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1  | INTRODUC TION

It is generally recognized that both deterministic and stochas-
tic processes drive the structure of natural microbial communi-
ties (Caruso et al., 2011; Chase, 2010; Chase & Myers, 2011; 

Chen et al., 2019; Leibold et al., 2004; Vellend, 2010; Zhou & 
Ning, 2017). Deterministic processes (niche-based processes) are 
the result of the selection imposed by the abiotic environment and 
both antagonistic and synergistic species interactions (Stegen, Lin, 
Konopka, & Fredrickson, 2012). In contrast, stochastic processes 
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Abstract
One major goal in microbial ecology is to establish the importance of deterministic 
and stochastic processes for community assembly. This is relevant to explain and 
predict how diversity changes at different temporal scales. However, understanding 
of the relative quantitative contribution of these processes and particularly of how 
they may change over time is limited. Here, we assessed the importance of determin-
istic and stochastic processes based on the analysis of the bacterial microbiome in 
one alpine oligotrophic and in one subalpine mesotrophic lake, which were sampled 
over two consecutive years at different time scales. We found that in both lakes, 
homogeneous selection (i.e., a deterministic process) was the main assembly process 
at the annual scale and explained 66.7% of the bacterial community turnover, de-
spite differences in diversity and temporal variability patterns between ecosystems. 
However, in the alpine lake, homogenizing dispersal (i.e., a stochastic process) was 
the most important assembly process at the short-term (daily and weekly) sampling 
scale and explained 55% of the community turnover. Alpha diversity differed be-
tween lakes, and seasonal stability of the bacterial community was more evident 
in the oligotrophic lake than in the mesotrophic one. Our results demonstrate how 
important forces that govern temporal changes in bacterial communities act at differ-
ent time scales. Overall, our study validates on a quantitative basis, the importance 
and dominance of deterministic processes in structuring bacterial communities in 
freshwater environments over long time scales.
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(neutral-based processes) include chance colonization and random 
extinction (Chase & Myers, 2011). Further, ecological drift can also 
result from fluctuations in population sizes due to chance events. 
Based on the phylogenetic turnover in community composition, 
deterministic processes are divided into homogeneous selection 
(i.e. consistent environmental factors primarily cause low compo-
sitional turnover) and variable selection (high compositional turn-
over primarily caused by shifts in environmental factors), whereas 
stochastic processes are divided into homogenizing dispersal (low 
compositional turnover caused by high dispersal rates) and disper-
sal limitation (high compositional turnover caused by a low rate of 
dispersal) (Stegen et al., 2012, 2013; Stegen, Lin, Fredrickson, & 
Konopka, 2015).

Different studies on terrestrial and aquatic environments have 
proposed that bacterial community assembly is governed primarily 
by deterministic processes (Stegen et al., 2012; Vanwonterghem 
et al., 2014; Wang et al., 2013; Zhao et al., 2017), although the rela-
tive contribution of different processes has been quantified only re-
cently (Liu et al., 2020; Logares et al., 2018; Stegen et al., 2013; Vass, 
Székely, Lindström, & Langenheder, 2020; Yan et al., 2017). Indeed, 
the first quantification of the relative importance of different pro-
cesses responsible for microbial community assembly considered 
only spatial scales (Stegen et al., 2013). This study demonstrated 
that depending on the depth and type of sediment, the importance 
of deterministic and stochastic processes change, and that drift 
alone explains ca. 25% of the spatial turnover in community com-
position. Studies on how those ecological processes contribute to 
the assembly of lake microbial communities over time are scarce 
and focused on either long-term (e.g. decade, century) or short-term 
(e.g., 5 weeks) time scales (Liu et al., 2020; Vass et al., 2020; Yan 
et al., 2017), yet there is a need to understand how deterministic and 
stochastic processes potentially change in one ecosystem at differ-
ent time scales (Jia, Dini-Andreote, & Falcão Salles, 2018; Ladau & 
Eloe-Fadrosh, 2019).

Studies on temporal bacterial dynamics lasting for >1 year 
have mainly been done in marine systems, whereas in freshwa-
ter ecosystems, most have lasted ≤1 year. Interestingly, studies 
on marine microbial communities have shown that variability pat-
terns are predictable at the daily, seasonal and interannual scale of 
variation (Fuhrman, Cram, & Needham, 2015). In lakes, it has also 
been described that a high temporal variability of bacterioplankton 
exists with recurrent seasonal patterns and annual periodicity (Li 
et al., 2015; Shade, Caporaso, Handelsman, Knight, & Fierer, 2013; 
Shade et al., 2007; Van Der Gucht et al., 2001). However, it is unclear 
how predictable those patterns are at different time scales and what 
ecological processes explain the assembly of communities. Some 
studies using high-throughput sequencing have shown the impor-
tance of long-term sampling to achieve a complete understanding of 
the bacterial dynamics in freshwater ecosystems (Linz et al., 2017; 
Obertegger, Bertilsson, Pindo, Larger, & Flaim, 2018).

In the present study, we hypothesized that the temporal variabil-
ity of lake bacterial communities differs across various time scales 
and trophic states. We expected that the bacterial community of 

an oligotrophic lake would be more stable (Yannarell, Kent, Lauster, 
Kratz, & Triplett, 2003), whereas in a more productive system, bac-
terial communities would have higher diversity and lower similarity 
over time (Dai et al., 2017; Llirós et al., 2014). Thus, we first tested 
whether the bacterial community composition from an oligotrophic 
alpine lake differed when assessed at annual and short-term sam-
pling scales (weekly and daily). Second, we tested whether temporal 
variability was less variable in an oligotrophic lake than in a mesotro-
phic one located in the same region. Finally, we hypothesized that 
the balance of ecological processes would change when different 
time scales are considered. To assess the diversity and composition 
of the bacterial community in each lake and to estimate the contri-
bution of the different processes leading to its assembly, we based 
our analysis on clustering the sequences (reads) into amplicon se-
quence variant (ASV) with the resolution of a single-nucleotide dif-
ference (Callahan et al., 2016). As shown in the literature, this is a 
more powerful and reproducible method than using OTUs (Callahan, 
McMurdie, & Holmes, 2017).

2  | MATERIAL S AND METHODS

2.1 | Study area and sampling

Sampling was done in two mountain lakes located in the Austrian 
Alps having different trophic state. Gossenköllesee (hereafter, GKS; 
47°13′N, 11°00′E) is a 1.7 ha alpine (i.e., located above tree line 
at 2,417 m a.s.l.) oligotrophic lake with a maximum depth of 9.9 m 
(Sommaruga & Psenner, 1995). This lake is holomictic/dimictic and 
ice-covered for up to 7 months (Rofner, Sommaruga, & Pérez, 2016). 
Piburgersee (hereafter, PIB; 47°11′, 10°53′E) is a 13.4 ha, meso-
trophic subalpine (913 m a. s. l.) lake with a maximum depth of 
24.6 m. Usually, this lake is ice-covered from early December to April 
(Niedrist, Psenner, & Sommaruga, 2018). Both lakes are part of the 
Long-Term Socio-Ecological Research platform Tyrolean Alps and 
GKS is also part of the Global Lake Ecological Observatory Network 
(GLEON).

The annual-scale sampling consisted of composite water sam-
ples (i.e., same volume pooled from every single depth; GKS: 0.5, 
2, 4, 6, and 8 m; PIB: 0.5, 3, 6, 9, 12, 15, 18, 21, and 24 m) collected 
monthly between November 2014 and December 2016 in GKS 
(n = 26), as well as between December 2014 and December 2016 in 
PIB (n = 25). All samples were collected with a modified Schindler-
Patalas sampler from a boat placed over the deepest area of the lake. 
The short-term sampling was done only in GKS during 2016 and con-
sisted of composite samples (1,000 ml) collected in triplicates (n = 9) 
taken at weekly intervals (8, 16 and 21 August) and composite sam-
ples in triplicates (n = 27) taken twice per day (at 7 a.m. and 7 p.m. 
local time) between 16 and 21 August. In addition, samples at single 
depths were collected once in GKS (5 samples; 0.5, 2, 4, 6, and 8 m) 
and PIB (9 samples; 0.5, 3, 6, 9, 12, 15, 18, 21 and 24 m) during late 
May 2016 (GKS) and early June 2016 (PIB), before the thermal mix-
ing period occurred between late June and early July, respectively.
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Water samples were kept in cold boxes, and afterwards (within 
ca. 3 h), they were filtered onto 0.22-µm pore size filters (47 mm, 
Millipore GPWP). In GKS, the volume filtered ranged from 800 
to 1,000 ml, whereas in PIB, it was between 800 and 900 ml. 
Filters were placed in Eppendorf tubes with RNAlater (Qiagen, 
Germantown, MD) and maintained at −20°C until DNA extraction 
took place.

2.2 | Environmental data

In situ monthly measurements of water temperature were done 
with a thermometer placed inside the water sampler in GKS and 
with a multiparameter probe (EXOSonde2; YSI) in PIB. The spe-
cific electrical conductivity (25°C) and pH were measured in the 
laboratory (within ca. 3 h) with a portable conductivity meter (LF 
196, WTW) and a pH meter (Orion930, Orion Ross-Electrode), 
respectively. Additionally, monthly samples were also collected 
in parallel for water chemical analyses. Major anions (nitrate, 
chloride and sulphate) and cations (potassium, sodium, calcium 
and magnesium) were measured by ion chromatography (Dionex 
ICS-1100/1000). Ammonium was measured by the Indophenol 
blue method (Wagner, 1969). Samples were also collected in pre-
combusted (4 h at 450°C) glass bottles for the analysis of dis-
solved organic carbon (DOC) and dissolved nitrogen (DN). These 
samples were filtered in situ through precombusted GF/F filters 
(Whatman). The filtrate was acidified with HCl to pH 2 and ana-
lysed later with a Shimadzu TOC-Vc series instrument equipped 
with a total nitrogen module. Calibration for DOC analysis was 
done with potassium hydrogen phthalate, whereas for the DN, it 
was done with potassium nitrate. Three to five subsamples were 
analysed for each sample and for a consensus reference material 
(CRM) for DOC (batch 5 FS-2005:0.57 mg; provided by RSMAS/
MAC, University of Miami) that was run in parallel on each occa-
sion. Results differed from the CRM given value by 5%, and the co-
efficient of variation among subsamples was <2%. Total dissolved 
phosphorus (DP) concentrations were estimated by the molybde-
num blue method (Vogler, 1966). The measurement of chlorophyll-
a as a proxy for phytoplankton biomass was done as described in 
Tartarotti and Sommaruga (2006), and the equation of Lorenzen 
(1967) was used to calculate its concentration. Dissolved oxygen 
was measured only in PIB by the Winkler method.

2.3 | DNA extraction and sequencing

Genomic DNA was extracted using the PowerWater DNA isolation kit 
(Mo Bio Laboratories Inc.) following the manufacturer's protocol. The 
concentration and quality of DNA were measured with a NanoDrop 
spectrophotometer (NanoDrop 8000, Thermo Scientific). DNA was 
used as a template for the V4-V5 region amplification of the 16S SSU 
rRNA with the primers 515F-Y (5'-GTGYCAGCMGCCGCGGTAA-3' 
and 926R (5'-CCGYCAATTYMTTTRAGTTT-3') (Parada, Needham, 

& Fuhrman, 2016). Sequencing was done at LGC Genomics (Berlin, 
Germany) using the Illumina Miseq platform. Briefly, each PCR was 
carried out with 1–10 ng of DNA extract (total volume 1 µl), 15 pmol 
of each forward primer and reverse primer (in 20 µl volume of 1× 
MyTaq buffer containing 1.5 units MyTaq DNA polymerase (Bioline)), 
2 µl of BioStabII PCR Enhancer (Sigma) and additionally 0.2 µl of 
DNase (Articzymes). The program was set to 20 cycles, using the 
following parameters: 1 min 96°C predenaturation; 96°C for 15 s, 
50°C for 30 s, 70°C for 90 s. For this reaction, barcoded primers, 
515F-Y/926R (Parada et al., 2016), were added. DNA concentra-
tion of amplicons of interest was determined by gel electrophore-
sis. About 20 ng amplicon DNA of each sample was pooled for up 
to 48 samples having different barcodes. The amplicon pools were 
purified with one volume AMPure XP beads (Agencourt) to remove 
primer dimers and other small mispriming products, followed by an 
additional purification step on MinElute columns (Qiagen). About 
100 ng of each purified amplicon pool DNA was used to construct 
Illumina libraries using the Ovation Rapid DR Multiplex System 1–96 
(NuGEN). Illumina libraries were pooled and size selected by prepar-
ative gel electrophoresis. Sequencing was done on an Illumina MiSeq 
using V3 Chemistry (Illumina). Raw amplicon reads were deposited 
in the Sequence Read Archive (SRA) of NCBI under Accession no 
SRP167155.

2.4 | Amplicon data processing

Raw amplicons from 101 samples were analysed using the R package 
DADA2, version 1.8.0 (Callahan et al., 2016; R Core Team, 2018). 
Briefly, after inspection of read quality profiles, the forward reads 
were trimmed to 240 bases and the reverse ones to 180 bases. All 
reads containing more than two expected errors were removed. 
The error rates were learned from a subset of 1,046,328 reads. 
These error rates were used to infer the ASVs. The forward and 
reverse reads were merged to obtain the full denoized sequence 
of ASVs. Denoized sequences with one or more mismatch in the 
overlap region were removed. The chimeras were removed using 
“removeBimeraDenovo”. Finally, ASVs were classified using the 
Silva reference data set version 132 and a table with read counts 
and taxonomy of all ASVs was constructed. Samples with <10,000 
sequences and sequences classified as Archaea, NA (unknown) and 
chloroplasts were removed. Data were normalized using variance 
stabilizing transformation (vds/vst) in R with the package DESeq2 
(Love, Huber, & Anders, 2014; R Core Team, 2018). Although the 
Silva reference data set v. 132 considers Betaproteobacteria within 
Gammaproteobacteria (as Betaproteobacteriales order), in this 
study, we still refer to them as Betaproteobacteria class.

For the downstream analysis, 97 (3,919,437 total sequences) out 
of 101 samples were included. In GKS (n = 64), 2,368 ASVs were 
assigned (range: 75 to 237, mean = 136.7, SD = 42.6) correspond-
ing to 2,371,284 sequences. In PIB (n = 33), we assigned 2,206 
ASVs (range: 168 to 499, mean = 332.6, SD = 117.6) with 1,547,908 
sequences.
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2.5 | Diversity and statistical analyses

The asymptotic estimates of species richness, Shannon and Simpson 
diversity indexes were calculated using the iNEXT package in R 
(Hsieh, Ma, & Chao, 2016; R Core Team, 2018), which provides sim-
ple functions to compute and to plot the seamless rarefaction and 
extrapolation sampling curves of the Hill numbers. Further, the phy-
logenetic tree used for Faith's PD (Faith, 1992) was calculated using 
FastTree v. 2.1.7, applying the generalized time-reversible model. 
Bray–Curtis similarity (transformed to percentages and based on 
the relative abundance of ASVs), ordinations (metaMDS), fit of en-
vironmental vectors into ordinations and statistical differences be-
tween lakes (ANOSIM) were calculated in the Vegan package in R (R 
Oksanen et al., 2019; Core Team, 2018). The analysis of multivari-
ate homogeneity of group dispersion (variance) was done using the 
betadisper function implemented in the Vegan package (Oksanen 
et al., 2019). A permutation analysis (n = 999) was done to test 
for significance using the permutest function in the same package 
(Oksanen et al., 2019).

Taxonomically distinctive members between lakes were de-
tected using a linear discriminant analysis (LDA) effective size 
(LEfSe) in the galaxy server (http://hutte nhower.sph.harva rd.edu/
galax y/) (Segata et al., 2011). Briefly, a Kruskal–Wallis test analysis 
(alpha = 0.05) was conducted to test whether the values in different 
classes were differentially distributed. Then, a pairwise Wilcoxon 
test (alpha = 0.05) was used to check whether all pairwise compari-
sons between subclasses within different classes significantly agree 
with the class level. Finally, the results were used to build a linear 
discriminant analysis model (threshold = 2.0) from which the relative 
difference among classes is used to rank the taxonomically distinc-
tive members.

2.6 | Stochastic and deterministic assessment

To evaluate the relative influence of stochastic and deterministic 
processes, and to identify which system features impose selection 
to bacterial communities in the studied lakes, we used the analyti-
cal framework proposed by Stegen et al. (2013). This framework 
relies on phylogenetic turnover and therefore requires testing for 
a phylogenetic signal which shows that more closely related taxa 
have more similar habitat associations (Stegen et al., 2012). First, 
we found the set of environmental parameters that in combination 
correlates strongest with the overall change in community composi-
tion of both lakes (Andersson, Riemann, & Bertilsson, 2010). This 
was done using the BIOENV function in the Vegan package in R (R 
Oksanen et al., 2019; Core Team, 2018). In GKS, the highest correla-
tion was obtained with a combination of water temperature and pH 
(Spearman's correlation coefficient = 0.6), while in PIB it was a com-
bination of water temperature and oxygen (Spearman's correlation 
coefficient = 0.3240). Then, we calculated the abundance-weighted 
mean of the selected environmental parameters (water temperature 
and pH for GKS; water temperature and oxygen for PIB) for each 

ASV. For example, we extracted from all records for a given ASV the 
water temperature and the ASV abundance, and then computed the 
abundance-weighted mean water temperature (Stegen et al., 2012). 
Finally, the phylogenetic signal was tested with the abundance-
weighted selected parameters and the phylogenetic tree using the 
phylocorrelogram function in the package phylosignal (Keck, Rimet, 
Bouchez, & Franc, 2016) (Figure S1).

Phylogenetic beta diversity was quantified using the mean nearest 
taxon distance (βMNTD) using the function ‘comdistnt’ (abundance.
weighted = true) from the package ‘picante’ (Kembel et al., 2010). 
Null models in which the tips of the phylogenetic tree are randomized 
(n = 999) were applied to calculate the null βMNTD. Then, we calcu-
lated the β-nearest taxon index (βNTI), which is the difference between 
the observed βMNTD and the mean of the null distribution of βMNTD 
normalized by its standard deviation. We compared βMNTD and βNTI 
across all possible pairwise combinations. βNTI values >+2 of pair-
wise comparison indicate variable selection (i.e. high compositional 
turnover primarily caused by a shift in environmental factors), and val-
ues <−2 indicate homogeneous selection (consistent environmental 
factors primarily cause low compositional turnover). If the pairwise 
comparison shows |βNTI| values < 2, then it indicates that stochastic 
processes drive the observed difference in phylogenetic community 
composition (Stegen et al., 2013). Therefore, to determine the relative 
contribution of stochastic processes, we calculated the Raup-Crick 
metric based on Bray–Curtis (RCbray). Pairwise comparisons with 
RCbray>+0.95 and |βNTI| < 2 correspond to dispersal limitation (high 
turnover in composition is mainly caused by a low rate of dispersal 
enabling community composition to drift apart). RCbray <−0.95 and 
|βNTI| < 2 correspond to homogenizing dispersal, which is similar to 
mass effects and source-sink dynamics; however, these terms invoke 
additional assumptions and processes (Stegen et al., 2013). Therefore, 
homogenizing dispersal simply indicates that dispersal is high enough 
to cause low turnover by overwhelming other processes. Pairwise 
comparisons with |RCbray| < 0.95 correspond to drift (undominated 
processes) (Stegen et al., 2015).

The identification of system features that impose selection was 
done computing the distance-based Moran's eigenvector maps 
(function dbMEM) within package “adespatial” (Dray et al., 2019; R 
Core Team, 2018). Then, we combined the temporal eigenvectors 
with measured abiotic parameters (water temperature, electrical 
conductivity, DOC, DN, pH, and ice presence; oxygen was included 
only in PIB) using principal components analysis (PCA). The obtained 
PCA axes were used as independent variables in a model-selection 
procedure with βNTI (normalized to vary between 0 and 1) as the de-
pendent variable using the function capscale and ordiR2step within 
package “vegan” in R (Oksanen et al., 2019; R Core Team, 2018). 
When a given PCA axis is significant for βNTI, but the measured abi-
otic variables do not load onto it, the PCA axis is considered to repre-
sent an unmeasured environmental variable that imposes selection 
(Stegen et al., 2013). By contrast, when a measured abiotic variables 
load heavily onto a significant PCA axis, the axis is considered to be 
a measured environmental variable that imposes selection (Stegen 
et al., 2013).

http://huttenhower.sph.harvard.edu/galaxy/
http://huttenhower.sph.harvard.edu/galaxy/
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F I G U R E  1   (a) Asymptotic estimates of species richness, Shannon diversity, Simpson diversity and phylogenetic diversity (Faith's PD) for 
the bacterial community from Gossenköllesee (GKS) and Piburgersee (PIB). (b) changes in diversity estimates for GKS and PIB during the 
annual scale. Months in grey indicate the ice-covered period [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3  | RESULTS

3.1 | Environmental data

Values for most water physicochemical parameters and chlorophyll-
a were significantly higher in PIB than in GKS except for pH and ni-
trate, which were significantly higher in GKS (p < 0.05; Figure S2). 
The mean lowest temperature for the water column in GKS ranged 
between 0.2°C and 2.6°C (mean: 1°C; February 2016) and ranged 
between 2.3°C and 4.5°C in PIB (mean: 3.4°C; February 2015). The 
mean maximum temperature for the water column in GKS ranges 
between 7.2°C and 17.3°C (mean: 13.4°C; July 2015); and in PIB 
ranged between 3.2°C and 17.6°C (mean: 10.4°C; September 2015) 
(Figure S3). In GKS, an increase in DN was found during the ice-cov-
ered period with a peak in April 2015 (Figure S3a). At the short-time 
scale, GKS showed large differences in water temperature, conduc-
tivity and chlorophyll-a in the water column as indicated by the high 
standard deviation (Figure S3b). In PIB, water temperature, DOC and 
oxygen concentrations also showed a large standard deviation in the 
water column during the ice-free period (Figure S3c).

3.2 | Diversity metrics

Alpha diversity metrics were significantly higher in PIB than in 
GKS (Wilcoxon test, p < .01; Figure 1a). Alpha diversity in GKS 
was highest during the ice-covered period (richnessmean = 172, 
Shannonmean = 173, Simpsonmean = 173, PDmean = 26) than 

during the ice-free one (richnessmean = 144, Shannonmean = 140, 
Simpsonmean = 135, PDmean = 23) (Figure 1b). In PIB, the same met-
rics reached the highest mean values during 2016 (Figure 1b). At the 
short-term sampling, diversity metrics in GKS were more stable than 
at the annual one (Figure S4a). In the water column, the diversity 
metrics showed the highest values at 0, 6 and 21 m in PIB and at 8 m 
depth in GKS (Figure S4b).

The bacterial community of both lakes showed similar values of 
Bray–Curtis similarity (range: 19.4%-73.8%; Figure 2a). GKS was the 
only lake showing a seasonal pattern with slightly higher similarity val-
ues observed during the ice-covered period. In GKS, Bray–Curtis sim-
ilarity values were higher at the short-term sampling scale than at the 
annual one (Figure 2b). Bray–Curtis similarity calculated for the water 
column in GKS showed that communities at the surface (upper 0.5 m) 
and 2 m depth were more similar (Figure 2c), whereas in PIB, commu-
nities were more similar between 9 m and 18 m in the hypolimnion.

3.3 | Bacterial community composition

The community composition was significantly different between the 
ice-covered and ice-free periods in both lakes (ANOSIM for GKS, R: 
0.41, p < .001; ANOSIM for PIB, R: 0.18, p < .021). However, ordina-
tion analyses, based on Bray–Curtis dissimilarity, showed that the bac-
terial community in GKS was more segregated according to periods 
than in PIB (ice-free versus ice-covered; Figure 3). DN concentration 
(R2 = 0.63), water temperature (R2 = 0.69) and electrical conductiv-
ity (R2 = 0.27) were significant variables explaining the segregation 

F I G U R E  2   Bray–Curtis similarity of bacterial communities between November 2014 and December 2016 in Gossenköllesee (GKS) and 
between December 2014 and December 2016 in Piburgersee (PIB) (a), during the short-term sampling in GKS (b) and for the water column (c) 
of both lakes. Seasonal trends (black lines) are shown. Months in grey indicate the ice-covered period
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in communities from GKS (p < .05), whereas in PIB, water tempera-
ture (R2 = 0.44) and DOC concentration (R2 = 0.41) were significant 
(p < .01). The multivariate homogeneity test analysis, betadisper, 
showed a lower dispersion around the median in GKS than in PIB (dis-
tance to centroids, GKS = 0.3377, PIB = 0.4196), and a significant 
difference between lakes, according to the permutation test (p < .01).

In both lakes, the main abundant phyla at the annual scale were 
Actinobacteria, Bacteroidetes, Proteobacteria, and Verrucomicrobia 
(Figure 4a). In GKS, 14 out of 27 phyla showed a relative abundance 
>1%, at least in one month. Proteobacteria was the most abundant 
phylum, up to 48.5% of relative abundance, with Betaproteobacteria 
(1.1%–30%) and Alphaproteobacteria (12.7%–27.7%) as the most 
abundant classes. Verrucomicrobia showed a high relative abun-
dance during the ice-covered period (6.6%–13.4%; Figure 4a) and 
a low relative abundance during the ice-free period (0.8%–3.4%; 
Figure S5a). The number of phyla in PIB was higher than in GKS, 

but only 16 out of 38 were present with relative abundances >1%. 
Actinobacteria was the only phylum showing an increase in rela-
tive abundance at the end of the ice-covered period in PIB (March 
2015 and April 2016). In the water column of GKS, the same rel-
ative abundance of phyla was found (Figure S5b). By contrast, in 
the water column of PIB a higher number of phyla were found from 
18 m depth (Figure S5b). The most abundant genera did not show a 
clear seasonality in GKS and PIB (Figure S6), except for those within 
Verrucomicrobia in the former. The most abundant genera in GKS 
were the Hgcl clade and unknown genera within Proteobacteria in 
both periods, and unknown genera within Verrucomicrobia only 
observed during the ice-covered period. In PIB, the most abundant 
genera were Hgcl clade (Actinobacteria) and unknown genera from 
Bacteroidetes, Proteobacteria and Verrucomicrobia. During the 
short-term sampling in GKS, members of the bacterial community 
with high relative abundance were the Hgcl clade and unknown gen-
era within Bacteroidetes and Proteobacteria.

A total of 230 significant taxonomical differences were identi-
fied between GKS and PIB (Table S1). Actinobacteria (Acidimicrobiia 
and Actinobacteria) and Proteobacteria (Betaproteobacteria) were 
the only phyla identified with significantly higher abundance in GKS 
than in PIB (Kruskal–Wallis test, p < .05) (Figure 4b). Instead, 14 
phyla were identified as significant members of PIB (Kruskal–Wallis 
test, p < .05; Figure 4b; Table S1).

3.4 | Community assembly processes and relevant 
variables that impose them

The same predominant assembly processes were found in both lakes 
during two consecutive years (Figure 5). Homogeneous selection, which 
explained 66.7% of community turnover, was the most important eco-
logical process, followed by homogenizing dispersal, which explained 
22.5% of community turnover. Drift had a low influence (9.4%) in GKS, 
and variable selection was more important in PIB than in GKS (GKS: 
1.4%; PIB: 10.8%). In contrast, at the short-term, the main ecological 
process structuring the bacterial community in GKS was homogenizing 
dispersal (55%) followed by homogeneous selection (38.5%).

The analysis of ecosystem variables that impose selection in 
GKS showed five significant PCA axes for βNTI (PC2, PC14, PC19, 
PC22 and PC23; Table S2). Water temperature, electrical conduc-
tivity, DOC, DN, and ice cover were weakly loaded onto PC2, but 
pH was the strongest variable loading onto this axis. There were no 
measured environmental variables loaded on PC14, PC19, PC22, and 
PC23. In PIB, PC9 was the only significant for βNTI, with no environ-
mental variables loaded onto this axis (Table S3).

4  | DISCUSSION

Assessing the relative contribution of deterministic and stochastic 
processes structuring communities over temporal scales is a pri-
mary step to understand how they will respond to local, regional and 

F I G U R E  3   Nonmetric Multidimensional Scaling (NMDS) analysis 
based on Bray–Curtis dissimilarity between the ice-covered and 
ice-free period in Gossenköllesee (GKS) and Piburgersee (PIB), 
showing the environmental parameters (significant parameters 
are shown with red arrows). Chl-α, chlorophyll-α. Cond, electrical 
conductivity. DN, dissolved nitrogen. DOC, dissolved organic 
carbon. O, dissolved oxygen. T, water temperature. TDP, 
total dissolved phosphorus [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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global changes (Shade et al., 2007). However, proper quantification 
of these processes for microbial communities has been only possible 
recently (Liu et al., 2020; Logares et al., 2020; Stegen et al., 2013; 

Vass et al., 2020; Yan et al., 2017). For example, studies in lakes 
found that deterministic processes govern the structure of bacte-
rial communities at different temporal scales (Kent, Yannarell, Rusak, 

F I G U R E  4   (a) Temporal changes 
in bacterial relative abundance in 
Gossenköllesee (GKS) and in Piburgersee 
(PIB). (b) The cladogram visualizes the 
output of the LEfSe algorithm, which 
identifies significant taxonomical 
differences between GKS and PIB [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Triplett, & McMahon, 2007; Wang et al., 2013). By contrast, stochas-
tic processes seem to explain the spatial structure of lake bacterial 
communities at local and regional scales (Roguet et al., 2015). Here 
we show that deterministic processes, mainly homogeneous selec-
tion, primarily governed the bacterial community structure of two 
mountain lakes over an annual scale, but that homogenizing disper-
sal, a stochastic process, structured the bacterioplankton composi-
tion in the alpine lake during short-term sampling.

Several studies have shown that bacterial communities have re-
current or predictable temporal variability (Li et al., 2015; Salmaso 
et al., 2018; Shade et al., 2007; Yannarell & Triplett, 2005), but this 
is not always observed (Kent et al., 2004; Linz et al., 2017; Tammert 
et al., 2015). In fact, seasonal patterns in bacterial community com-
position have been found to vary depending on the year and lake 
considered (Jones, Cadkin, Newton, & McMahon, 2012; Rusak, 
Jones, Kent, Shade, & McMahon, 2009). Our hypothesis that tem-
poral variability differs across various time scales and trophic states 
was validated, as we found temporal differences in diversity and 
composition between the lakes and time scales (long- versus. short-
term in GKS). Further, community segregation between the ice-free 
and ice-covered periods was only found in the alpine oligotrophic 
lake and was driven by changes in environmental filters such as 
water temperature and nutrient concentration (e.g., dissolved nitro-
gen). In contrast, recurrent seasonal changes were not observed in 
the mesotrophic lake (PIB) at the taxonomical level and time scale 
considered. The absence of seasonal changes in PIB, however, could 
have been masked by the sampling strategy used here (i.e., com-
posite samples), because it has been described that there are dif-
ferences in bacterial temporal variability and composition between 
the epilimnion and hypolimnion of stratified lakes (Shade, Jones, & 
McMahon, 2008).

At the annual scale, we found the same relative contribution of 
homogeneous selection and homogenizing dispersal, despite the 
clear differences in environmental conditions, alpha diversity and 
bacterial seasonal variability between the two studied lakes. This 
supports our hypothesis regarding changes in ecological processes 
at different time scales.

When homogeneous selection is identified in a time-series data 
set, we infer that the low compositional turnover is caused by envi-
ronmental factors that are relatively predictable over time (e.g., high 
water temperatures every summer and low ones every winter). In 
contrast, variable selection would take place when environmental 
factors change with irregular temporal patterns such as those caused 
by a storm event, producing a high compositional turnover. When 
stochastic processes are detected, a high rate of dispersal and a low 
turnover in composition (homogenizing dispersal) is expected when 
the same habitat is sampled throughout time. For example, when we 
observe the presence of homogenizing dispersal in a pairwise com-
parison of two samples from a few months apart, we infer that the 
main bacterial community composition is kept through the elapsed 
time. Instead, dispersal limitation is expected to be high, when two 
different habitats (or samples) are not connected. The absence in 
our data set of dispersal limitation through the year (and between 
months) suggests that the bacterial community within a lake does 
not completely change; however, this could be influenced by the 
composite sampling strategy used here.

Selection-related processes have been reported to be dominant 
in lakes on the long-term (Yan et al., 2017), whereas dispersal-re-
lated processes seem to dominate in small aquatic ecosystems 
on the short-term (Vass et al., 2020). Although more quantitative 
analyses are necessary in different types of lakes to reach a gener-
alization, in a study of subsurface microbial communities, Stegen 
et al. (2012) suggested that deterministic and stochastic processes 
are guided by general rules across ecosystems. We propose that 
lake bacterioplankton are governed by a balance of deterministic 
and stochastic processes, with the former being most relevant at 
long-term scales, and the latter at short-term scales. We further 
argue that the recurrent changes in bacterial composition over a 
long-term scale produced by environmental filters (i.e. biotic and 
abiotic) are the most important processes shaping communities, 
but the impact of these environmental filters decreases at short-
term scales, opening the possibility for stochastic ones (e.g. ho-
mogenizing dispersal) to become more important. Identifying 
those environmental filters is challenging and largely depends on 

F I G U R E  5   Contribution of 
different ecological processes to the 
assembly of the bacterial community in 
Gossenköllesee (GKS) and in Piburgersee 
(PIB) at the annual scale and at short-term 
scale in GKS [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the battery of parameters included. According to the model-selec-
tion procedure, all tested variables in GKS (i.e., water temperature, 
conductivity, DOC, DN, ice presence, and pH) appear to impose 
selection, while in PIB, it remains unclear which are the main envi-
ronmental filters imposing selection.

The quantification of ecological processes responsible for com-
munity assembly using the Stegen framework has limitations. For 
example, this framework does not parse out sub-classes of selec-
tion, such as competition and trophic interactions, and it could be 
sensitive to factors such as phylogenetic uncertainty and alpha 
diversity underestimation (Stegen et al., 2013). Further, the selec-
tion-related processes could include deterministic components 
of dispersal (e.g., active propulsion) and some degree of diversifi-
cation, such as those derived from favourable mutations (Zhou & 
Ning, 2017). Further, homogenizing dispersal is similar to mass effect 
and source-sink dynamics (Stegen et al., 2013), and dispersal limita-
tion may depict processes such as historical contingency, phyloge-
netically nonconserved selection and other unmeasured processes 
(Vass et al., 2020). Therefore, the outcomes from this framework do 
not represent a definitive explanation of assembly processes occur-
ring at a specific temporal scale, since not all of the ecological pro-
cesses are being quantified. However, this method is a first approach 
to compare major ecological processes (i.e. variable selection, homo-
geneous selection, dispersal limitation, homogenizing dispersal and 
undominated processes) through space and time.

Another potential bias using this framework could rely on sam-
pling and data analysis strategies. For example, the use of different 
approaches to studying the same temporal scale (e.g., replicate ver-
sus single samples), different reads cluster strategy (e.g., OTUs ver-
sus ASVs) and the use of relative or absolute abundance data could 
lead to different conclusions about the balance of ecological pro-
cesses. Therefore, the use of the same methodology/sampling strat-
egy among lakes is needed to reach consistent general patterns on 
dominant assembly processes.

The temporal variability in bacterial community changed across 
different time scales and trophic state. Overall, bacterial community 
variability from the oligotrophic lake was more stable through the two 
consecutive years and less dispersed compared with that of the me-
sotrophic one. Verrucomicrobia was the only phylum showing a clear, 
repeated seasonality in GKS with high abundance during the ice-cov-
ered period (average relative abundance of 9.3%) and a low one during 
the ice-free period (average relative abundance of 2.9%). By contrast, 
this phylum showed a stable relative abundance (ca. 12%) in PIB for 
the whole year. The prevalence of this phylum during winter seems 
to be typical for temperate and boreal lakes (Tran, Ramachandran, & 
Khawasik, 2018). Nevertheless, the detection of Verrucomicrobia in 
freshwaters has been compromised by methodological issues (e.g., 
primers bias (McCarthy, Chiang, Schmidt, & Denef, 2015)), and there-
fore, there are contrasting reports regarding its numerical importance or 
dominance (Chiang et al., 2018; Llames, Huber, Metz, & Unrein, 2017; 
Newton, Jones, Eiler, McMahon, & Bertilsson, 2011). Our results addi-
tionally suggest that differences in the relative abundance of this phy-
lum lie in its seasonality and in the trophic state of the lake considered.

Betaproteobacteria and Alphaproteobacteria are usually the 
numerically most important groups in GKS (Alfreider et al., 1996; 
Pernthaler et al., 1998). We found Limnohabitans spp. and Rhodoferax 
spp. to be important components within Betaproteobacteria (de-
spite the high abundance of unknown genera within this class). The 
first genus did not show a clear seasonality, but the highest relative 
abundance was found during the ice-free period (July 2016). Instead, 
Rhodoferax spp. showed the highest relative abundance in the last 
months of the ice-covered period (April–May). Limnohabitans spp. 
and Rhodoferax spp. are aerobic anoxygenic phototrophs (AAPs) 
and dominate the AAP communities in many lakes (Ruiz-González, 
Garcia-Chaves, Ferrera, Niño-García, & Del Giorgio, 2020; Salka, 
Cuperová, Mašín, Koblížek, & Grossart, 2011). However, Rhodoferax 
spp. has not been described as an abundant AAP species in GKS. 
Actually, the main AAP species previously found in GKS during 
the ice-free season were related to Sandarakinorhabdus limnoph-
ila, Erythromonas ursincola and Sphingomonas (Čuperová, Holzer, 
Salka, Sommaruga, & Koblízek, 2013). Besides the high abundance 
of Rhodoferax spp., we also found that Sandarakinorhabdus spp. 
and Sphingomonas spp. were the main representatives of the AAP 
community, but Erythromonas spp. was found in a low relative abun-
dance. Further, we showed that AAP species exhibit high abundance 
not only during the ice-free period, but also during the ice-covered 
period. Another bacterial group that accounts for >50% of the total 
bacterial biomass after ice break-up in GKS is Bacteroidetes (Wille, 
Sonntag, Sattler, & Psenner, 1999). This group is also abundant in 
lakes located in different climatic zones (Schauer & Hahn, 2005). 
Some organisms within this group in oligotrophic lakes are related 
to Haliscomenobacter species (Hahn & Schauer, 2007). We detected 
the taxa Haliscomenobacter with a relative abundance >1% only in 
GKS, and its abundance increased during the ice-break period and 
persisted during the whole ice-free period.

Actinobacteria, Bacteroidetes and Betaproteobacteria are 
the most important groups in PIB. Actinobacteria is numerically 
important in the oxygenated water layers (epilimnion), and the 
other two are more abundant in the oxygen-depleted hypolimnion 
(Salcher, Pernthaler, & Posch, 2010). The same groups were found 
in our study; however, we highlight the high relative abundance of 
Verrucomicrobia, which has not been previously described.

In general, the ice-free months are the most studied periods 
in lakes based on the notion that the winter was considered a 
“dormant season” (Campbell, Mitchell, Groffman, Christenson, 
& Hardy, 2005; Hampton et al., 2017). Most of the bacterial di-
versity patterns, their ecological role and potential metabolic 
pathways in lakes in general, as well as in GKS and PIB, have 
been derived from the ice-free period (Hörtnagl, Pérez, Zeder, & 
Sommaruga, 2010; Pérez & Sommaruga, 2011; Wille et al., 1999). 
However, the ice-covered period is crucial and influences the 
structure of the bacterial community and thus, many key eco-
logical processes (Bertilsson et al., 2013; Grosbois, Mariash, 
Schneider, & Rautio, 2017; Hampton et al., 2017). For example, 
potential bacterial metabolic activities such as sulphur and meth-
ane oxidation have been proposed as important processes during 
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this period (Bertilsson et al., 2013; Schütte, Cadieux, Hemmerich, 
Pratt, & White, 2016). The duration of the ice cover is longer in 
GKS than in PIB and probably explains why bacterioplankton seg-
regation was clearer compared with the ice-free period. Further, 
the bacterioplankton in GKS showed the highest diversity metrics 
during the ice-cover season, which may be influenced by the dif-
ferent habitats generated in the ice cover and its interaction with 
the water column (Felip, Wille, Sattler, & Psenner, 2002). Instead, 
the ice-cover period of PIB did not change diversity metrics during 
the two years. The only change observed in PIB during the ice-
cover season was the increase in the relative abundance of the 
Hgcl clade between the last months of this season and the ice-
break period.

5  | CONCLUSIONS

Assessing bacterioplankton variability at different temporal scales is 
important to elucidate which taxonomical group is relevant to key en-
vironmental processes and biogeochemical cycles. Here, we showed 
that annual changes in bacterioplankton of both lakes were primarily 
controlled by the same relative contribution of a deterministic process 
(homogeneous selection), although alpha diversity and patterns of 
bacterial variability changed according to the trophic state of the lake. 
The dominance of deterministic processes changed when the bacte-
rioplankton variability was assessed at a shorter time scale, and in this 
case, a stochastic process (homogenizing dispersal) was the most im-
portant. Thus, we conclude that deterministic processes will influence 
the bacterioplankton equally across lakes at long-term scales, whereas 
stochastic processes play a secondary role, regardless of bacterio-
plankton composition or trophic state of the lake.
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