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Abstract
Abundance	estimation	is	a	critical	component	of	conservation	planning,	particularly	
for	 exploited	 species	where	managers	 set	 regulations	 to	 restrict	 harvest	 based	on	
current	population	size.	An	increasingly	common	approach	for	abundance	estimation	
is	 through	 integrated	population	modeling	 (IPM),	which	uses	multiple	data	 sources	
in	a	joint	likelihood	to	estimate	abundance	and	additional	demographic	parameters.	
Lincoln	estimators	 are	one	 commonly	used	 IPM	component	 for	harvested	 species,	
which	 combine	 information	 on	 the	 rate	 and	 total	 number	 of	 individuals	 harvested	
within	an	integrated	band-	recovery	framework	to	estimate	abundance	at	large	scales.	
A	major	assumption	of	the	Lincoln	estimator	is	that	banding	and	recoveries	are	repre-
sentative	of	the	whole	population,	which	may	be	violated	if	major	sources	of	spatial	
heterogeneity	 in	survival	or	harvest	rates	are	not	 incorporated	 into	the	model.	We	
developed	an	approach	to	account	for	spatial	variation	in	harvest	rates	using	a	spatial	
predictive	process,	which	we	 incorporated	 into	a	Lincoln	estimator	 IPM.	We	simu-
lated	data	under	different	configurations	of	sample	sizes,	harvest	rates,	and	sources	
of	spatial	heterogeneity	 in	harvest	rate	to	assess	potential	model	bias	 in	parameter	
estimates.	We	then	applied	the	model	to	data	collected	from	a	field	study	of	wild	tur-
keys	(Meleagris gallapavo)	to	estimate	local	and	statewide	abundance	in	Maine,	USA.	
We	found	that	the	band	recovery	model	that	incorporated	a	spatial	predictive	process	
consistently	provided	estimates	of	adult	and	juvenile	abundance	with	low	bias	across	
a	 variety	 of	 spatial	 configurations	 of	 harvest	 rate	 and	 sampling	 intensities.	When	
applied	 to	data	 collected	on	wild	 turkeys,	 a	model	 that	did	not	 incorporate	 spatial	
heterogeneity	underestimated	the	harvest	rate	in	some	subregions.	Consistent	with	
simulation	results,	this	led	to	overestimation	of	both	local	and	statewide	abundance.	
Our	work	demonstrates	that	a	spatial	predictive	process	is	a	viable	mechanism	to	ac-
count	for	spatial	variation	in	harvest	rates	and	limit	bias	in	abundance	estimates.	This	
approach	could	be	extended	to	large-	scale	band	recovery	data	sets	and	has	applica-
bility	for	the	estimation	of	population	parameters	in	other	ecological	models	as	well.
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1  |  INTRODUC TION

Abundance	estimation	is	a	critical	component	of	successful	conser-
vation	planning	(Thogmartin	et	al.,	2006),	particularly	for	exploited	
species	where	managers	set	quotas	or	other	regulations	to	restrict	
harvest	based	on	current	population	size	(Nichols	et	al.,	2007; Runge 
et al., 2009).	If	abundance	is	overestimated,	liberal	regulations	may	
lead	 to	 a	 larger	 portion	of	 the	population	being	 removed	 than	 in-
tended,	 which	 can	 negatively	 impact	 long-	term	 stability	 (Johnson	
et al., 2012;	Weinbaum	et	al.,	2013).	Alternatively,	if	population	size	
is	underestimated,	harvest	regulations	may	be	set	more	restrictively	
than	necessary,	leading	to	underutilization	of	the	resource,	and	re-
ducing	the	opportunity	for	consumers.	In	either	instance,	there	are	
benefits	to	identifying	and	implementing	tools	that	estimate	abun-
dance	as	accurately	as	possible.

An	 increasingly	 common	 approach	 for	 abundance	 estimation	
is	 integrated	 population	 modeling	 (IPM;	 Chandler	 &	 Clark,	 2014; 
Schaub	&	Abadi,	2011;	Wilson	et	al.,	2016),	which	uses	multiple	data	
sources	 in	 a	 joint	 likelihood	 to	estimate	abundance	and	additional	
demographic	parameters.	IPMs	efficiently	use	data,	provide	a	means	
of	estimating	uncertainty	that	is	propagated	among	model	parame-
ters,	and	have	the	capacity	to	infer	latent	parameters	for	which	data	
are	not	available.	IPMs	are	versatile	in	the	types	of	information	they	
can	 incorporate,	 including	 capture-	mark-	recapture,	 point	 count,	
productivity,	dead	 recovery,	and	 telemetry	data	 (Bled	et	al.,	2017; 
Fay	 et	 al.,	2019;	 Freeman	&	 Crick,	2003;	 Horne	 et	 al.,	2019; Lee 
et al., 2015),	 with	 the	 key	 requirement	 that	 one	 or	 more	 param-
eters	 are	 shared	 among	 the	 components	 of	 the	 IPM	 (Zipkin	 &	
Saunders,	2018).

Lincoln	estimators	(Lincoln,	1930)	are	increasingly	used	to	esti-
mate	abundance	at	large	scales	(Alisauskas	et	al.,	2009)	by	combining	
information	on	the	rate	and	total	number	of	 individuals	harvested;	
data	 that	 are	 typically	 obtained	 from	 band	 recoveries	 (Roberts	
et al., 2021)	and	hunter	survey	or	harvest	reporting.	While	histori-
cally	underutilized,	Lincoln	estimators	have	been	applied	with	great	
success	 in	 the	management	of	multiple	 game	 species	 (Diefenbach	
et al., 2012;	Hagen	et	al.,	2014;	Otis,	2006;	Saunders	et	al.,	2019),	
most	 notably	 for	 the	 harvest	 of	 waterfowl	 across	North	 America	
(Alisauskas	et	al.,	2014;	Arnold	et	al.,	2018).	 In	an	IPM	framework,	
temporal	 dynamics	 in	 abundance	 can	 be	 represented	 in	 a	 state-	
space	 approach,	 and	 additional	 data	 sources	 beyond	 those	 gener-
ated	by	harvest	may	be	included	to	inform	demographic	parameters	
estimated	by	the	model	when	available	(Hostetler	&	Chandler,	2015; 
Tavecchia et al., 2009).

Despite	the	advantages	of	IPMs,	violating	assumptions	of	compo-
nent	models	can	lead	to	bias,	both	for	parameters	directly	estimated	

from	data	and	those	being	 inferred	 indirectly	 (Riecke	et	al.,	2019),	
making	 it	 important	 to	 both	 identify	 potential	 violations	 and	 im-
plement	 reasonable	 solutions.	 A	major	 assumption	 of	 the	 Lincoln	
estimator,	shared	by	all	band	recovery	models,	 is	that	banding	and	
recoveries	 are	 representative	 of	 the	whole	 population	 (Alisauskas	
et al., 2009),	 and	 this	assumption	will	be	violated	 if	major	 sources	
of	 heterogeneity	 in	 survival	 or	 harvest	 rates	 are	not	 incorporated	
into	the	model	(Pollock	&	Raveling,	1982).	Within	a	contiguous	pop-
ulation,	harvest	 rates	may	vary	spatially	according	 to	variable	har-
vest regulations, land access, weather, or land cover characteristics 
(Burke	et	al.,	2019;	Hansen	et	al.,	1986;	Norton	et	al.,	2012).	Similarly,	
survival	may	be	linked	to	spatially	varying	factors	like	habitat,	preda-
tion	risk,	or	weather	(Fleskes	et	al.,	2007; Perkins et al., 1997; Tolon 
et al., 2009).	Assumptions	of	constant	harvest	rate	or	survival	may	
therefore	be	violated	across	large	spatial	scales,	which	will	bias	es-
timates	at	finer	scales.	When	estimating	parameters	statewide	and	
applying	 them	 to	management	 objectives	 that	 are	 region-	specific,	
it	is	often	unrealistic	to	assume	that	no	heterogeneity	exists	among	
regions.	Therefore,	accounting	for	spatial	heterogeneity	is	important	
to	ensure	accurate	abundance	estimates	on	which	management	will	
be	based.

When	incorporating	spatial	variation	into	models,	accounting	for	
multiple	interacting	factors	can	be	difficult	when	each	varies	inde-
pendently	(Viana	et	al.,	2013),	and	may	be	impractical	to	measure.	
It	may	be	 simpler	 to	 ignore	 specific	 causes	of	 the	 spatial	 relation-
ship,	and	instead	take	advantage	of	underlying	spatial	correlations	in	
the	data	to	map	the	spatial	structure	of	parameters	being	estimated	
(Cressie,	2015).	Locations	that	are	closer	together	in	space	are	more	
likely	to	be	similar	than	those	farther	apart	(Burrough,	1995),	which	
can	facilitate	covariance	functions	to	describe	the	spatially-	dynamic	
nature	of	 a	parameter.	One	 such	approach,	 spatial	 predictive	pro-
cesses	(SPP;	Banerjee	et	al.,	2008),	projects	the	underlying	correla-
tion	among	sampling	sites	onto	a	set	of	evenly	spaced	spatial	knots	
distributed	across	an	area	of	interest.	SPP	was	initially	intended	as	a	
dimension	reduction	approach	to	reduce	computation	requirements	
in	Kriging	for	larger	data	sets	(Banerjee	et	al.,	2008),	but	the	underly-
ing	framework	has	advantages	beyond	computational	efficiency.	For	
one,	the	covariance	function	does	not	require	additional	information	
beyond	the	locations	of	data,	meaning	that	identifying	and	measur-
ing	 explanatory	 covariates	 is	 unnecessary	 to	 represent	underlying	
spatial	 heterogeneity	 in	 the	process.	Additionally,	 even	 spacing	of	
spatial	knots	uniformly	covers	the	area	of	 interest,	which	 is	some-
times	 impractical	 for	 observed	 data	 when	 sampling	 depends	 on	
the	presence	of	animals.	Thus,	using	parameter	estimates	at	evenly	
spaced	knots	may	be	more	representative	than	those	from	sampling	
sites.	Use	of	SPP	is	sparse	within	the	ecological	literature—	although	
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see	 examples	 for	 applying	 such	 an	 approach	 to	 estimating	 the	
spatial	 distribution	 of	 fisheries	 discards	 (Viana	 et	 al.,	2013),	 avian	
communities	 (Jarzyna	 et	 al.,	 2014),	 or	 invasive	 plants	 (Latimer	
et al., 2009)—	despite	 its	broadly	applicable	approach	for	assessing	
spatial	variation	in	vital	rates,	especially	when	causes	of	the	spatial	
relationship	are	difficult	to	determine.

Here,	we	develop	and	present	an	SPP	approach	for	incorporat-
ing	 spatial	 variation	 in	 harvest	 rates	 into	 an	 IPM	 to	 derive	 robust	
estimates	of	wild	turkey	(Meleagris gallapavo;	hereafter	turkey)	abun-
dance.	We	 integrated	 band	 recovery,	 telemetry,	 and	 total	 harvest	
data	to	estimate	the	region-	specific	abundance	of	a	two-	aged	(adult	
and	juvenile),	harvested	population	at	the	beginning	of	the	hunting	
season	(Figure 1).	Band	recoveries	were	used	to	estimate	harvest	rate	
and	survival	rate	under	a	modified	Brownie	parameterization	of	the	
dead	recovery	model	(Brownie,	1985),	in	which	we	incorporated	an	
SPP	(Banerjee	et	al.,	2008)	to	account	for	spatial	variation	in	harvest	
rate	among	capture	sites,	and	to	allow	estimation	of	harvest	 rates	
in	areas	where	banding	did	not	occur.	To	control	for	mortalities	that	
occurred	 between	 banding	 and	 the	 beginning	 of	 the	 hunting	 sea-
son	(Buderman	et	al.,	2014),	we	linked	survival	in	the	band	recovery	
model	to	a	weekly	survival	rate	estimated	from	telemetry	data	using	
a	nest	survival	framework	(Dinsmore	et	al.,	2002).	Final	abundance	

estimates	were	generated	using	a	Lincoln	estimator	within	a	state-	
space	 approach	 (Alisauskas	 et	 al.,	2014; Lincoln, 1930).	We	 simu-
lated	data	sets	under	different	configurations	of	spatial	variation	in	
harvest	rate	and	sampling	characteristics	to	assess	bias	in	parameter	
estimates	and	applied	the	model	to	data	collected	from	a	field	study	
of	wild	turkeys	to	estimate	abundance	and	inform	harvest	decisions	
across	the	state	of	Maine.

2  |  MATERIAL S AND METHODS

2.1  |  Integrated population model

2.1.1  |  Band	recovery	model

We	 used	 a	modified	 version	 of	 the	 Brownie	 parameterization	 for	
dead	 recoveries	 (Brownie,	 1985),	where	 recovery	 rates	were	 esti-
mated	as	the	combined	probability	that	a	bird	was	killed,	retrieved,	
and	reported	by	a	hunter	within	a	given	hunting	season.	We	consid-
ered	 recovery	 rate	synonymous	with	 “harvest	 rate”	 (h),	which	was	
estimated	as	a	proportion	of	all	mortalities	(harvest	plus	nonharvest)	
that	 occurred	 throughout	 the	 year.	We	 use	 the	 term	 “harvest”	 to	
refer	to	the	total	number	of	 individuals	harvested	and	reported	to	
MDIFW	 (H).	We	 assumed	 100%	 reporting	 of	 harvested	 birds,	 al-
though	incomplete	reporting	could	be	incorporated	with	additional	
information	on	reporting	rate.	One	assumption	of	all	band	recovery	
models	is	that	no	mortalities	occur	between	capture	and	the	begin-
ning	of	the	first	hunting	season	postbanding,	which	is	likely	to	be	vio-
lated	as	time	between	the	two	events	increases	(Cooch	et	al.,	2021).	
To	better	identify	mortality	that	occurred	between	capture	and	the	
first	hunting	season,	we	separated	each	year	within	the	conventional	
band	 recovery	encounter	history	 into	 two	distinct	 and	alternating	
occasion types, capture and the spring hunting season. The initial 
observation	 occurred	 during	 a	 capture	 occasion,	 and	 the	 terminal	
observation	 during	 a	 harvest	 occasion,	 resulting	 in	 two	 occasions	
per	year.	Survival	was	then	differentiated	according	to	three	seasons	
within	a	year	that	corresponded	with	the	intervals	between	recov-
ery	occasions;	the	period	from	the	mid-	point	of	capture	to	the	first	
day	of	harvest,	the	 interval	where	harvest	occurs	 (i.e.,	the	hunting	
season),	and	the	period	from	last	day	of	the	harvest	season	to	the	
mid-	point	of	the	following	year's	capture.	For	a	given	interval	within	
the	model,	a	Bernoulli	 random	variable	 (ψ)	was	used	 to	determine	
the	probable	latent	survival	state	(z)	of	individual	i at occasion t,

where ψ	was	 the	probability	of	 surviving	all	 risks	unrelated	 to	 re-
ported	harvests	during	the	spring	hunting	season	(Si,t)	given	that	the	
bird	was	alive	at	 the	end	of	 the	previous	occasion	 (wi,t– 1 =	 1).	We	
modeled	the	probability	of	observed	data	using	a	Bernoulli	random	
variable	(γ),

Pr
(

zi,t = 1
)

∼ Bern(ψ)

ψ = Si,t × wi,t−1

F I G U R E  1 Band	recovery,	telemetry,	and	total	harvest	
information	in	combination	with	a	spatial	predictive	process	can	be	
used	in	a	Lincoln	estimator	to	produce	estimates	of	harvest	rate,	
survival,	and	abundance.	The	flow	of	data	and	parameter	estimates	
through	the	integrated	population	model	is	depicted	here	by	a	
directed acyclic graph.
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where y	was	the	observed	harvest	of	a	banded	individual	and	h was 
the	probability	a	bird	was	harvested	and	reported,	given	that	it	sur-
vived	all	other	mortality	risks	since	the	previous	occasion	(zi,t =	1).	
Since	harvests	cannot	occur	during	capture	periods,	we	restricted	
h = 0 in capture occasions.

We	modeled	variation	in	h	using	a	log–	log-	linear	model,

where β	were	coefficients	that	describe	variation	according	to	age	of	
the	individual	(Juvenile,	<1	year	old,	or	Adult,	>1	year	old)	and	year	
of	harvest,	respectively.

To	 account	 for	 spatial	 variation	 in	 harvest	 rates,	 we	 included	 a	
mean-	zero	 SPP	 (ω[c];	 Viana	 et	 al.,	2013;	 see	 section	 2.1.2)	 that	 de-
pended	on	the	capture	 location	for	all	 individuals,	c = {c1, c2, …, cn}. 
Remaining	variation	was	modeled	by	a	nonspatial	error	term	(εi),	where

2.1.2  |  Spatial	predictive	process

Following	the	methods	of	Viana	et	al.	(2013),	we	accounted	for	spa-
tial	variation	in	harvest	rate	by	incorporating	the	mean-	zero	SPP	into	
the	logit-	linear	regression.	We	specified	a	set	of	evenly	distributed	
spatial knots, c* = {c*1, c*2, …, c*m}, across the study area on which we 
defined	a	Gaussian	process	with	exponential	covariance,

where σs
2	was	the	spatial	random	effect	variance	and	ρ was an auto-

correlation	function	with

where |da,b|	was	the	distance	between	locations	ca and cb, and ϕ deter-
mined	the	rate	of	decay	in	correlation	as	distance	increased	between	
locations.	To	project	the	Gaussian	process	from	the	knots	back	onto	
harvest	 locations,	we	used	the	correction	for	bias	in	εi	proposed	by	
Finley	et	al.	(2009).	Given	a	generic	covariance	function	between	two	
locations C(ca, cb | ϕ)	= σs

2ρ(ca, cb | ϕ),	we	then	defined	ω(s)	as

We	 then	 applied	 the	 covariance	 functions	 to	 the	 supplied	 sets	 of	
capture	sites	and	spatial	knots,	which	yielded	site-	specific	estimates	
of	the	harvest	rate	for	each	capture	location.

2.1.3  | Weekly	survival	rate

Weekly	 survival	 rates	 (s)	 were	 estimated	 under	 a	 nest	 survival	
modeling	framework	(Dinsmore	et	al.,	2002),	in	which	we	modeled	
whether	an	individual	was	observed	alive	since	its	previous	telem-
etry	observation	(x)	as	a	Bernoulli	random	variable	(μ),

Pr(x =	1) ~ Bern(μ)
μ = sk

where s	was	the	probability	of	surviving	1 week	and	k	was	the	num-
ber	of	weeks	since	an	individual	was	last	observed	alive.	We	mod-
eled variation in s	using	a	log–	log	linear	model	(Ergon	et	al.,	2018),

where α	represented	individual,	temporal,	and	spatial	regression	co-
efficients	for	categorical	covariates	age,	season,	and	region,	respec-
tively.	We	used	a	covariate	for	the	region	an	individual	was	captured	
to	account	for	spatial	variation	in	survival.	To	estimate	survival	from	
banding	to	harvest,	we	set	S	within	the	band	recovery	model	equal	
to s	exponentiated	to	reflect	the	relevant	time	period,	such	that

where n	is	the	number	of	weeks	between	occasions	within	the	band	
recovery	model.	For	n	following	initial	capture,	we	used	the	length	of	
time	from	the	time	of	marking	to	the	beginning	of	the	following	har-
vest	period.	In	subsequent	occasions,	we	used	the	average	number	of	
weeks	between	the	median	date	of	capture	and	the	first	day	of	the	
hunting	season	to	determine	values	for	n.	In	practice	this	approach	al-
lowed	us	to	accommodate	the	mortality	of	animals	between	capture	
and	their	first	opportunity	to	be	harvested,	which	cannot	be	reconciled	
in	a	standard	band	recovery	framework	(Buderman	et	al.,	2014).

2.1.4  |  State-	space	abundance	estimation

Abundance	(N)	was	derived	using	a	Lincoln	estimator	(Lincoln,	1930; 
Alisauskas	et	al.,	2014)	for	each	region	and	timestep	as

where r	was	the	region	of	the	study	area,	and	t	was	the	year	for	which	
abundance	was	estimated.	We	linked	abundance	through	time	using	a	
state-	space	approach.	Hr,t	for	each	region	were	drawn	from	a	bino-
mial	distribution

where ĥr	was	the	mean	harvest	rate	across	years	for	region	r and was 
estimated	as	the	average	harvest	rate	at	all	spatial	knots	(h*r)	within	a	
region's	boundaries,	such	that

Pr
(

yi,t = 1
)

∼ Bern(γ)

γ = hi,t × zi,t

wi,t = zi,t − yi,t

log− log
(

hi,t

)

=β0+β1Year1+β2Year2+ … +βtYeart+βaAgei+ ω
(

ci

)

+�i

�i ∼ N
(

0, σ2
)

∼
ω (c∗) ∼ GP

(

0, �2
s
ρ
[

c
∗, c∗ | ϕ

])

ρ
(

ca, cb | ϕ
)

= exp
[

− | da,b| ∕ϕ
]

ω(s) = C(c∗, c | ϕ)C(c∗, c∗ | ϕ)−1ω̃(c∗) + �s

�s ∼N
(

0, diag
(

C(c, c ∣ ϕ)−C(c, c∗ ∣ϕ)C(c∗, c∗ ∣ϕ)
−1
C(c ∗, c ∣ ϕ)

))

log − log(s) = α0 + α1Region1 + α2Region2 + … + αrRegionr + αaAge + αsSeason

Si,t = s
n

Nr,t =

Hr,t

hr,t

Hr,t ∼ Bin

(

̂hr ,
∧

N r,t

)
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We	assumed	each	region	was	closed	to	immigration	and	emigration,	
such	 that	 total	 abundance	at	 the	beginning	of	 the	hunting	 season	
(N̂a,r,t + 1)	was	equal	to	the	number	of	adults	that	survived	the	pre-
vious	 year	 (Ma,r,t),	 combined	with	 juveniles	 that	 survived	 from	 the	
previous	year	and	graduated	to	adulthood	(Mj,r,t),	each	of	which	was	
drawn	from	binomial	distributions

where Qr	was	the	total	probability	of	survival,	estimated	as

Harvest	is	often	the	most	significant	source	of	mortality	for	male	
turkeys	and	is	dramatically	greater	than	nonharvest	mortality	during	
the	hunting	season	(Humberg	et	al.,	2009);	thus,	we	assumed	that	1–	
ĥr	represented	the	probability	of	surviving	the	spring	hunting	season	
by	virtue	of	not	being	harvested	and	that	nonharvest	mortality	during	
this	interval	was	negligible.	As	we	used	categorical	covariates	to	de-
scribe	regional	differences	in	survival	and	therefore	could	not	directly	
estimate	survival	in	regions	in	which	we	did	not	band,	we	estimated	a	
global	mean	value	for	S	for	all	regions	by	averaging	survival	in	those	
regions where captures occurred. Juveniles were recruited into the 
population	at	 the	beginning	of	each	hunting	season	at	a	per-	capita	
rate	based	on	the	number	of	adults	alive	in	the	previous	year,	such	
that

where R	 was	 the	 recruitment	 rate.	 Because	 abundance	 estimates	
depended	on	estimates	from	the	previous	occasion,	starting	values	
(t = 1)	for	Nj and Na	were	assumed	to	be	equal	to

2.2  |  Model validation

To	 assess	 model	 accuracy,	 we	 simulated	 data	 that	 spanned	 a	 se-
ries	of	 adjacent	 regions	with	variable	 abundance.	We	generated	a	
100 km × 100 km	 virtual	 study	 area	 evenly	 divided	 into	 25	 regions	
(Figure	 S1).	 Capture	 sites	 were	 randomly	 distributed	 across	 the	
study	area,	and	each	was	randomly	assigned	either	a	high,	medium,	
or	low	number	of	captured	individuals.	For	each	data	set,	we	simu-
lated	banding,	telemetry,	and	total	harvest	data	for	a	given	popula-
tion,	and	used	constant	intercepts	and	beta	coefficients	to	simulate	

weekly	survival	and	harvest	rates	across	the	area,	with	modifications	
as	described	below	to	incorporate	spatial	heterogeneity.	To	prevent	
unrealistic	population	growth,	we	restricted	the	maximum	regional	
abundance	using	a	 fixed	carrying	capacity	of	5000	 individuals.	To	
introduce	spatial	variation	into	harvest	rate	and	survival	parameters,	
we	 generated	 Gaussian	 random	 fields	 using	 the	 “gstat”	 package	
(Pebesma,	2004)	in	program	R	(R	Core	Team,	2020),	which	created	
a	 location-	specific	beta	coefficient	 that	described	spatial	variation	
across	the	study	area.	We	assessed	the	accuracy	of	estimates	under	
variable	sampling	within	a	region	and	across	the	study	area.	To	en-
sure	that	the	simulation	accurately	presented	a	range	of	possible	spa-
tial	heterogeneities	and	that	the	model	was	robust	to	those	ranges	
of	variation,	we	simulated	multiple	spatial	configurations	of	harvest	
rate	using	low,	medium,	or	high	values	for	the	partial	sill,	range,	and	
nugget	of	the	variogram	used	to	generate	the	random	field.	In	prac-
tice,	 this	 allowed	us	 to	vary	 the	magnitude	of	variation	 in	harvest	
rate,	the	maximum	distance	of	autocorrelation,	and	the	amount	of	
small-	scale	variation	in	harvest	rates,	respectively	(Figure	S2).

To	evaluate	model	accuracy,	we	compared	simulated	values	 to	
estimates	 of	 harvest	 rate,	 survival,	 and	 abundance	 generated	 by	
the	model.	Due	 to	 the	wide	 variation	 in	 potential	 abundance	 val-
ues	among	simulated	regions,	we	did	not	use	absolute	measures	of	
error,	where	regions	with	greater	abundance	would	inherently	have	
greater	absolute	error	values.	Instead,	we	calculated	the	relative	bias	
as	the	difference	between	the	true	and	estimated	value	for	each	re-
gion,	divided	by	the	true	value.

To	evaluate	how	the	inclusion	of	an	SPP	to	account	for	spatial	hetero-
geneity	 in	harvest	rates	 impacted	model	estimates,	we	repeated	the	
above	analysis	using	a	second	model,	which	assumed	a	constant	har-
vest	rate	across	the	study	area	(i.e.,	did	not	include	an	SPP).	We	then	
compared	the	relative	bias	between	the	two	models.

2.3  |  Case study: Wild turkeys in Maine

To	demonstrate	the	applicability	of	the	model,	we	used	data	collected	
from	wild	turkeys	in	Maine,	USA.	Maine	is	a	large	state	(~91,647 km2)	
with	a	variety	of	intermixed	land	use	types	and	variable	hunter	densi-
ties.	As	such,	we	expected	significant	heterogeneity	in	harvest	rates	
of	turkeys	within	the	state,	as	has	been	observed	for	other	states'	tur-
key	populations	(Stevens	et	al.,	2020).	Turkeys	were	captured	during	
the	winters	(December	through	March)	of	2018	through	2020	using	
rocket	and	drop	nets	and	aged	as	either	adult	(>1	year	old)	or	juve-
nile	(<1	year	old)	according	to	plumage	(Dickson,	1992).	We	marked	
turkeys	with	at	 least	1	of	4	different	marking	methods	with	associ-
ated	identification	numbers,	including	aluminum	butt	end	leg	bands,	
aluminum	rivet	bands,	plastic	colored	leg	bands,	or	patagial	wing	tags.	
Nearly	all	individuals	received	at	least	2	marks,	and	we	assume	reten-
tion	of	at	least	1	mark	was	100%.	In	addition	to	identification	num-
bers,	leg	bands	included	contact	information	(toll-	free	phone	number	
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and	web	form)	for	hunters	to	report	the	harvest	of	banded	individu-
als.	Hunters	could	also	report	harvests	when	registering	their	turkey	
at	state-	coordinated	check	stations.

At	capture	sites	in	the	greater	Portland	and	Bangor	areas,	a	subset	
of	turkeys	was	fit	with	12 g	VHF	necklaces	from	Advanced	Telemetry	
Systems	(Model	A3950;	Isanti,	Minnesota,	USA),	although	2	individuals	
were	marked	with	90 g	Litetrack	GPS	backpack	from	Lotek	Wireless	
Fish	and	Wildlife	Monitoring	(Newmarket,	Ontario,	CA).	We	attempted	
to	record	one	live/dead	status	for	each	radioed	individual	per	week.	
We	censored	individuals	that	died	within	the	first	2 weeks	after	cap-
ture.	Prior	analysis	of	this	population	indicated	that	necklace	transmit-
ters	do	not	affect	male	wild	turkey	survival	postcapture	(Gonnerman	
et al. unpublished data),	and	we	assumed	harvest	rates	were	similar	be-
tween	turkeys	fit	with	radio	transmitters	and	those	without.

In	Maine,	hunters	were	 required	 to	present	 their	harvested	 tur-
keys	to	a	local	check	station	for	registration,	which	provided	both	a	
count	of	total	harvest	within	each	of	the	state's	Wildlife	Management	
Districts	(WMD),	as	well	as	age	class	designation	within	the	total	har-
vest.	Total	harvest	information	was	available	for	all	hunting	seasons	
dating	to	2006,	from	which	we	used	data	on	total	turkey	harvest	from	
2011	 through	2021.	These	years	 follow	a	 series	of	 changes	 to	har-
vest	regulations,	which	may	impact	estimates	of	harvest	rate.	Due	to	
complications	related	to	COVID-	19,	MDIFW	did	not	require	hunters	
to register harvested turkeys during the 2020 spring hunting season. 
Instead,	a	survey	was	conducted	to	gauge	success	and	estimate	the	
total	turkey	harvest.	We	adjusted	the	model	to	treat	2020	total	har-
vest	data	as	a	 random	variable	with	 initial	 values	equal	 to	 the	esti-
mated	harvest	from	survey	data.	We	do	note	that	Maine	also	has	a	
fall	either-	sex	hunting	season,	but	harvest	rates	were	generally	much	
lower	than	spring,	and	we	received	an	insufficient	number	of	recover-
ies	to	build	this	into	the	model	explicitly.	Therefore	survival	reflects	all	
mortality	(nonharvest	+	fall	harvest)	occurring	between	the	end	of	the	
spring hunting season in year t	and	the	beginning	of	the	subsequent	
spring season in t + 1.

In	Maine,	turkeys	are	managed	within	29	discrete	WMDs.	For	
the	distribution	of	 spatial	 knots	 in	 the	SPP,	we	used	 a	 grid	with	
24 km	spacing,	with	additional	knots	placed	at	the	geographic	cen-
ter	of	each	WMD.	We	eliminated	knots	from	WMDs,	where	turkey	
densities	 (<100)	 and	 harvests	 (<10)	 were	 expected	 to	 be	 insuf-
ficient	 to	 produce	 reliable	 estimates.	 These	 knot	 specifications	
ensured	that	each	WMD	of	 interest	had	at	 least	one	knot	within	
its	boundaries	and	that	we	did	not	predict	harvest	 rates	beyond	
where	 our	 data	 could	 reasonably	 be	 considered	 representative.	
The	distance	of	24 km	was	chosen	by	running	multiple	 iterations	
of	the	model	using	various	grid	spacing.	We	then	compared	WMD-	
specific	harvest	rate	estimates	for	each	iteration	to	a	model	with	a	
categorical	covariate	for	WMD.	We	used	root	mean	squared	error

to	select	the	largest	grid	spacing	that	minimized	error	while	also	reach-
ing	convergence	within	the	model.	We	compared	estimates	of	harvest	

rate	with	and	without	the	inclusion	of	the	SPP	component	to	assess	
whether	failing	to	account	for	spatial	variation	in	harvest	rates	affected	
parameter	estimates.

2.4  |  Model fitting

We	 fit	 simulated	 data	 to	 the	 model,	 as	 described	 in	 section	 2.1,	
using	a	Bayesian	approach	(Hobbs	&	Hooten,	2015).	We	used	JAGS	
v.4.3.0	(Plummer,	2003)	via	the	“R2jags”	package	(Su	&	Yajima,	2015)	
in	 the	 R	 v.4.0.3	 programming	 environment	 (R	 Core	 Team,	 2020).	
Regression	coefficients	were	given	vague	uniform	priors.	Simulation	
models	were	 allowed	 10,000	 iterations,	 discarding	 the	 first	 5000	
from	 calculations.	 The	model	 fit	 to	 wild	 turkey	 data	 was	 allowed	
50,000	iterations,	discarding	the	first	20,000.

3  |  RESULTS

3.1  |  Simulation accuracy

For	all	simulations	that	utilized	the	model	with	an	SPP	included,	the	
average	relative	bias	for	abundance	estimates	was	−0.04	(SD	=	0.21)	
for	adults	and − 0.06	(SD	=	0.22)	for	juveniles,	with	each	being	ap-
proximately	 zero-	centered	 (Figure 2a,b).	 Relative	 bias	 in	 harvest	
rate	 estimates	 averaged	 −0.10	 (SD	 =	 0.17)	 for	 adults	 and − 0.14	
(SD	=	 0.22)	 for	 juveniles.	Relative	bias	 in	weekly	 survival	 rate	 av-
eraged	0.001	 (SD	=	 0.002)	 for	 adults	 and	0.006	 (SD	=	 0.005)	 for	
juveniles.	We	did	not	observe	any	relationship	between	relative	bias	
in	abundance	estimates	and	configuration	of	spatial	variation	in	har-
vest	rates	(Figure	S3).	Similarly,	we	did	not	observe	any	differences	
in	relative	bias	in	abundance	associated	with	sampling	intensity	for	
the	sample	sizes	we	considered,	both	for	sampling	within	a	region	
and	for	sampling	across	a	study	area	within	a	simulation	(Figure	S4).	
When	we	compared	relative	bias	 in	abundance	as	 it	 related	to	the	
portion	of	the	population	that	was	banded,	we	found	that	bias	be-
came	more	negative	as	the	proportion	banded	 increased	and	vari-
ance	increased	as	the	proportion	banded	decreased	(Figure	S5).

When	the	SPP	was	omitted	from	the	model,	the	average	relative	
bias	 for	 abundance	estimates	was	0.16	 (SD	=	 0.14)	 for	 adults	 and	
0.21	(SD	=	0.13)	for	juveniles	(Figure 2c,d,	Figure	S6).	Relative	bias	
in	harvest	rate	estimates	averaged	0.11	(SD	=	0.09)	for	adults	and	
0.16	(SD	=	0.16)	for	 juveniles.	Relative	bias	 in	weekly	survival	rate	
averaged	−0.003	(SD	=	0.003)	for	adults	and	0.00	(SD	=	0.004)	for	
juveniles.

3.2  |  Case study

We	captured	 and	marked	408	male	wild	 turkeys	 (187	 adults,	 221	
juveniles)	at	72	capture	sites	across	Maine	(Figure 3).	Transmitters	
were	deployed	on	a	subset	of	58	males.	We	received	a	total	of	136	
reports	of	banded	turkeys	harvested	during	the	2018–	2021	spring	
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bearded	turkey	hunting	seasons	(33%	of	banded	males),	12	of	which	
were	radio-	marked	males	(21%	of	radio-	marked	males).

Region-	specific	 estimates	 of	 turkey	 abundance	 averaged	677	
adults	 and	 1361	 juveniles	 across	 all	 years	 and	 ranged	 from	2	 to	
4310	 adults	 and	 1	 to	 7010	 juveniles	 (Figure 4).	 Statewide	 total	
male	 turkey	 abundance	 averaged	 42,797	 individuals	 and	 ranged	
between	 36,338	 turkeys	 in	 2015	 and	 49,238	 turkeys	 in	 2018.	
Region-	specific	 estimates	 of	 adult	 harvest	 rates	 averaged	 0.35	
(ranged	between	0.12–	0.56;	Figure 5)	compared	with	0.07	(ranged	

between	0.02	 and	0.12)	 for	 juveniles.	 The	mean	weekly	 survival	
rate	across	years	was	0.99	(ranged	between	0.96	and	1.0)	for	adults	
and	0.98	(ranged	between	0.89	and	1.0)	for	juveniles.	Estimates	of	
recruitment	averaged	3.12	juveniles	per	adult	and	ranged	between	
0.12	and	18.18;	 this	upper	estimate,	while	clearly	unrealistic,	 re-
sulted	 from	 regions	 with	 extremely	 small	 population	 sizes.	 The	
95th	percentile	of	recruitment	estimates	ranged	from	0.70	to	8.32.

We	found	that	the	estimated	abundance	of	adult	turkeys	was	con-
sistently	lower	and	had	narrower	credible	intervals,	when	the	SPP	was	

F I G U R E  2 Relative	bias	for	estimates	of	adult	(a,c)	and	juvenile	(b,d)	abundance	produced	by	a	Lincoln	estimator	was	on	average	less	for	a	
model	with	a	spatial	predictive	process	to	account	for	spatial	variation	in	harvest	rates	(a,b)	compared	with	a	model	without	(c,d).	Number	of	
simulations	are	depicted	according	to	relative	bias	in	region-	specific	estimates	of	abundance	and	real	abundance	within	the	region.	Results	
shown	are	grouped	across	simulated	data	sets,	which	varied	in	the	underlying	spatial	heterogeneity	in	the	harvest	rate.
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included	in	the	model	versus	when	it	was	not	(Figure 6a).	On	average,	
the	basic	model	without	an	SPP	overestimated	abundance	by	286.96	
(SD	=	601.79)	adults	and	52.88	(SD	=	1072.28)	 juveniles	per	WMD.	
Estimates	 of	 adult	 harvest	 rates	were	 consistently	 higher	when	 the	
model	included	an	SPP	compared	with	the	model	that	assumed	a	con-
stant	harvest	rate	(Figure 6c).	For	juveniles,	we	observed	substantially	
less	difference	in	parameter	estimates	between	models	with	and	with-
out	an	SPP	(Figure 6b,d),	consistent	with	a	lower	overall	harvest	rate	
for	juvenile	males	with	inherently	less	room	for	variability	as	a	result.

4  |  DISCUSSION

We	found	that	a	Lincoln	estimator	incorporating	an	SPP	in	the	band	
recovery	 model	 consistently	 estimated	 abundance	 with	 low	 bias	
across	 a	 variety	 of	 spatial	 configurations	 of	 harvest	 rate	 for	 simu-
lated	data.	When	the	SPP	was	omitted	from	the	model,	relative	bias	
in	abundance	increased	for	all	configurations	of	spatial	heterogene-
ity	 in	harvest	 rate.	Additionally,	we	 found	no	difference	 in	 relative	
bias	according	to	either	sampling	intensity	or	the	underlying	nature	
of	 spatial	heterogeneity	 in	harvest	 rate.	When	applied	 to	 real	data	
collected	from	turkeys	in	Maine,	we	observed	a	wide	range	of	harvest	

rates	 and	 abundance	 among	wildlife	management	 districts.	 As	 ex-
pected,	the	basic	model	that	did	not	incorporate	spatial	heterogene-
ity	in	harvest	rates	via	the	SPP	underestimated	harvest	rates	in	some	
WMDs,	which	resulted	in	an	overestimation	of	abundance	in	those	
districts,	and	statewide.	The	variation	in	harvest	rates	we	observed	is	
typical	for	wild	turkey	populations	and	should	be	expected	especially	
across	 large	 spatial	 scales	 (Norton	et	 al.,	2012).	Most	 recent	appli-
cations	of	Lincoln	estimators	have	treated	harvest	rates	as	uniform	
across	large	areas	(Alisauskas	et	al.,	2014;	Hagen	et	al.,	2018;	Shirkey	
&	Gates,	2020).	While	this	assumption	may	sometimes	be	appropri-
ate	and	will	likely	depend	on	the	definition	of	“large	areas,”	our	results	
suggest	that	future	applications	could	consider	more	explicitly	incor-
porating	spatial	variation	in	harvest	rates	to	improve	inference.	While	
we	chose	to	use	an	SPP	to	accomplish	this,	other	methods	such	as	
simultaneous	autoregressive	and	conditional	autoregressive	models	
may	also	be	a	viable	option	(Fortin	et	al.,	2012).

Harvest	management	decisions	must	often	consider	populations	
that	span	considerably	large	spatial	scales	(Robinson	et	al.,	2016),	and	
it	may	not	be	necessary	to	reconcile	inference	at	the	local	scale	when	
decisions	are	made	at	regional	levels	(Johnson	et	al.,	2015).	Instead,	
estimates	 can	 be	 aggregated	 to	 summarize	 relationships	 within	 a	
region's	boundaries,	making	fine-	scale	differences	in	parameters	at	
local	 scales	 less	 important	 than	 adequately	 capturing	 the	 general	
trend	in	a	parameter	across	space.	Aggregating	estimates	to	describe	
parameters	by	region	can	be	performed	using	multiple	methods,	with	
the	simplest	solution	being	to	average	estimates	within	each	region.	
However,	consideration	must	be	given	to	the	sampling	design	used,	
as	clumped	or	 sparse	sampling	within	an	area	could	 lead	 to	bias	 if	
sampled	 locations	differ	greatly	 from	the	mean	across	a	 landscape	
(Hooten	et	al.,	2017).	To	some	degree,	SPP	can	mitigate	such	issues	
by	using	the	entire	data	set	to	define	a	spatial	correlation	function	
and	projecting	 it	 onto	 evenly	 distributed	 spatial	 knots	 from	which	
estimates	 are	 then	made.	 This	will	 have	 the	 benefit	 of	 smoothing	
the	prediction	surface,	minimizing	the	impact	of	any	single	sampling	
location,	which	may	otherwise	have	outsized	impacts	on	local	aver-
ages.	However,	 if	 larger	areas	or	districts	have	particularly	high	or	
low	harvest	rates,	and	are	unsampled,	the	model	would	not	be	able	
to	interpolate	those	relationships,	meaning	that	adequate	and	repre-
sentative	sampling	is	still	an	important	component	of	study	design.	
When	adequate	sampling	is	performed,	SPP	has	proven	to	be	effec-
tive	at	identifying	localized	“hotspots”	in	variation	(Viana	et	al.,	2013),	
and	indeed	we	found	that	model	predictions	were	robust	to	a	wide	
range	of	underlying	spatial	heterogeneity	in	harvest	rate.

We	 observed	 some	 variation	 in	 the	 magnitude	 and	 direction	
of	 error	 across	 iterations,	which	 is	 common	when	 assessing	 IPMs	
(Abadi	 et	 al.,	 2010;	 Fieberg	 et	 al.,	 2010).	 We	 further	 found	 that	
relative	 bias	 became	 more	 negative	 as	 the	 proportion	 of	 a	 pop-
ulation	 that	was	 banded	 increased.	 This	 shift	 in	 bias	 is	 consistent	
with	 a	 long-	understood	 relationship,	where	 the	accuracy	of	mark-	
recapture	models	depends	on	the	ratio	of	the	banded	sample	to	total	
abundance	(Robson	&	Regier,	1964),	and	reinforces	previous	recom-
mendations	that	sample	size	of	banding	studies	should	be	informed	
by	expected	population	size	(Robson	&	Regier,	1964).

F I G U R E  3 Spatial	knots	(red	triangles)	chosen	for	the	spatial	
predictive	process	provide	more	uniform	and	complete	coverage	
of	the	area	of	interest	compared	with	capture	sites	(blue	dots).	
Spatial	knots	were	distributed	across	a	24 km × 24 km	grid	with	
additional	knots	placed	at	the	geographic	center	of	each	WMD.	We	
eliminated	knots	from	WMDs	where	turkey	densities	(<100)	and	
harvests	(<10)	were	expected	to	be	insufficient	to	produce	reliable	
estimates.	Sample	size	for	capture	sites	is	indicated	by	the	size	of	
the	dot,	with	large	dots	meaning	larger	sample	sizes.	Color	of	dots	
indicates	whether	a	site	had	telemetry	devices	deployed	(dark	blue)	
or	did	not	(light	blue).
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Despite	 the	 advantages	of	 SPP,	 there	 are	 still	 opportunities	 for	
improvement.	Although	SPP	 should	be	notably	 faster	 than	alterna-
tives,	especially	as	the	amount	of	data	increases,	using	MCMC	can	still	
lead	to	lengthy	computing	times	(Banerjee	et	al.,	2008)	so	alternative	
posterior	samplers	should	be	considered	to	decrease	processing	time.	
The	advantages	of	SPP	will	not	overcome	extremely	sparse	data	avail-
ability	or	poor	sampling	design.	As	previously	mentioned,	the	number	
of	individuals	marked	should	be	proportional	to	the	expected	popula-
tion	size	being	sampled.	While	we	did	not	observe	an	effect	of	sample	
size	on	 the	model	bias	 for	 the	 sample	 sizes	we	considered,	 further	
exploration	with	more	 limited	data	sets	may	be	necessary	to	find	a	
threshold	at	which	estimates	are	no	longer	reliable.	Similarly,	the	dis-
tribution	of	sampling	locations	and	the	configuration	of	spatial	knots	
across	 a	 study	area	 should	be	 informed	by	 the	ecology	of	 the	 sys-
tem	being	studied.	The	number	and	placement	of	knots	for	the	SPP	
are	not	trivial,	and	while	there	appears	to	be	a	wide	margin	for	error,	
these	decisions	have	an	impact	on	estimates	(Banerjee	et	al.,	2008).	
For	example,	we	chose	to	use	the	capture	sites	as	input	locations	for	
the	SPP	as	we	did	not	have	accurate	information	on	locations	where	
harvests	occurred.	For	turkeys	that	move	relatively	short	distances,	
this	is	unlikely	to	be	an	issue,	but	migratory	species	may	require	more	
detailed	 information	on	harvest	 locations	as	the	distances	between	
capture	and	harvest	may	be	much	greater.	We	also	note	that	 in	sit-
uations	 where	 multiple	 parameters	 influence	 an	 outcome,	 such	 as	
harvest	and	survival	in	a	band	recovery	model,	failure	to	account	for	

F I G U R E  4 Wild	turkey	abundance	
varied	across	space	and	time	for	
populations	in	Maine,	USA,	as	predicted	
by	a	Lincoln	estimator	with	a	spatial	
predictive	process	component.	Map	colors	
indicate	the	mean	abundance	of	wild	
turkey	adults	(a)	and	juveniles	(b)	in	2021.	
Adult	(solid	line)	and	juvenile	(dashed	line)	
turkey	abundance	is	shown	from	2011	
through	2021	(c).

F I G U R E  5 Harvest	rate	estimates	were	variable	among	wildlife	
management	districts	across	Maine,	USA,	for	both	male	and	
juvenile	wild	turkeys.	Regional	differences	in	harvest	rates	are	
depicted	for	adult	male	turkeys	with	color	indicating	the	mean	
harvest	rate	for	each	management	district.
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experiencing	spatial	heterogeneity	 in	one	parameter	could	 result	 in	
increased	variation	in	estimates	of	the	other.

Multiple	methods	are	currently	used	to	monitor	turkey	popula-
tions.	Many	states	approximate	population	trends	using	spring	har-
vest	data	(e.g.,	CDEEP,	2016;	Harms	et	al.,	2017;	Healy,	2000),	but	
this	does	not	provide	an	estimate	of	true	abundance,	which	may	be	
preferable	for	setting	regulations	(Lint	et	al.,	1995).	This	method	also	
requires	accounting	for	changes	in	the	abundance	of	birds	and	har-
vest	 rates,	both	of	which	 influence	the	number	of	birds	harvested	

through	time	(Paloheimo	&	Fraser,	1981).	Surveys	such	as	summer	
sighting	 (PGC,	2021),	gobble	counts	 (Rioux	et	al.,	2009),	and	cam-
era	traps	 (Gonnerman,	2017)	can	be	used	to	produce	estimates	of	
population	 size	 at	 smaller	 scales	 but	 are	 unrealistic	 to	 implement	
for	 statewide	management.	An	 IPM,	 such	as	 the	one	we	have	 im-
plemented,	 provides	 a	 data-	driven	 alternative	 that	 can	 be	 scaled	
to	 the	scope	of	 turkey	management	decisions.	 It	 is	 relatively	cost-	
effective	as	it	uses	often	already	implemented	mandatory	reporting	
of	 harvests	 and	 only	 requires	 periodic	 captures	 of	 individuals	 for	

F I G U R E  6 Estimates	of	adult	abundance	and	harvest	rate	differed	between	Lincoln	estimators	with	and	without	a	spatial	predictive	
process	included,	but	juvenile	harvest	rate	and	abundance	were	largely	similar.	Estimates	from	both	models	are	presented	with	associated	
error	bars	for	abundance	(a,b;	shown	on	the	log	scale)	and	harvest	rate	(c,d).	For	all	figures,	circles	correspond	to	WMD-	by-	year	estimates.	
For	c	and	d,	triangles	indicate	the	harvest	rate	estimated	without	the	inclusion	of	the	SPP,	and	circles	indicate	the	SPP.
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banding.	Similar	IPMs	have	been	implemented	for	turkey	and	water-
fowl	populations	to	great	success	 (Arnold	et	al.,	2018;	Diefenbach	
et al., 2012),	 demonstrating	 that	 this	 is	 a	 feasible	 alternative	 that,	
with	 the	 inclusion	 of	 an	 SPP	 component,	 overcomes	many	 of	 the	
shortcomings	 of	 more	 common	monitoring	methods.	We	 imagine	
this	approach	may	have	more	broad	applicability	to	other	similarly-	
managed	harvest	systems,	such	as	those	for	large	mammals,	where	
regional	or	subregional	variation	in	harvest	regulations	is	common.

5  |  CONCLUSIONS

Management	decisions	based	on	biased	estimates	of	abundance	may	
lead	to	harvest	regulations	that	exceed	sustainable	levels	or	are	un-
necessarily	restrictive	(Dillingham	&	Fletcher,	2008).	Violations	of	the	
Lincoln	estimator's	assumption	of	representative	harvest	may	result	
in	such	bias.	As	Lincoln	estimators	become	more	widely	applied,	it	is	
important	to	consider	a	mechanism	to	account	for	spatial	variation	in	
harvest	rates,	which	can	vary	according	to	a	broad	range	of	spatially	
varying	ecological,	environmental,	and	socio-	economic	 factors	 that	
are	sometimes	difficult	to	measure	(Pope	&	Powell,	2021).	For	such	
cases,	the	combination	of	Lincoln	estimator	and	SPP	is	an	especially	
relevant	tool	for	capturing	the	magnitude	and	distribution	of	variation	
to	reduce	bias	in	estimates	used	for	management.	SPP	functions	as	a	
component	of	a	generalized	linear	mixed	model	framework,	making	it	
compatible	with	many	analytical	methods	currently	used	in	ecology,	
and	therefore	should	be	accessible	to	those	who	are	less	familiar	with	
spatial	statistics.	While	we	chose	to	apply	these	methods	to	harvest	
rates	within	a	band	recovery	model,	the	use	of	SPP	should	be	widely	
applicable	across	methods	for	vital	rate	estimation.
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