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Abstract
Abundance estimation is a critical component of conservation planning, particularly 
for exploited species where managers set regulations to restrict harvest based on 
current population size. An increasingly common approach for abundance estimation 
is through integrated population modeling (IPM), which uses multiple data sources 
in a joint likelihood to estimate abundance and additional demographic parameters. 
Lincoln estimators are one commonly used IPM component for harvested species, 
which combine information on the rate and total number of individuals harvested 
within an integrated band-recovery framework to estimate abundance at large scales. 
A major assumption of the Lincoln estimator is that banding and recoveries are repre-
sentative of the whole population, which may be violated if major sources of spatial 
heterogeneity in survival or harvest rates are not incorporated into the model. We 
developed an approach to account for spatial variation in harvest rates using a spatial 
predictive process, which we incorporated into a Lincoln estimator IPM. We simu-
lated data under different configurations of sample sizes, harvest rates, and sources 
of spatial heterogeneity in harvest rate to assess potential model bias in parameter 
estimates. We then applied the model to data collected from a field study of wild tur-
keys (Meleagris gallapavo) to estimate local and statewide abundance in Maine, USA. 
We found that the band recovery model that incorporated a spatial predictive process 
consistently provided estimates of adult and juvenile abundance with low bias across 
a variety of spatial configurations of harvest rate and sampling intensities. When 
applied to data collected on wild turkeys, a model that did not incorporate spatial 
heterogeneity underestimated the harvest rate in some subregions. Consistent with 
simulation results, this led to overestimation of both local and statewide abundance. 
Our work demonstrates that a spatial predictive process is a viable mechanism to ac-
count for spatial variation in harvest rates and limit bias in abundance estimates. This 
approach could be extended to large-scale band recovery data sets and has applica-
bility for the estimation of population parameters in other ecological models as well.
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1  |  INTRODUC TION

Abundance estimation is a critical component of successful conser-
vation planning (Thogmartin et al., 2006), particularly for exploited 
species where managers set quotas or other regulations to restrict 
harvest based on current population size (Nichols et al., 2007; Runge 
et al., 2009). If abundance is overestimated, liberal regulations may 
lead to a larger portion of the population being removed than in-
tended, which can negatively impact long-term stability (Johnson 
et al., 2012; Weinbaum et al., 2013). Alternatively, if population size 
is underestimated, harvest regulations may be set more restrictively 
than necessary, leading to underutilization of the resource, and re-
ducing the opportunity for consumers. In either instance, there are 
benefits to identifying and implementing tools that estimate abun-
dance as accurately as possible.

An increasingly common approach for abundance estimation 
is integrated population modeling (IPM; Chandler & Clark,  2014; 
Schaub & Abadi, 2011; Wilson et al., 2016), which uses multiple data 
sources in a joint likelihood to estimate abundance and additional 
demographic parameters. IPMs efficiently use data, provide a means 
of estimating uncertainty that is propagated among model parame-
ters, and have the capacity to infer latent parameters for which data 
are not available. IPMs are versatile in the types of information they 
can incorporate, including capture-mark-recapture, point count, 
productivity, dead recovery, and telemetry data (Bled et al., 2017; 
Fay et al.,  2019; Freeman & Crick,  2003; Horne et al.,  2019; Lee 
et al.,  2015), with the key requirement that one or more param-
eters are shared among the components of the IPM (Zipkin & 
Saunders, 2018).

Lincoln estimators (Lincoln, 1930) are increasingly used to esti-
mate abundance at large scales (Alisauskas et al., 2009) by combining 
information on the rate and total number of individuals harvested; 
data that are typically obtained from band recoveries (Roberts 
et al., 2021) and hunter survey or harvest reporting. While histori-
cally underutilized, Lincoln estimators have been applied with great 
success in the management of multiple game species (Diefenbach 
et al., 2012; Hagen et al., 2014; Otis, 2006; Saunders et al., 2019), 
most notably for the harvest of waterfowl across North America 
(Alisauskas et al., 2014; Arnold et al., 2018). In an IPM framework, 
temporal dynamics in abundance can be represented in a state-
space approach, and additional data sources beyond those gener-
ated by harvest may be included to inform demographic parameters 
estimated by the model when available (Hostetler & Chandler, 2015; 
Tavecchia et al., 2009).

Despite the advantages of IPMs, violating assumptions of compo-
nent models can lead to bias, both for parameters directly estimated 

from data and those being inferred indirectly (Riecke et al., 2019), 
making it important to both identify potential violations and im-
plement reasonable solutions. A major assumption of the Lincoln 
estimator, shared by all band recovery models, is that banding and 
recoveries are representative of the whole population (Alisauskas 
et al., 2009), and this assumption will be violated if major sources 
of heterogeneity in survival or harvest rates are not incorporated 
into the model (Pollock & Raveling, 1982). Within a contiguous pop-
ulation, harvest rates may vary spatially according to variable har-
vest regulations, land access, weather, or land cover characteristics 
(Burke et al., 2019; Hansen et al., 1986; Norton et al., 2012). Similarly, 
survival may be linked to spatially varying factors like habitat, preda-
tion risk, or weather (Fleskes et al., 2007; Perkins et al., 1997; Tolon 
et al., 2009). Assumptions of constant harvest rate or survival may 
therefore be violated across large spatial scales, which will bias es-
timates at finer scales. When estimating parameters statewide and 
applying them to management objectives that are region-specific, 
it is often unrealistic to assume that no heterogeneity exists among 
regions. Therefore, accounting for spatial heterogeneity is important 
to ensure accurate abundance estimates on which management will 
be based.

When incorporating spatial variation into models, accounting for 
multiple interacting factors can be difficult when each varies inde-
pendently (Viana et al., 2013), and may be impractical to measure. 
It may be simpler to ignore specific causes of the spatial relation-
ship, and instead take advantage of underlying spatial correlations in 
the data to map the spatial structure of parameters being estimated 
(Cressie, 2015). Locations that are closer together in space are more 
likely to be similar than those farther apart (Burrough, 1995), which 
can facilitate covariance functions to describe the spatially-dynamic 
nature of a parameter. One such approach, spatial predictive pro-
cesses (SPP; Banerjee et al., 2008), projects the underlying correla-
tion among sampling sites onto a set of evenly spaced spatial knots 
distributed across an area of interest. SPP was initially intended as a 
dimension reduction approach to reduce computation requirements 
in Kriging for larger data sets (Banerjee et al., 2008), but the underly-
ing framework has advantages beyond computational efficiency. For 
one, the covariance function does not require additional information 
beyond the locations of data, meaning that identifying and measur-
ing explanatory covariates is unnecessary to represent underlying 
spatial heterogeneity in the process. Additionally, even spacing of 
spatial knots uniformly covers the area of interest, which is some-
times impractical for observed data when sampling depends on 
the presence of animals. Thus, using parameter estimates at evenly 
spaced knots may be more representative than those from sampling 
sites. Use of SPP is sparse within the ecological literature—although 
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see examples for applying such an approach to estimating the 
spatial distribution of fisheries discards (Viana et al.,  2013), avian 
communities (Jarzyna et al.,  2014), or invasive plants (Latimer 
et al., 2009)—despite its broadly applicable approach for assessing 
spatial variation in vital rates, especially when causes of the spatial 
relationship are difficult to determine.

Here, we develop and present an SPP approach for incorporat-
ing spatial variation in harvest rates into an IPM to derive robust 
estimates of wild turkey (Meleagris gallapavo; hereafter turkey) abun-
dance. We integrated band recovery, telemetry, and total harvest 
data to estimate the region-specific abundance of a two-aged (adult 
and juvenile), harvested population at the beginning of the hunting 
season (Figure 1). Band recoveries were used to estimate harvest rate 
and survival rate under a modified Brownie parameterization of the 
dead recovery model (Brownie, 1985), in which we incorporated an 
SPP (Banerjee et al., 2008) to account for spatial variation in harvest 
rate among capture sites, and to allow estimation of harvest rates 
in areas where banding did not occur. To control for mortalities that 
occurred between banding and the beginning of the hunting sea-
son (Buderman et al., 2014), we linked survival in the band recovery 
model to a weekly survival rate estimated from telemetry data using 
a nest survival framework (Dinsmore et al., 2002). Final abundance 

estimates were generated using a Lincoln estimator within a state-
space approach (Alisauskas et al.,  2014; Lincoln,  1930). We simu-
lated data sets under different configurations of spatial variation in 
harvest rate and sampling characteristics to assess bias in parameter 
estimates and applied the model to data collected from a field study 
of wild turkeys to estimate abundance and inform harvest decisions 
across the state of Maine.

2  |  MATERIAL S AND METHODS

2.1  |  Integrated population model

2.1.1  |  Band recovery model

We used a modified version of the Brownie parameterization for 
dead recoveries (Brownie,  1985), where recovery rates were esti-
mated as the combined probability that a bird was killed, retrieved, 
and reported by a hunter within a given hunting season. We consid-
ered recovery rate synonymous with “harvest rate” (h), which was 
estimated as a proportion of all mortalities (harvest plus nonharvest) 
that occurred throughout the year. We use the term “harvest” to 
refer to the total number of individuals harvested and reported to 
MDIFW (H). We assumed 100% reporting of harvested birds, al-
though incomplete reporting could be incorporated with additional 
information on reporting rate. One assumption of all band recovery 
models is that no mortalities occur between capture and the begin-
ning of the first hunting season postbanding, which is likely to be vio-
lated as time between the two events increases (Cooch et al., 2021). 
To better identify mortality that occurred between capture and the 
first hunting season, we separated each year within the conventional 
band recovery encounter history into two distinct and alternating 
occasion types, capture and the spring hunting season. The initial 
observation occurred during a capture occasion, and the terminal 
observation during a harvest occasion, resulting in two occasions 
per year. Survival was then differentiated according to three seasons 
within a year that corresponded with the intervals between recov-
ery occasions; the period from the mid-point of capture to the first 
day of harvest, the interval where harvest occurs (i.e., the hunting 
season), and the period from last day of the harvest season to the 
mid-point of the following year's capture. For a given interval within 
the model, a Bernoulli random variable (ψ) was used to determine 
the probable latent survival state (z) of individual i at occasion t,

where ψ was the probability of surviving all risks unrelated to re-
ported harvests during the spring hunting season (Si,t) given that the 
bird was alive at the end of the previous occasion (wi,t–1  =  1). We 
modeled the probability of observed data using a Bernoulli random 
variable (γ),

Pr
(

zi,t = 1
)

∼ Bern(ψ)

ψ = Si,t × wi,t−1

F I G U R E  1 Band recovery, telemetry, and total harvest 
information in combination with a spatial predictive process can be 
used in a Lincoln estimator to produce estimates of harvest rate, 
survival, and abundance. The flow of data and parameter estimates 
through the integrated population model is depicted here by a 
directed acyclic graph.
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where y was the observed harvest of a banded individual and h was 
the probability a bird was harvested and reported, given that it sur-
vived all other mortality risks since the previous occasion (zi,t = 1). 
Since harvests cannot occur during capture periods, we restricted 
h = 0 in capture occasions.

We modeled variation in h using a log–log-linear model,

where β were coefficients that describe variation according to age of 
the individual (Juvenile, <1 year old, or Adult, >1 year old) and year 
of harvest, respectively.

To account for spatial variation in harvest rates, we included a 
mean-zero SPP (ω[c]; Viana et al.,  2013; see section 2.1.2) that de-
pended on the capture location for all individuals, c =  {c1, c2, …, cn}. 
Remaining variation was modeled by a nonspatial error term (εi), where

2.1.2  |  Spatial predictive process

Following the methods of Viana et al. (2013), we accounted for spa-
tial variation in harvest rate by incorporating the mean-zero SPP into 
the logit-linear regression. We specified a set of evenly distributed 
spatial knots, c* = {c*1, c*2, …, c*m}, across the study area on which we 
defined a Gaussian process with exponential covariance,

where σs
2 was the spatial random effect variance and ρ was an auto-

correlation function with

where |da,b| was the distance between locations ca and cb, and ϕ deter-
mined the rate of decay in correlation as distance increased between 
locations. To project the Gaussian process from the knots back onto 
harvest locations, we used the correction for bias in εi proposed by 
Finley et al. (2009). Given a generic covariance function between two 
locations C(ca, cb | ϕ) = σs

2ρ(ca, cb | ϕ), we then defined ω(s) as

We then applied the covariance functions to the supplied sets of 
capture sites and spatial knots, which yielded site-specific estimates 
of the harvest rate for each capture location.

2.1.3  | Weekly survival rate

Weekly survival rates (s) were estimated under a nest survival 
modeling framework (Dinsmore et al., 2002), in which we modeled 
whether an individual was observed alive since its previous telem-
etry observation (x) as a Bernoulli random variable (μ),

Pr(x = 1) ~ Bern(μ)
μ = sk

where s was the probability of surviving 1 week and k was the num-
ber of weeks since an individual was last observed alive. We mod-
eled variation in s using a log–log linear model (Ergon et al., 2018),

where α represented individual, temporal, and spatial regression co-
efficients for categorical covariates age, season, and region, respec-
tively. We used a covariate for the region an individual was captured 
to account for spatial variation in survival. To estimate survival from 
banding to harvest, we set S within the band recovery model equal 
to s exponentiated to reflect the relevant time period, such that

where n is the number of weeks between occasions within the band 
recovery model. For n following initial capture, we used the length of 
time from the time of marking to the beginning of the following har-
vest period. In subsequent occasions, we used the average number of 
weeks between the median date of capture and the first day of the 
hunting season to determine values for n. In practice this approach al-
lowed us to accommodate the mortality of animals between capture 
and their first opportunity to be harvested, which cannot be reconciled 
in a standard band recovery framework (Buderman et al., 2014).

2.1.4  |  State-space abundance estimation

Abundance (N) was derived using a Lincoln estimator (Lincoln, 1930; 
Alisauskas et al., 2014) for each region and timestep as

where r was the region of the study area, and t was the year for which 
abundance was estimated. We linked abundance through time using a 
state-space approach. Hr,t for each region were drawn from a bino-
mial distribution

where ĥr was the mean harvest rate across years for region r and was 
estimated as the average harvest rate at all spatial knots (h*r) within a 
region's boundaries, such that

Pr
(

yi,t = 1
)

∼ Bern(γ)

γ = hi,t × zi,t

wi,t = zi,t − yi,t

log− log
(

hi,t

)

=β0+β1Year1+β2Year2+ … +βtYeart+βaAgei+ ω
(

ci

)

+�i

�i ∼ N
(

0, σ2
)

∼
ω (c∗) ∼ GP

(

0, �2
s
ρ
[

c
∗, c∗ | ϕ

])

ρ
(

ca, cb | ϕ
)

= exp
[

− | da,b| ∕ϕ
]

ω(s) = C(c∗, c | ϕ)C(c∗, c∗ | ϕ)−1ω̃(c∗) + �s

�s ∼N
(

0, diag
(

C(c, c ∣ ϕ)−C(c, c∗ ∣ϕ)C(c∗, c∗ ∣ϕ)
−1
C(c ∗, c ∣ ϕ)

))

log − log(s) = α0 + α1Region1 + α2Region2 + … + αrRegionr + αaAge + αsSeason

Si,t = s
n

Nr,t =

Hr,t

hr,t

Hr,t ∼ Bin

(

̂hr ,
∧

N r,t

)
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We assumed each region was closed to immigration and emigration, 
such that total abundance at the beginning of the hunting season 
(N̂a,r,t + 1) was equal to the number of adults that survived the pre-
vious year (Ma,r,t), combined with juveniles that survived from the 
previous year and graduated to adulthood (Mj,r,t), each of which was 
drawn from binomial distributions

where Qr was the total probability of survival, estimated as

Harvest is often the most significant source of mortality for male 
turkeys and is dramatically greater than nonharvest mortality during 
the hunting season (Humberg et al., 2009); thus, we assumed that 1–
ĥr represented the probability of surviving the spring hunting season 
by virtue of not being harvested and that nonharvest mortality during 
this interval was negligible. As we used categorical covariates to de-
scribe regional differences in survival and therefore could not directly 
estimate survival in regions in which we did not band, we estimated a 
global mean value for S for all regions by averaging survival in those 
regions where captures occurred. Juveniles were recruited into the 
population at the beginning of each hunting season at a per-capita 
rate based on the number of adults alive in the previous year, such 
that

where R was the recruitment rate. Because abundance estimates 
depended on estimates from the previous occasion, starting values 
(t = 1) for Nj and Na were assumed to be equal to

2.2  |  Model validation

To assess model accuracy, we simulated data that spanned a se-
ries of adjacent regions with variable abundance. We generated a 
100 km × 100 km virtual study area evenly divided into 25 regions 
(Figure  S1). Capture sites were randomly distributed across the 
study area, and each was randomly assigned either a high, medium, 
or low number of captured individuals. For each data set, we simu-
lated banding, telemetry, and total harvest data for a given popula-
tion, and used constant intercepts and beta coefficients to simulate 

weekly survival and harvest rates across the area, with modifications 
as described below to incorporate spatial heterogeneity. To prevent 
unrealistic population growth, we restricted the maximum regional 
abundance using a fixed carrying capacity of 5000 individuals. To 
introduce spatial variation into harvest rate and survival parameters, 
we generated Gaussian random fields using the “gstat” package 
(Pebesma, 2004) in program R (R Core Team, 2020), which created 
a location-specific beta coefficient that described spatial variation 
across the study area. We assessed the accuracy of estimates under 
variable sampling within a region and across the study area. To en-
sure that the simulation accurately presented a range of possible spa-
tial heterogeneities and that the model was robust to those ranges 
of variation, we simulated multiple spatial configurations of harvest 
rate using low, medium, or high values for the partial sill, range, and 
nugget of the variogram used to generate the random field. In prac-
tice, this allowed us to vary the magnitude of variation in harvest 
rate, the maximum distance of autocorrelation, and the amount of 
small-scale variation in harvest rates, respectively (Figure S2).

To evaluate model accuracy, we compared simulated values to 
estimates of harvest rate, survival, and abundance generated by 
the model. Due to the wide variation in potential abundance val-
ues among simulated regions, we did not use absolute measures of 
error, where regions with greater abundance would inherently have 
greater absolute error values. Instead, we calculated the relative bias 
as the difference between the true and estimated value for each re-
gion, divided by the true value.

To evaluate how the inclusion of an SPP to account for spatial hetero-
geneity in harvest rates impacted model estimates, we repeated the 
above analysis using a second model, which assumed a constant har-
vest rate across the study area (i.e., did not include an SPP). We then 
compared the relative bias between the two models.

2.3  |  Case study: Wild turkeys in Maine

To demonstrate the applicability of the model, we used data collected 
from wild turkeys in Maine, USA. Maine is a large state (~91,647 km2) 
with a variety of intermixed land use types and variable hunter densi-
ties. As such, we expected significant heterogeneity in harvest rates 
of turkeys within the state, as has been observed for other states' tur-
key populations (Stevens et al., 2020). Turkeys were captured during 
the winters (December through March) of 2018 through 2020 using 
rocket and drop nets and aged as either adult (>1 year old) or juve-
nile (<1 year old) according to plumage (Dickson, 1992). We marked 
turkeys with at least 1 of 4 different marking methods with associ-
ated identification numbers, including aluminum butt end leg bands, 
aluminum rivet bands, plastic colored leg bands, or patagial wing tags. 
Nearly all individuals received at least 2 marks, and we assume reten-
tion of at least 1 mark was 100%. In addition to identification num-
bers, leg bands included contact information (toll-free phone number 

log − log
(

h∗r
)

= β0 + β1Age + ω̃(c∗)

Ma,r,t ∼ Bin

(

Qa,r ,
∧

Na,r,t

)

Mj,r,t ∼ Bin

(

Qj,r ,
∧

N j,r,t

)

Qr = S ×
(

1 − ̂hr

)

.

∧

N j,r,t+1 ∼ Pois(λ)

λ =
∧

Na,r,t × Rt

Rt ∼ Unif
(

e−10, e10
)

N1 =

H

h
+ 1

Relative Bias =
True − Estimated

True
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and web form) for hunters to report the harvest of banded individu-
als. Hunters could also report harvests when registering their turkey 
at state-coordinated check stations.

At capture sites in the greater Portland and Bangor areas, a subset 
of turkeys was fit with 12 g VHF necklaces from Advanced Telemetry 
Systems (Model A3950; Isanti, Minnesota, USA), although 2 individuals 
were marked with 90 g Litetrack GPS backpack from Lotek Wireless 
Fish and Wildlife Monitoring (Newmarket, Ontario, CA). We attempted 
to record one live/dead status for each radioed individual per week. 
We censored individuals that died within the first 2 weeks after cap-
ture. Prior analysis of this population indicated that necklace transmit-
ters do not affect male wild turkey survival postcapture (Gonnerman 
et al. unpublished data), and we assumed harvest rates were similar be-
tween turkeys fit with radio transmitters and those without.

In Maine, hunters were required to present their harvested tur-
keys to a local check station for registration, which provided both a 
count of total harvest within each of the state's Wildlife Management 
Districts (WMD), as well as age class designation within the total har-
vest. Total harvest information was available for all hunting seasons 
dating to 2006, from which we used data on total turkey harvest from 
2011 through 2021. These years follow a series of changes to har-
vest regulations, which may impact estimates of harvest rate. Due to 
complications related to COVID-19, MDIFW did not require hunters 
to register harvested turkeys during the 2020 spring hunting season. 
Instead, a survey was conducted to gauge success and estimate the 
total turkey harvest. We adjusted the model to treat 2020 total har-
vest data as a random variable with initial values equal to the esti-
mated harvest from survey data. We do note that Maine also has a 
fall either-sex hunting season, but harvest rates were generally much 
lower than spring, and we received an insufficient number of recover-
ies to build this into the model explicitly. Therefore survival reflects all 
mortality (nonharvest + fall harvest) occurring between the end of the 
spring hunting season in year t and the beginning of the subsequent 
spring season in t + 1.

In Maine, turkeys are managed within 29 discrete WMDs. For 
the distribution of spatial knots in the SPP, we used a grid with 
24 km spacing, with additional knots placed at the geographic cen-
ter of each WMD. We eliminated knots from WMDs, where turkey 
densities (<100) and harvests (<10) were expected to be insuf-
ficient to produce reliable estimates. These knot specifications 
ensured that each WMD of interest had at least one knot within 
its boundaries and that we did not predict harvest rates beyond 
where our data could reasonably be considered representative. 
The distance of 24 km was chosen by running multiple iterations 
of the model using various grid spacing. We then compared WMD-
specific harvest rate estimates for each iteration to a model with a 
categorical covariate for WMD. We used root mean squared error

to select the largest grid spacing that minimized error while also reach-
ing convergence within the model. We compared estimates of harvest 

rate with and without the inclusion of the SPP component to assess 
whether failing to account for spatial variation in harvest rates affected 
parameter estimates.

2.4  |  Model fitting

We fit simulated data to the model, as described in section 2.1, 
using a Bayesian approach (Hobbs & Hooten, 2015). We used JAGS 
v.4.3.0 (Plummer, 2003) via the “R2jags” package (Su & Yajima, 2015) 
in the R v.4.0.3 programming environment (R Core Team,  2020). 
Regression coefficients were given vague uniform priors. Simulation 
models were allowed 10,000 iterations, discarding the first 5000 
from calculations. The model fit to wild turkey data was allowed 
50,000 iterations, discarding the first 20,000.

3  |  RESULTS

3.1  |  Simulation accuracy

For all simulations that utilized the model with an SPP included, the 
average relative bias for abundance estimates was −0.04 (SD = 0.21) 
for adults and − 0.06 (SD = 0.22) for juveniles, with each being ap-
proximately zero-centered (Figure  2a,b). Relative bias in harvest 
rate estimates averaged −0.10 (SD  =  0.17) for adults and − 0.14 
(SD =  0.22) for juveniles. Relative bias in weekly survival rate av-
eraged 0.001 (SD =  0.002) for adults and 0.006 (SD =  0.005) for 
juveniles. We did not observe any relationship between relative bias 
in abundance estimates and configuration of spatial variation in har-
vest rates (Figure S3). Similarly, we did not observe any differences 
in relative bias in abundance associated with sampling intensity for 
the sample sizes we considered, both for sampling within a region 
and for sampling across a study area within a simulation (Figure S4). 
When we compared relative bias in abundance as it related to the 
portion of the population that was banded, we found that bias be-
came more negative as the proportion banded increased and vari-
ance increased as the proportion banded decreased (Figure S5).

When the SPP was omitted from the model, the average relative 
bias for abundance estimates was 0.16 (SD =  0.14) for adults and 
0.21 (SD = 0.13) for juveniles (Figure 2c,d, Figure S6). Relative bias 
in harvest rate estimates averaged 0.11 (SD = 0.09) for adults and 
0.16 (SD = 0.16) for juveniles. Relative bias in weekly survival rate 
averaged −0.003 (SD = 0.003) for adults and 0.00 (SD = 0.004) for 
juveniles.

3.2  |  Case study

We captured and marked 408 male wild turkeys (187 adults, 221 
juveniles) at 72 capture sites across Maine (Figure 3). Transmitters 
were deployed on a subset of 58 males. We received a total of 136 
reports of banded turkeys harvested during the 2018–2021 spring 

∑

√

(SPP. est−Covariate. est)2

n
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bearded turkey hunting seasons (33% of banded males), 12 of which 
were radio-marked males (21% of radio-marked males).

Region-specific estimates of turkey abundance averaged 677 
adults and 1361 juveniles across all years and ranged from 2 to 
4310 adults and 1 to 7010 juveniles (Figure  4). Statewide total 
male turkey abundance averaged 42,797 individuals and ranged 
between 36,338 turkeys in 2015 and 49,238 turkeys in 2018. 
Region-specific estimates of adult harvest rates averaged 0.35 
(ranged between 0.12–0.56; Figure 5) compared with 0.07 (ranged 

between 0.02 and 0.12) for juveniles. The mean weekly survival 
rate across years was 0.99 (ranged between 0.96 and 1.0) for adults 
and 0.98 (ranged between 0.89 and 1.0) for juveniles. Estimates of 
recruitment averaged 3.12 juveniles per adult and ranged between 
0.12 and 18.18; this upper estimate, while clearly unrealistic, re-
sulted from regions with extremely small population sizes. The 
95th percentile of recruitment estimates ranged from 0.70 to 8.32.

We found that the estimated abundance of adult turkeys was con-
sistently lower and had narrower credible intervals, when the SPP was 

F I G U R E  2 Relative bias for estimates of adult (a,c) and juvenile (b,d) abundance produced by a Lincoln estimator was on average less for a 
model with a spatial predictive process to account for spatial variation in harvest rates (a,b) compared with a model without (c,d). Number of 
simulations are depicted according to relative bias in region-specific estimates of abundance and real abundance within the region. Results 
shown are grouped across simulated data sets, which varied in the underlying spatial heterogeneity in the harvest rate.
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included in the model versus when it was not (Figure 6a). On average, 
the basic model without an SPP overestimated abundance by 286.96 
(SD = 601.79) adults and 52.88 (SD = 1072.28) juveniles per WMD. 
Estimates of adult harvest rates were consistently higher when the 
model included an SPP compared with the model that assumed a con-
stant harvest rate (Figure 6c). For juveniles, we observed substantially 
less difference in parameter estimates between models with and with-
out an SPP (Figure 6b,d), consistent with a lower overall harvest rate 
for juvenile males with inherently less room for variability as a result.

4  |  DISCUSSION

We found that a Lincoln estimator incorporating an SPP in the band 
recovery model consistently estimated abundance with low bias 
across a variety of spatial configurations of harvest rate for simu-
lated data. When the SPP was omitted from the model, relative bias 
in abundance increased for all configurations of spatial heterogene-
ity in harvest rate. Additionally, we found no difference in relative 
bias according to either sampling intensity or the underlying nature 
of spatial heterogeneity in harvest rate. When applied to real data 
collected from turkeys in Maine, we observed a wide range of harvest 

rates and abundance among wildlife management districts. As ex-
pected, the basic model that did not incorporate spatial heterogene-
ity in harvest rates via the SPP underestimated harvest rates in some 
WMDs, which resulted in an overestimation of abundance in those 
districts, and statewide. The variation in harvest rates we observed is 
typical for wild turkey populations and should be expected especially 
across large spatial scales (Norton et al.,  2012). Most recent appli-
cations of Lincoln estimators have treated harvest rates as uniform 
across large areas (Alisauskas et al., 2014; Hagen et al., 2018; Shirkey 
& Gates, 2020). While this assumption may sometimes be appropri-
ate and will likely depend on the definition of “large areas,” our results 
suggest that future applications could consider more explicitly incor-
porating spatial variation in harvest rates to improve inference. While 
we chose to use an SPP to accomplish this, other methods such as 
simultaneous autoregressive and conditional autoregressive models 
may also be a viable option (Fortin et al., 2012).

Harvest management decisions must often consider populations 
that span considerably large spatial scales (Robinson et al., 2016), and 
it may not be necessary to reconcile inference at the local scale when 
decisions are made at regional levels (Johnson et al., 2015). Instead, 
estimates can be aggregated to summarize relationships within a 
region's boundaries, making fine-scale differences in parameters at 
local scales less important than adequately capturing the general 
trend in a parameter across space. Aggregating estimates to describe 
parameters by region can be performed using multiple methods, with 
the simplest solution being to average estimates within each region. 
However, consideration must be given to the sampling design used, 
as clumped or sparse sampling within an area could lead to bias if 
sampled locations differ greatly from the mean across a landscape 
(Hooten et al., 2017). To some degree, SPP can mitigate such issues 
by using the entire data set to define a spatial correlation function 
and projecting it onto evenly distributed spatial knots from which 
estimates are then made. This will have the benefit of smoothing 
the prediction surface, minimizing the impact of any single sampling 
location, which may otherwise have outsized impacts on local aver-
ages. However, if larger areas or districts have particularly high or 
low harvest rates, and are unsampled, the model would not be able 
to interpolate those relationships, meaning that adequate and repre-
sentative sampling is still an important component of study design. 
When adequate sampling is performed, SPP has proven to be effec-
tive at identifying localized “hotspots” in variation (Viana et al., 2013), 
and indeed we found that model predictions were robust to a wide 
range of underlying spatial heterogeneity in harvest rate.

We observed some variation in the magnitude and direction 
of error across iterations, which is common when assessing IPMs 
(Abadi et al.,  2010; Fieberg et al.,  2010). We further found that 
relative bias became more negative as the proportion of a pop-
ulation that was banded increased. This shift in bias is consistent 
with a long-understood relationship, where the accuracy of mark-
recapture models depends on the ratio of the banded sample to total 
abundance (Robson & Regier, 1964), and reinforces previous recom-
mendations that sample size of banding studies should be informed 
by expected population size (Robson & Regier, 1964).

F I G U R E  3 Spatial knots (red triangles) chosen for the spatial 
predictive process provide more uniform and complete coverage 
of the area of interest compared with capture sites (blue dots). 
Spatial knots were distributed across a 24 km × 24 km grid with 
additional knots placed at the geographic center of each WMD. We 
eliminated knots from WMDs where turkey densities (<100) and 
harvests (<10) were expected to be insufficient to produce reliable 
estimates. Sample size for capture sites is indicated by the size of 
the dot, with large dots meaning larger sample sizes. Color of dots 
indicates whether a site had telemetry devices deployed (dark blue) 
or did not (light blue).
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Despite the advantages of SPP, there are still opportunities for 
improvement. Although SPP should be notably faster than alterna-
tives, especially as the amount of data increases, using MCMC can still 
lead to lengthy computing times (Banerjee et al., 2008) so alternative 
posterior samplers should be considered to decrease processing time. 
The advantages of SPP will not overcome extremely sparse data avail-
ability or poor sampling design. As previously mentioned, the number 
of individuals marked should be proportional to the expected popula-
tion size being sampled. While we did not observe an effect of sample 
size on the model bias for the sample sizes we considered, further 
exploration with more limited data sets may be necessary to find a 
threshold at which estimates are no longer reliable. Similarly, the dis-
tribution of sampling locations and the configuration of spatial knots 
across a study area should be informed by the ecology of the sys-
tem being studied. The number and placement of knots for the SPP 
are not trivial, and while there appears to be a wide margin for error, 
these decisions have an impact on estimates (Banerjee et al., 2008). 
For example, we chose to use the capture sites as input locations for 
the SPP as we did not have accurate information on locations where 
harvests occurred. For turkeys that move relatively short distances, 
this is unlikely to be an issue, but migratory species may require more 
detailed information on harvest locations as the distances between 
capture and harvest may be much greater. We also note that in sit-
uations where multiple parameters influence an outcome, such as 
harvest and survival in a band recovery model, failure to account for 

F I G U R E  4 Wild turkey abundance 
varied across space and time for 
populations in Maine, USA, as predicted 
by a Lincoln estimator with a spatial 
predictive process component. Map colors 
indicate the mean abundance of wild 
turkey adults (a) and juveniles (b) in 2021. 
Adult (solid line) and juvenile (dashed line) 
turkey abundance is shown from 2011 
through 2021 (c).

F I G U R E  5 Harvest rate estimates were variable among wildlife 
management districts across Maine, USA, for both male and 
juvenile wild turkeys. Regional differences in harvest rates are 
depicted for adult male turkeys with color indicating the mean 
harvest rate for each management district.
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experiencing spatial heterogeneity in one parameter could result in 
increased variation in estimates of the other.

Multiple methods are currently used to monitor turkey popula-
tions. Many states approximate population trends using spring har-
vest data (e.g., CDEEP, 2016; Harms et al., 2017; Healy, 2000), but 
this does not provide an estimate of true abundance, which may be 
preferable for setting regulations (Lint et al., 1995). This method also 
requires accounting for changes in the abundance of birds and har-
vest rates, both of which influence the number of birds harvested 

through time (Paloheimo & Fraser, 1981). Surveys such as summer 
sighting (PGC, 2021), gobble counts (Rioux et al., 2009), and cam-
era traps (Gonnerman, 2017) can be used to produce estimates of 
population size at smaller scales but are unrealistic to implement 
for statewide management. An IPM, such as the one we have im-
plemented, provides a data-driven alternative that can be scaled 
to the scope of turkey management decisions. It is relatively cost-
effective as it uses often already implemented mandatory reporting 
of harvests and only requires periodic captures of individuals for 

F I G U R E  6 Estimates of adult abundance and harvest rate differed between Lincoln estimators with and without a spatial predictive 
process included, but juvenile harvest rate and abundance were largely similar. Estimates from both models are presented with associated 
error bars for abundance (a,b; shown on the log scale) and harvest rate (c,d). For all figures, circles correspond to WMD-by-year estimates. 
For c and d, triangles indicate the harvest rate estimated without the inclusion of the SPP, and circles indicate the SPP.
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banding. Similar IPMs have been implemented for turkey and water-
fowl populations to great success (Arnold et al., 2018; Diefenbach 
et al.,  2012), demonstrating that this is a feasible alternative that, 
with the inclusion of an SPP component, overcomes many of the 
shortcomings of more common monitoring methods. We imagine 
this approach may have more broad applicability to other similarly-
managed harvest systems, such as those for large mammals, where 
regional or subregional variation in harvest regulations is common.

5  |  CONCLUSIONS

Management decisions based on biased estimates of abundance may 
lead to harvest regulations that exceed sustainable levels or are un-
necessarily restrictive (Dillingham & Fletcher, 2008). Violations of the 
Lincoln estimator's assumption of representative harvest may result 
in such bias. As Lincoln estimators become more widely applied, it is 
important to consider a mechanism to account for spatial variation in 
harvest rates, which can vary according to a broad range of spatially 
varying ecological, environmental, and socio-economic factors that 
are sometimes difficult to measure (Pope & Powell, 2021). For such 
cases, the combination of Lincoln estimator and SPP is an especially 
relevant tool for capturing the magnitude and distribution of variation 
to reduce bias in estimates used for management. SPP functions as a 
component of a generalized linear mixed model framework, making it 
compatible with many analytical methods currently used in ecology, 
and therefore should be accessible to those who are less familiar with 
spatial statistics. While we chose to apply these methods to harvest 
rates within a band recovery model, the use of SPP should be widely 
applicable across methods for vital rate estimation.
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