbp, roughly the size of larger gene regulatory elements [22–24], the accuracy is 0.83 and
precision is 0.83. This value has a p-value of 0.0001 compared to randomly guessing the locations of the same
number of peaks.

This striking result indicates that polymer mechanics and nucleosome placement, alone, can account for a statistically
significant proportion of contacts between two loci. Furthermore, we performed a similar analysis using one 4C
replicate to predict another 4C replicate, and found that the average predictive power of 4C is 0.63 (Figure 6B
and Supplemental Figure S12 and S13), which is below the predictive power of our model. This suggests that the
predictive test of our model is not limited by the model itself, but the variability of the 4C data.

Note that we report a p-value in Figure. 5C, but this should not be interpreted as a hypothesis test since it is part of
the training set. Note also that we use a false discovery rate instead of a false positive rate, since the latter is less
meaningful for identifying ⇠ 10 contacts on a region of ⇠ 100 kbps.

Beyond CXCL9, we next sought to study other inflammatory genes, IL6, IL15 and CXCL10. Crucially, here we
do not retrain the peak-finding hyperparameters (and recall there are no free parameters in the biophysical model),
reusing those we found for CXCL9. The resulting tracks are shown in Figure 6A. We find that for all genes together,
our model yields a metric of 0.71, corresponding to a p-value 4.3076 ⇥ 10�7, and comparable with that average
predictive power of 4C as seen in Figure 6B (red) and Supplemental Figures S12 and S13.
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Figure 5: ATAC-EM-informed polymer model predicts close contacts observed in 4C-seq. A-B. Contact signals for unstimu-
lated, pre-LPS human macrophage (left) and post-LPS 1hr stimulated macrophage (left). Tracks from the ATAC-EM-informed
model (top) and 4C (bottom) are shown with peaks overlayed in green. C-D. Predicted contact agreement between our model
and 4C. Arcs represent and identified contact. Semicircles represent a 10kb contact, and are colored green if both 4C and the
model are in agreement, and are colored red otherwise. E. Training set performance. The pre-LPS dataset was used only to train
the peak-finding algorithm (all biophysical parameters were fixed). Vertical dashed line shows where accuracy and precision
were measured for hyperparameter optimization. (The p-value 0.0488 is shown but should not be interpreted as a hypothesis
test, since it is on the training set.) F. Validation set performance. Within a threshold of 10 kbp, the model predicts peaks
with an accuracy and a precision (1-FDR) of 0.83 (vertical dashed line). This corresponds to a p-value ⇡ 0.0001 compared to
randomly guessing the locations of the same number of peaks.
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The range of validity of nucleosome-polymer-mechanics modeling

As mentioned, many other factors influence genome organization besides polymer mechanics and kinks due to nu-
cleosome placement. The scaling behavior of contacts exhibits different regimes at different genomic length scales
[6, 25]. From these previous studies, we speculate that the simple model developed here would lose validity around
400kbp, where other effects such as fractal globule effects, and topological domains organized by regulatory com-
plexes such as cohesins, may dominate. Therefore, we repeated the analysis, including polymer simulation, for a
range of genomic domain sizes, and show the metric in Figure 6B, for all 4 genes and 2 stimulation conditions. We
compare this to the ability of one 4C replicate to predict another 4C replicate (red curve). As mentioned above,
at this level of predictive performance, we expect the polymer model to be limited by the reproducibility of the
4C data. We also compare to the average predictive power of randomly placed contacts (dashed line; at this pre-
dictive performance, the p-value would be 0.5). We find that the model performs significantly better than random
guessing, and comparable to the limitation of the 4C data. Furthermore, this appears to hold throughout a range of
genomic distances, to 250kbp, suggesting that the nucleosomes continue to have a significant impact up to 250kbp.
Computational limitations prevented us from simulating larger genomic distances.
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Figure 6: ATAC-seq is predictive of genomic contact across multiple genes and genomic length scales. A. Predicted contacts for
4C and our polymer model for IL6, IL15, CXCL9, and CXCL10. All contacts were predicted using CXCL9 hyperparameters
as described in Figure 5. Contact signals, such as those in 5AB are plotted for all four genes in Figure S14. B. Performance over
genomic distance for all genes. Gray band about model prediction depicts one standard deviation from the average prediction
metric. Average 4C metric and random guessing metric are shown for reference. Model overall shows little trend over genomic
distance, we find a slight downtrend for small window sizes. At large genomic distance, model performs significantly better
than the random predictor with a p-value 4.3076 ⇥ 10�7. C. Summary of accuracy and precision metrics for each gene, for
both unstimulated (0 hour) and stimulated (1 hour) human macrophages, and the combination of all four genes being predicted
simultaneously.
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Polymer-mechanics-predicted contacts harbor actively engaged regulatory factor DNA-binding mo-

tifs and show dynamic coordination with genome accessibility

Given that long-range genomic contacts are widely thought to contribute to active gene regulation through the co-
localization of regulatory factor binding hubs with distantly located gene promoters, whereby this co-recruitment
can, e.g., boost or “enhance” expression, we next examined the frequency of regulatory binding factor motifs located
within said contacts. To do so, we devised a strategy to identify genomic regions that overlapped as both experi-
mentally observed (based on 4C-seq conserved across two biological replicates) and polymer-mechanics-predicted
contacts across unstimulated (0hr) and stimulated (1hr) conditions. Using this strategy, we identified genomic contact
regions that were either dynamically regulated (gained or lost) or static during macrophage stimulation (Figure 7A).
We next used the MotifMap database to quantify the abundances of transcription factor (TF) binding motifs present
within our genomic contact regions and found that these regions harbored a total of 243 motifs spanning 40 distinct
transcription factors, with the top 3 most abundant being LEF1, YY1, and IRF8. Notably, LEF1 (lymphoid enhancer
binding factor 1) was the most abundant motif within our contacts and is known to regulate gene expression through
DNA looping mechanisms [26] and its role in 3d genome organization has particularly been implicated in immune
regulation of myeloid lineages [27]. We also observed overlap with the binding motif of CCCTC-binding factor
CTCF, an architectural protein known to mediate intrachromosomal interactions [28] within a contact that was lost
upon inflammatory stimulation.

To better understand whether contacts were related to nucleosome remodeling events that occurred directly at the
site of contacts or at locations between contacts, we partitioned contacts into four categories according to the status
of ATAC-seq peak behavior that they were associated (directly overlapped) with (Figure 7B). Thus we annotated our
experimentally confirmed, polymer-mechanics-predicted contacts that were gained, lost, or remained static during
1hr stimulation (green, red, and blue, respectively), and annotated these by whether they overlap with ATAC-seq
peaks that were gained, lost, and/or static or that showed no peak during 1hr stimulation. At this resolution, we
found that of the 8 contact regions captured within the CXCL9 locus, 1 region lacked overlap with any ATAC peaks
(no peak), 5 regions overlapped with regions harboring static ATAC peaks, 1 region showed overlap with ATAC peaks
that were lost during stimulation, and 1 region overlapped with ATAC peaks that were both gained and lost during
stimulation. The one contact region associated with ATAC peaks that were both gained and lost during stimulation
was associated with 1 of 3 static contacts within the locus. The other 2 static contacts overlapped with ATAC peaks
that were static. We also observed that all 3 of the gained contacts experienced scenarios where ATAC peaks were
both static as well as completely absent. These findings suggest that contacts change largely independently from the
observed ATAC behavior, where all three categories of contact dynamics (gained, lost, static) were observed, and
that contact formation could occur independent from (or is not preceded by) ATAC peak formation. While only 2
out of the 8 contact region experienced a loss in ATAC peaks, we found that 1 of these contacts overlapped with 1
of the 2 contact regions that were also lost during stimulation. These findings leave the possibility that the stability
of some ATAC peaks may be contact-dependent. However, additional analysis of multiple gene loci are needed to
broaden the interpretation of these findings.

Finally, to further investigate the biological significance of our motif analysis, we compared the genomic positions
of the motifs contained within our contact regions with publicly available data from genome-wide TF-binding as-
says (ChIP-seq) for TFs LEF1 and CTCF (Figure 7C). Indeed we find that several LEF1 motifs and the CTCF
motif captured within our contact regions are occupied by actively bound transcription factor proteins directly in
macrophages for CTCF (GSM2544247) or cells of closely related lineage origin to our THP-1 cell line (specifically
K562 lymphoblast cells) for LEF1 (GSM2828684).
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Figure 7: Polymer-mechanics-predicted contacts harbor actively engaged regulatory factor DNA-binding motifs and show dy-
namic coordination with genome accessibility peaks. A. Strategy to identify polymer-mechanics-predicted and experimentally
validated regions of viewpoint contacts at the CXCL9 locus. B. The frequency of TF binding motifs located within genomic
contacts defined in (A) according to contact dynamics (gained: green; lost: red; static: blue) and divided according to the
behavior of ATAC-seq peaks observed during 1hr stimulation (gained, lost, static, or no peak) overlapping with each respective
contact region. C. Genome browser track showing the CXCL9 locus indicating genomic contacts identified in (A) along with
overlapping TF-binding motif for CTCF and LEF1 and the respective ChIP-seq tracks for CTCF binding within macrophages
and LEF1 binding within blood lineage-derived K562 lymphoblast cells. Shaded regions indicate contact regions where CTCF
and LEF1 ChIP-seq peaks coexist (orange) or individually (yellow).
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Discussion

Besides their role at individual genomic loci, nucleosomes between loci can significantly modulate their long-range
contact. Changing nucleosome density within the physiologically-observed range can lead to order-of-magnitude
changes in contact probability. More surprisingly, we find that the specific placement of these nucleosomes between
loci, even at approximately the same total number, can introduce or reduce contacts.

The specific contacts predicted by the polymer model, after training on ATAC-seq and electron microscopy data,
were statistically significant and on-par with the difference between replicates of 4C-seq. Indeed, 71% of close
contacts within four 500kbp genomic regions, before and after inflammation, were correctly predicted by the model.
This is surprising, since many other factors are known to influence 3d genome organization, but is consistent with
prior work suggesting that this change is stronger than that due to the presence or absence of cohesins [8], and that
cohesins are not always necessary to predict structure [29]. These results suggest that, while genome contacts on
100kbp-scales are multifactorial, they may be amenable to mechanistic, physical explanation.

The image analysis and pathfinding algorithm developed herein was necessary, since ATAC-seq coverage is low
in most of the genome. Our method, which uses a novel pathfinding algorithm that weighs paths by both their
intensity under EM and their path-length, yielded a distribution of nucleosome spacings consistent with previous
work [8, 19, 20]. It would be intriguing to apply this method to EM data on specific regions of the nucleus, and to
cells in different regulatory states.

This model assumed that causality runs from nucleosome placement, to polymer mechanics, to conformation and
close contacts. While the predictive success of this model demonstrates this is sufficient to explain a significant
fraction of contacts, other mechanisms are possible. For example, it is possible that 3d conformation influences
nucleosome placement, since histones may bind more easily to certain DNA conformations. Moreover, the purely
causal, mechanistic assumptions of the model may also be a detriment if the goal were singularly to predict 4C data
from ATAC data — something that could be better achieved by incorporating more information or removing physical
constraints implied by the model.

We emphasize that the granularity of this polymer mechanics model is optimal for this 100-kilo-basepairs-scale
inquiry. The configurations are computed using efficient Monte Carlo sampling where analytical expressions [30, 31]
are used for the mechanics of unbound DNA, greatly increasing the efficiency of the code. Models with more
atomistic detail would be computationally prohibitive, and models on larger genomics scales would miss the effect
of individual nucleosomes. This mesoscale approach, and the specific model and pipeline presented here, generalize
to other genes, and can be used to address other cases of cells undergoing a state change.

Throughout evolution, the sequence structure of the genome is undoubtably shaped through selective pressures
associated with physical polymeric properties of the genome [32]. However the intricacies of this co-evolution
of sequence and physical property remain largely undefined. Notably, there are long-standing observations that TF
binding sites actually occur in relatively high-density clusters (or hotspots) throughout the genome [33, 34]. Further-
more, the positioning of nucleosomes is heavily guided by genetic sequence yet still subject to precise nucleosome
eviction events dynamically regulated according to cell state [35]. Our findings present a new paradigm regarding
how evolutionary pressures contribute to selection of genetic architectures that favor contact- (or loop-) formation
between “motif-rich” regulatory binding site hotspots with gene promoters through sites of conditional nucleosome
placement or polymer mechanics, which may assist in shaping the motif environment to influence transcription factor
search dynamics [36].
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Methods

Computational simulation of contacts from the twistable worm-like model

We use the twistable worm-like chain model with nucleosomes, as described previously in Beltran et al. [7] and
github.com/ajspakow/wlcstat. This model requires as input the nucleosome positions.

For the uniform model, we take a mean spacing µ and a spacing variability �, and place a nucleosome every µ+X
bp, where X ⇠ U(��,�) and U is a uniform random distribution. For the Poisson process, we randomly place
nucleosomes every Y basepairs where Y ⇠ Exp(�), where our exponential distribution is defined such that the
expected value E[Y ] = �.

Once we randomly sample nucleosomes, we compute the lengths of exposed DNA between nucleosome to generate
a list of nucleosome spacings. This list of nucleosome spacings is then provided as input to a chain growth algorithm
to compute the 3D conformation of DNA, with nucleosome wrapping, under random thermal fluctuations.

For each conformation, we count each basepair within 10 nm of the locus of interest (usually the TSS). We repeat
this a minimum of 150,000 randomly generated polymer conformations and average these scores together. The
computation takes approximately 2 hours on an Intel Xeon Gold 6336Y 24-core CPU at 2.4GHz.

Nucleosome spacing from electron microscopy data

We develop an algorithm for learning nucleosome spacings from EM microscopy data of heterochromatin, specifi-
cally here using data from Ou et al. [14]. We first determine the centroids of the nucleosomes in the EM data. To
do so, we binarize the 3D EM image with a noise threshold of 95% of the maximum voxel value. We find that
naked DNA is fully eroded and the nucleosomes cores remain intact in the image. We then use the cc3d python
package and the function connected components to compute the unique connected 3D components in the im-
age to cluster and compute the centroids of each disjointed candidate nucleosome. With a list of centroids in hand,
we return to our non-EM image and use Dijkstra’s algorithm [37] to compute nearest neighbor distances between
all unique centroids. A centroid included in a previous pair is excluded from future pairs. The Dijskstra algorithm
weighs all paths by both their intensity under EM and their path-length, and returns the minimal path. We found that
this method is the most robust: A method that simply computes shortest paths between detected nucleosomes would
ignore DNA curvature, while a method that only considers EM intensity fails on many nucleosome pairs where the
path is disjoint.

To validate our method, we simulate DNA in 100 randomly generated 100 kbp windows via our ATAC-free algorithm
with a uniform nucleosome spacing of 30, 60, and 90 ± 20 bp (slightly wider distributions than those presented in
Figure 2A). We then apply binary dilation with a diameter of 2.5 nm to each 1 cubic nm voxel containing a bp
long segment of the polymer, as well as a 5.5 nm dilation to the known positions of the nucleosome cores, so as to
match know diameter of DNA and half the diameter of nucleosomes [16, 38]. We seek to apply the same noise and
uncertainty to the synthetic data as in the real data, which we estimate has a Gaussian blur (point-spead function)
width of 1.8nm, and a contrast ratio of 2.5 between nucleosomes and DNA (see Figure S2). We apply Poisson
random noise to the synthetic EM image and Gaussian noise ranging from a standard deviation of 0.0 nm to 4.0 nm.
We then perform the nucleosome spacing learning algorithm as described above, visually described in Figures S3,
S4, and S5. Finally, we compare the resultant learned nucleosome spacing distribution to the simulated ground truth
in Figure 3 and Figure S6. These tests demonstrate that the method is able to correctly learn the mean nucleosome
spacing for the noise parameters identified from the real data.
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Nucleosome Spacing from combined ATAC-seq and EM-informed model

For our polymer model of chromosomal DNA, we wish to inform our nucleosome placement from ATAC-seq data.
First, we detect peak regions in the ATAC-seq data using MACS2 [39] with a window size of 1 kbp. This is to ensure
that the regions in ATAC-seq that we determine nucleosome positioning from are of sufficient sequencing depth. We
refer to these as high-ATAC-coverage regions. We then use NucleoATAC [12] to determine the probability distri-
bution of nucleosome placement. Briefly, NucleoATAC uses a model fit on S. cerivisiae to create estimates of the
positions of nucleosomes along the genomic body using ATAC-seq fragment size and locations distributions as in-
put. This model works by running a V-plot, a learned distribution of fragment size relative to the position of a dyad,
across the genome, and cross correlates with the genomic spatial fragment size distribution. Thus the output of this
model can be interpreted as a probability density function for the locations of nucleosomes across the genome. A
higher cross-correlation score coincides with a higher probability with a nucleosome being centered at that genomic
position. We verify that our algorithm is behaving as stated by examining the nucleosome densities compared to the
NucleoATAC score in Figure S7, as well as verify that the distribution of local maxima in NucleoATAC signal are
similar to nucleosome placement probabilities in Figures S8 and S9. Once we have the NucleoATAC probability
distribution for a given region of DNA that is high-ATAC-coverage, we sequentially sample the probability distribu-
tion for nucleosome center positions until we can no longer place a nucleosome center without being within ±146
bp (the size of DNA wrapped around the nucleosome) of any previously placed nucleosome center. We then take the
remaining regions of DNA that are not high-ATAC-coverage, and fill them with nucleosomes according to a Poisson
process (i.e., exponential distribution) with mean 43 bp, as learned from the EM data, as described in the previous
section.

Inflammatory stimulation of THP-1-derived macrophages, 4C-seq library preparation and sequenc-

ing

4C-seq was performed according to the protocol described by Krijger et al. [40], with minor modifications. Briefly,
10 million THP-1 cells were seeded in 10 cm dishes and treated with 20 nM phorbol 12-myristate 13-acetate for
48 hours, followed by stimulation with 100 ng/ml ultrapure lipopolysaccharide (Invitrogen, Cat. tlrl-3pelps). Cells
were fixed with 2% paraformaldehyde for 10 minutes at room temperature, quenched with 1 M glycine, and lysed
using cell lysis buffer comprising 1M Tris-HCl, NP-40, Triton X-100, 5M NaCl, 0.5M EDTA, and 100X proteinase
inhibitor. The supernatant was removed, and 10 ml of cold 0.13 M glycine in PBS was added to quench the reaction,
followed by shaking on ice for 10 minutes. Cells were lysed in 5 ml of cold cell lysis buffer, comprising 1M Tris-
HCl, NP-40, Triton X-100, 5M NaCl, 0.5M EDTA, and 100X proteinase inhibitor. The mixture was shaken on ice
for 15 minutes, then scraped and shaken for another 5 minutes. The nuclei were collected by centrifugation at 500g
for 5 minutes at 4�C, resuspended in 1.2X restriction enzyme (RE) buffer, and treated with 0.3% SDS and 2.5%
Triton X-100, with incubation at 37�C between steps.

Chromatin was fragmented by subjecting isolated nuclei to primary restriction enzyme digestion using the 4-bp
cutter Csp6I (ThermoFisher, Cat. ER0211) to achieve optimal contact-mapping resolution, followed by in situ
ligation in a reaction mix containing ligase buffer and ligase, incubated overnight at 16�C. Post-ligation, cross-links
were reversed by overnight incubation with Proteinase K at 65�C. DNA was purified using SPRI beads and subjected
to a second restriction enzyme digestion using NlaIII (NEB, Cat. R0125L) to generate sticky ends for circularization.
The digested DNA was then ligated again, and the resulting 3C templates were purified using AMPure XP beads
(Beckman Coulter, Cat. A63881), and quantified using the Qubit dsDNA BR Assay Kit. Next, two rounds of PCR
amplification were conducted: an inverse PCR to amplify captured regions, followed by an indexing PCR to generate
sequencing-ready libraries. Libraries were purified using AMPure XP beads and sequenced on an Illumina MiSeq
platform. Data processing, including demultiplexing, trimming, and mapping to the reference genome (hg38), was
performed using the pipe4C pipeline as described by Krijger et al. [40]. The PCR primers used were:

Universal forward primer for indexing (5’ – 3’): AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA-
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CACGACGCTCTTCCGATCT

Viewpoint gene locus Forward primer for inverse

PCR (5’ – 3’)

Reverse primer for inverse PCR

(5’ – 3’)

TNF (region 1) TACACGACGCTCTTCCGAT
CTTGGGGGTAGGGTTAGT
AC

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTACACTTAGTG
AGCACCTTC

TNF (region 2) TACACGACGCTCTTCCGAT
CTTGGGGGTAGGGTTAGT
AC

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTTCACTCCATA
CACACTTAGT

IL-6 (region 1) TACACGACGCTCTTCCGAT
CTCCTTCCCTGCCCCAGTA
C

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTGCTCGAGGGC
AGAATGAGC

IL-6 (region 2) TACACGACGCTCTTCCGAT
CTCCTTCCCTGCCCCAGTA
C

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTGGGCTCGAGG
GCAGAATG

IL-6 (region 3) TACACGACGCTCTTCCGAT
CTCCTTCCCTGCCCCAGTA
C

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTTCTTTCGTTCC
CGGTGGG

CXCL9 (region 1) TACACGACGCTCTTCCGAT
CTTTTGGATAACTGGTCAT
G

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTCTGACTGCTA
CACAATGT

CXCL10 (region 1) TACACGACGCTCTTCCGA
TCTCACAGCATTCAATAGT
AC

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTTATGCAATGA
AGTTCTTTTT

IL-15 (region 1) TACACGACGCTCTTCCGAT
CTAGGACTCGATGGAGGT
AC

ACTGGAGTTCAGACGTGTGC
TCTTCCGATCTCCGGTCTCCT
CCTCTACC

Table 1: Viewpoint Gene Primers

Contact signal processing

To compare our ATAC-informed and experimental 4C-seq contact signals, we seek to identify locations of close
contact with the locus of interest. We first perform monotonic regression and subtract the resulting fit from the
original data. Monotonic, or isotonic, regression is a technique that fits a piecewise-constant function to data, while
enforcing monotonicity. Since we expect contact to peak at the transcriptional start site of each gene and to decay to
the left and to the right, we fit two separate monotonic regression models for each side of the site and enforce that
they converge to the same peak value at the locus of interest. We do not consider data within ±10 kbp of the locus
of interest. We then use a 3rd order Savitzky-Golay filter with a window size of 25 kbp. Background removal and
smoothing of this nature leads to the data exhibiting heteroscedasticity, with local variance increase further away
from the locus of interest (Figure S11B), which can in turn lead to errors in peak finding. Thus, to address this we
normalize our data with a rolling z-score with a window size of 25 kbp, consistent with our choice of filter window
size.

Contact detection, hyperparameter selection and statistical significance

With data processed as above, use wavelet peak finding with the SciPy function find peaks cwt [21, 41]. This
method explores wavelengths in the interval [↵,�], where ↵,� are hyperparameters of the model. We repeat this
procedure for both the 4C-seq and the ATAC-informed contact signals.

Although the biophysical model has no free parameters, the wavelet peak finding algorithm has 2 hyperparameters.
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To fit hyperparameters ↵, and �, we first determine the 4C-seq contact signal parameters by fitting peaks to two
replicates of the 4Cseq data, and predicting each other for the 0hr LPS data only. To quantify the predictive perfor-
mance, for each choice of hyperparameters, we compute the proportion of peaks within 10 kbp of replicates one and
two respectively, which we term the (ACC) and precision, or positive predictive value (PPV, alternatively 1-FDR),
and take the minimum of these as our metric.

In other words, we optimize hyperparameters to be

[↵̂, �̂] = argmax
↵,�

⇣
min

�
ACC(↵,�), PPV (↵,�)

�⌘
= argmax

↵,�

⇣
min

�
ACC(↵,�), 1� FDR(↵,�)

�⌘
(1)

Once we compute ↵̂ and �̂ on the 4C data, we use these parameters to compute the peak locations on the average of
the 4C LPS 0hr replicates to use as the ground truth.

We then repeat the above optimization where we have the ATAC-informed contact map predicting this 4C-seq ground
truth in the same manner.

To estimate the statistical significance of our results, we compare the results of our ATAC-informed model to a null
model in which we assume to be uniform random placement of N peaks, where N is the number of peaks in our
estimated 4C ground truth. We sample M different random peak placements, compute the performance metric for
each of these, and count the proportion of these placements where this statistic is larger than the performance of the
polymer model. In other words, we count the number of random placements with

min
�
ACC(↵,�), PPV (↵,�)

�
� min

�
ACC(↵̂ATAC, �̂ATAC), PPV (↵̂ATAC, �̂ATAC)

�
. (2)

Note that, doing so with the training data (unstimulated cells) is not a valid hypothesis test, since this is the result
of an optimization procedure,. We then repeat p-value procedure on our test data (LPS-stimulated cells), without
refitting our hyperparameters, giving a true statistical p-value.
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Woods, Chad Fulton, Charles Masson, Christian Häggström, Clark Fitzgerald, David A Nicholson, David R
Hagen, Dmitrii V Pasechnik, Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice Silva, Felix Lenders, Flo-
rian Wilhelm, G Young, Gavin A Price, Gert-Ludwig Ingold, Gregory E Allen, Gregory R Lee, Hervé Audren,
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