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THE BIGGER PICTURE There is a huge potential for machine learning, but blind reliance on oversimplified
metrics can mislead. Class-prediction accuracy is a common metric used for determining classifier perfor-
mance. This article provides examples to show how the class-prediction accuracy is superficial and even
misleading. We propose some augmentative measures to supplement the class-prediction accuracy. This
in turn helps us to better understand the quality of learning of the classifier.

Mainstream: Data science output is well understood
and (nearly) universally adopted
Class-prediction accuracy provides a quick but superficial way of determining classifier performance. It does
not inform on the reproducibility of the findings or whether the selected or constructed features used are
meaningful and specific. Furthermore, the class-prediction accuracy oversummarizes and does not inform
on how training and learning have been accomplished: two classifiers providing the same performance in
one validation can disagree on many future validations. It does not provide explainability in its decision-mak-
ing process and is not objective, as its value is also affected by class proportions in the validation set. Despite
these issues, this does not mean we should omit the class-prediction accuracy. Instead, it needs to be en-
riched with accompanying evidence and tests that supplement and contextualize the reported accuracy.
This additional evidence serves as augmentations and can help us perform machine learning better while
avoiding naive reliance on oversimplified metrics.
Introduction: Classification and Class-Prediction
Accuracy
Classification, a common task in machine learning, is the pro-

cess of predicting the identity of a new sample using a trained

machine learner. The sample identity is referred to as the class

label, e.g., in a scenario where we are training a machine-

learning algorithm to differentiate gender, ‘‘male’’ and ‘‘female,’’

are class labels that are attached to each person. A trained ma-

chine learner, having learned decision rules from training data, is

referred to as a classifier. Classification is also referred to as

‘‘class prediction.’’

Before it can be used for prediction, amachine learnermust be

trained with data. These data are known as training data (or a

training set). The class labels associated with samples in the

training set are known. The objective is to identify rules and

feature sets that allow differentiation of the various class labels.

For example, if the purpose is to predict biological gender, the

class labels could be ‘‘Male’’ and ‘‘Female’’ and the feature

set, which is a set of informative variables, may consist of quan-

titative measurements such as ‘‘height,’’ ‘‘weight,’’ and ‘‘hair

length,’’ and qualitative observations such as ‘‘presence of facial
This is an open access article under the CC BY-N
hair.’’ If the samples, rules, and the feature set are informative,

the classifier’s predictions on new samples should be often, if

not always, correct.

The set of new samples meant for evaluating prediction is

known as test data. In test data, the class labels are known but

not supplied to the classifier. Instead, the classifier makes a

‘‘guess’’ based on its ‘‘previous experiences.’’ There can only

be two outcomes, correct or wrong. The sum of correct guesses

over all guesses is the class-prediction accuracy.

The class-prediction accuracy provides a snapshot of learning

performance: If the classifier has learned well, the class-predic-

tion accuracy is expected to be high. However, the class-predic-

tion accuracy does not inform on the quality of learning. As in hu-

mans, high examination scores do not necessarily imply that

students truly understand the subject matter; the same may

also be said in machine learning. The class-prediction accuracy

does not inform on the mechanism and processes undertaken in

order to arrive at the prediction, and thus offers limited explain-

ability.

Elaborating on the exam-taking analogy, suppose two individ-

uals, pA and pB, were preparing to take an exam but differed in
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Table 1. Number of Selected Features and Consequent Cross-

Validation Accuracy of the Five Statistical Approaches Used and

Discussed in This Paper

Method No. of Features CV Accuracy

SP 2,662 1.00

HE 570 0.75

SNET 130 0.98

FSNET 141 1.00

PFSNET 200 1.00
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learning style: pA learned by critical evaluation of the teachings

across her existing knowledge while pB simply memorized.

Both scored 99% on the test; thus, we cannot use grades to

inform that A has learned better. Suppose too we have two ma-

chine learners mX and mY, both of which were trained on the

same dataset and were demonstrated to exhibit 99% class-pre-

diction accuracy during validation. This also does not mean that

mX and mY have learned in the same way. In fact, when chal-

lenged with future datasets, both mX and mY may exhibit wildly

different class-prediction accuracies, suggesting that they have

not learned from the data in the same way.1 As with human

learners, when we judge the value and depth of machine learning

using a highly reductionist metric, we risk oversimplification, and

this oversimplification does not inform us about mechanism or

applicability of the classifier in real-world scenarios. To under-

stand the implications of oversimplification, here we cover six

problems associated with the class-prediction accuracy and

also offer some remedies (or augmentative tests) to help analysts

better understand the machine-learning models.

Problem 1: High Accuracy Does Not Imply
Reproducibility
Consider Table 1. Five different statistical approaches (single

protein t-test [SP], hypergeometric enrichment test [HE], subnet-

work testing [SNET], fuzzy subnetwork testing [FSNET], and

paired fuzzy subnetwork testing [PFSNET]) were used to obtain

five different feature sets for training a naive Bayes machine-

learning method to differentiate normal tissue from kidney can-

cer tissue. The full details on how the statistical methods differ

are irrelevant (but can be accessed in Goh and Wong2). One

might note that while the feature sets are of different sizes across

different methods, they all give rise to relatively high cross-vali-

dation accuracy (this is the average of class-prediction accu-

racies based on the N-fold cross-validation approach3–5).

Superficially, it would seem that when class-prediction accu-

racy, based on the N-fold cross-validation (CV accuracy; Table

1) is high, the classifiers are working well. However, high varia-

tion in the number of reported features should give us pause,

as each method is saying different things about which features

are important. It turns out that high CV accuracy says nothing

about the stability of the feature set (Figure 1). Why is this impor-

tant? Deriving a good-quality feature set is crucial toward devel-

oping a sound model that is based on highly relevant variables.

While each of the five statistical methods all give good CV accu-

racy, this metric alone tells us nothing about the quality of the

feature set. It only informs that these feature sets can be used

for predicting the class labels.
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To know whether or not a statistical or a machine-learning

method is generating a good-quality feature set (which in turn

suggests that it is using the ‘‘correct’’ domain knowledge), a

combination of the bootstrap with the Jaccard coefficient is use-

ful (Figure 1). The bootstrap is a random sampling procedure that

allows us to repeatedly resample our data at a given n. With each

resampling i, we apply a statistical test and then identify its

feature set i. We may compare all pairwise resamplings using

the Jaccard coefficient. Given the feature sets of two resam-

plings i and j, the Jaccard coefficient J is the intersection of

feature sets i and j divided by the union of feature sets i and j.

J is bound between 0 and 1, where 0 means complete dissimi-

larity and 1 means perfect similarity. A J distribution concen-

trated near 1 is a proxy for reproducibility, i.e., the tendency to

obtain similar feature sets (and hopefully, consequent predic-

tions) in analysis. Since the comparisons are performed pair-

wise, given 1,000 resamplings, (1,000 3 999)/2 Jaccard coeffi-

cients are generated.

Graphical visualizations are useful for summarizing the J distri-

bution, especially when numerous. One may use violin plots with

embedded box plots (Figure 1). The box plot readily conveys in-

formation on the median, interquartile range, and first and 99th

percentiles. The undulations of the ‘‘violin,’’ which is really a sym-

metrized version of the density plot, conveys information on po-

tential subpopulations. (If a double bump is observed, this would

suggest two underlying populations. The box plot’s median

would not capture this.)

There is no immediate relationship between the size of the

feature set and feature set stability (Table 1 and Figure 1). We

can see that even for methods that provide similar CV accuracies

(FSNET and PFSNET both have CV accuracies of 1.00), they

exhibit different feature set stabilities.

Conversely, if a statistical method provides similar feature sets

consistently during the bootstrap and is associated with an over-

all decent CV accuracy, onemay have higher confidence that the

statistical method is a good one. In addition, when the feature set

is stable and gives rise to good CV accuracy, it is likely that it

would also make for more reliable and generalizable perfor-

mance in future.

Problem 2: High Accuracy Does Not Imply
Meaningfulness
In Problem 1, we assert that an overall higher Jaccard coefficient

is indicative of feature set stability and, therefore, reproducibility.

Meaningfulness, on the other hand, is determined by the rele-

vance of each feature, i.e., how it contributes directly toward

class differentiation instead of being merely ‘‘correlated.’’ This

can be assayed by the ‘‘recurrence distribution’’ of individual

features. (The identities of all features are known. What is being

measured is the number of times each feature is reported as sig-

nificant per bootstrap.) To obtain this, one may combine the

bootstrap with a histogram (Figure 2), where the y axis is a fre-

quency count of the variables and the x axis is a proportion

from 0 to 1, where a peak near 0 means a strong majority of vari-

ables are only observed once or rarely across all bootstrap re-

samplings. Conversely, a peak at 1 means that a strong majority

of variables recurs. Besides assaying the presence or absence of

a peak at 1.0 on the x axis (Figure 2), we can infer a high-quality

feature set by only using variables that recur 100% of the time.
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Figure 1. Agreement of Feature Sets
Selected from Different Samples of the Same
Population Is Much Poorer for Methods that
Use No or ‘‘Wrong’’ Domain Knowledge
Colors denote different statistical approaches. For
each approach, bootstrap resampling is performed
1,000 times on three sampling sizes (4, 6, and 8).
Each resampling is compared against one another,
and their similarity denoted by the Jaccard coeffi-
cient (y axis). Somemethods exhibit high agreement
(e.g., PFSNET) while in others, agreement rates are
highly fluctuating (e.g., HE).
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Comparing Table 1 with Figure 2, it is seen that although SP

has high CV accuracy, this does not translate to good recurrence

distributions. A good proportion of features is rarely observed

across resamplings, and even with increment of sampling size

the left peak remains persistent. This is in contrast with ap-

proaches such as PFSNET, which shows a positive effect by

sample size increment, with its peak on the right side (100%

recurrence rates). If a statistical or machine-learning method

uses the correct intuition or correct domain information, recur-

rence should be high.

In another example where we can use a similar concept of

recurrence and meaningfulness, a high-quality feature set was

obtained by taking the intersections among the best-performing

published breast cancer signatures.2,6–8 This is similar to the use

of the recurrence distribution, except that we did not do the

bootstrap ourselves (we merely considered each published can-

cer signature as an independent sampling of the underlying pop-

ulation, and treated those genes that are found in common as

‘‘high recurrence’’). This feature set inferred from high recur-

rence, the Super-Proliferation Set, is found to be highly predic-

tive of aggressive breast cancers and is also highly generaliz-

able, even when tested against seven rounds of independent

validation.7,8

Again, comparing Table 1 with Figure 2, a higher CV accuracy

does not imply high recurrence distribution. SP has a CV accu-

racy of 1.00 but the recurrence distribution suggests that many

of the features are non-recurrent. If SP is being used anyway

as the feature-selection method, one can still isolate a high-qual-

ity feature set by simply considering only those variables that

give rise to the right peak (near to the x axis value of 1.00;

Figure 2). This higher-quality feature set, when used for training

the classifier, will provide a good CV accuracy but is also likely

to be more generalizable in real-world applications as it is often

detected despite many different rounds of resampling.

Problem 3: High Accuracy Does Not Imply that Features
Used Are Better Than Random
Statistics is undergoing an image crisis: from attacks on the

instability of the p value9–13 and general non-reproducibility of

expensive high-profile studies13 to inane proposals such as

further reducing statistical cutoffs from the generally accepted

0.05 to 0.005,12 never-ending debates on whether the confi-

dence interval is the more intuitive alternative to the p value,14

and even the complete abolition of statistical significance
testing with nothing tangible to offer in its place.15 Besides

the general imperfections of statistical tools, we also know

that hidden confounders due to batch effects and hidden sub-

populations16 can produce spurious associations.17 The impli-

cation is that these issues percolate to machine learning by

creating misleading decision rules or diluting the information

value of the feature set.

In 2011, Venet et al. reported that published breast cancer

signatures did not do better at prediction than randomly

generated signatures or irrelevant signatures.6 Although they

did not formally use any machine-learning methods (instead

relying on the p value provided by the Cox hazard ratio), the

lessons apply to machine learning nonetheless. For each

signature, they compared the performance (based on the sig-

nificance of the p value with the phenotypes) of a published

signature against a distribution of randomly generated signa-

tures (which are obviously non-clinically relevant) of the

same size as the published signature, whereby it was shown

that many reported signatures did worse than half of the

randomly generated signatures.6 We later clarified that this ef-

fect is dependent on the size of the published signature and

also the proportion of growth-related proliferation genes.8

We also demonstrated that a truly meaningful signature can

never be beaten by randomly generated signatures.7 This

insight is useful because it means that the information quality

of a feature set can be inferred by comparison not by its direct

correlation with the class labels but against randomly gener-

ated versions of itself. This does not require a novel test in it-

self; rather, using Fisher’s permutation test (also known as the

randomization test) suffices.18

We have applied the idea of comparing the performance of a

feature set in machine learning against randomized variants of it-

self. The CV p value is the proportion of the number of times a

random feature set beats the inferred feature set over all

randomization trials (Table 2). For example, a CV p value of

0.01 means that out of 1,000 trials, 10 randomly generated

feature sets trained a classifier that produced a CV accuracy

equal to or higher than the CV accuracy of the actual feature set.

Given the five different statistical feature-selection methods, a

high CV accuracy does not imply significant CV p values. This

may be due to issues with confounding,17,19,20 poor information

value of features,2 sheer chance in what is sometimes also

referred to as the winner’s curse,9,21 or high class-effect propor-

tion, whereby most of the evaluated features are correlated with
Patterns 1, May 8, 2020 3
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Figure 2. Recurrence Distributions across
Different Feature-Selection Methods
The y axis corresponds to the frequency count of the
variables, and the x axis is a proportion from 0 to 1,
where a peak near 0 means that a strong majority of
variables are only observed once or rarely, across all
bootstrap resamplings.
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class labels such that it does not matter statistically which is

picked.22

Since class-prediction accuracy, inferred from the CV accu-

racy, does not imply that randomized feature sets will not do

just as well, the randomization test is useful for providing this in-

formation. Interestingly, the CV p value is in itself also a useful in-

dicator of statistical significance, whereby we are assured that

random feature sets do not outperform the actual feature set

(the CV p value is in fact equivalent to an empirically derived p

value). Therefore, we state that high accuracy does not imply sig-

nificance.

Problem 4: Same Accuracy Does Not Imply that
Classifiers Have Learned in the Same Way
So far, we have seen that class-prediction accuracy does not

imply reproducibility, meaningfulness, or significance. But what

if we have two classifiers, trained on the same data, and report-

ing the same high class-prediction accuracy on the same

test data?

It turns out that two classifiers reporting the same accuracy on

a specific test set can disagree greatly in future test sets.1 In one

example, two models reporting 90% accuracy on a test set can

disagree on �80% of future cases (B. Teodora, personal

communication). This means that two classifiers reporting the

same accuracy does not mean they have learned in the

same way.

So, what is happening here? The class-prediction accuracy is

a highly reductionistic measure, and so does not provide any in-

formation on decision rules or learning mechanism. This is intu-

itive if we simply think about the human condition: two students

who happened to score the same grade on an exam should not

be expected to perform similarly in all future exams.

However, if the two individuals are probed and examined

further to ensure that they used similar modes of learning and

have adopted similar mechanisms for understanding the subject

matter, it is likely that in future exams their performance will also

be consistently similar. In other words, besides simply relying on
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a single point measure, it is better to try to

understand the mechanisms that gave rise

to the result. Indeed, even if similar mech-

anisms of understanding are utilized, it also

does not ensure that every single time the

same class-prediction accuracy will be re-

ported. After all, the winner’s curse can

strike at any time.9

Interestingly, this problem of perfor-

mance divergence is quite readily solvable.

In the first place, we should not assume that

the performance of two classifiers can be

readily benchmarked on a single test data-
set. This is, unfortunately, a limitation of the single independent

validation approach. Since the divergence in performance is

observable in future test cases, it is the distribution of multiple

test cases that may be useful in informing about the learning of

the classifier. We may assert that a classifier that has learned

well is one that universally or consistently reports high accuracy

when challenged repeatedly with future test cases.7

Problem 5: High Accuracy Does Not Come with
Explainability
The internal learning processes of many machine-learning and

artificial intelligence (AI) models are ‘‘black boxes.’’ Simpler ma-

chine-learning models try to formulate rules based on the input

variables while advanced ones, e.g., neural networks, may try

to construct higher-level features from the more basic input fea-

tures. These higher-level features are further aggregated across

different learning layers before the final prediction is assimilated

in the final layer.

Manymachine-learning algorithms do not allow their decision-

making layer to be examined, yet it is the soundness and quality

of features used by a prediction model that is crucial for under-

standing the model and assessing its soundness. If the features

themselves, and the interactions among these features, make

sense, it is highly likely that the classifier will do well in any vali-

dation test. If it does not, wemay suspect that there is something

wrong with the validation data instead.

So far, the manifestations of reproducibility, meaningfulness,

significance, and divergence are symptomatic proxies for ex-

plainability. However, obtaining information on explainability

from classifiers cannot be achieved easily if the model does

not permit inspection of its decision-making layers.

Therefore, until such models come along we suggest tempo-

rary work-arounds. In Table 1, we see methods such as PFSNET

performing strongly in terms of reproducibility, meaningfulness,

and significance while other approaches such as SP stumble,

despite both approaches performing similarly in accuracy. So,

what is different? The difference is in terms of the information
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Figure 3. Decision Tree Using Realistic Rules to Determine Phone-
Buying Considerations Made Using BioRender (biorender.com)

Table 2. Classifiers Trained on Feature Sets Selected by

Statistical Approaches

Method No. of Features CV Accuracy CV p value

SP 1,124 0.98 0.91

HE 162 0.98 0.91

SNET 21 0.84 0.06

FSNET 36 0.96 0.06

PFSNET 65 0.92 0.06

All approaches have high CV accuracy, but this does not mean that this

good CV accuracy in itself is meaningful or specific.
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value of the variables. SP uses information from individual pro-

teins while PFSNET looks at information on the level of protein

complexes. In biology, proteins are organized into higher func-

tional units known as protein complexes, where there are

many useful information constraints: members are involved in

the same process; if members are missing, the complex cannot

form; and members in the same complex are autocorrelated. In

other words, the protein complex is a natural higher-order

feature that can be looked at without the aid of a machine

learner. We refer to the process of transforming a lower-order

feature set into higher-order features as ‘‘contextualization.’’

So why does contextualization help? First, looking at autocor-

related structures where members must be involved in a shared

process helps in reducing the likelihood of false positives seep-

ing into the feature set. Suppose the basal false-discovery rate is

25%. This implies that in a given feature set, we expect a quarter

of these to be false positives. However, wemay reduce this likeli-

hood of admitting false positives by considering higher-level

constructs. Suppose there is a complex C comprising members

a, b, c, d, and e. We may express the likelihood of the complex

existing as a function of its observed components. If only a, b,

c, and d are reported as present (subject to the 25% false-dis-

covery rate), we may then say that the likelihood of C existing

is 4/53 (1� 0.25) = 0.6. However, if all components are reported

as present, the likelihood of C existing is 5/53 (1 � 0.25) = 0.75.

Wemay also assert that P(a exists|C exists) = 100%; that is, if the

complex C exists, its constituent members must also exist.

Moreover, assuming all five components of C are reported as

present, the likelihood that a given reported component exists

is no longer 75%, it is P(a exists|C exists)3 P(C exists) + P(a ex-

ists|�C exists) 3 P(�C exists) = 0.75 + 0.75 3 0.25 = 0.94.

A second advantage of contextualization is dimensionality

reduction. This is particularly useful for overcoming curse-of-

dimensionality problems when there are a limited number of

samples (or observations) relative to high numbers of measured

variables. When there are a limited number of observations given

many variables, the chance of incurring false positives and false

negatives becomes higher. Correction techniques in statistics

for such problems tend to be conservative, favoring reductions

in false positives over reducing false negatives. For example,

multiple test corrections, such as the Bonferroni, limit false pos-

itives by adjusting the p value threshold according to the number

of tests performed. This tends to be lead to overkill, as it mistak-

enly assumes independence among variables. If the variables

exhibit some degree of collinearity, such approaches can unin-

tentionally shrink the feature set such that it is no longer compre-
hensive. Reorganizing proteins into higher-order complexes

means that within each complex, genes are expected to be high-

ly correlated and are treated as a single entity (instead of multi-

ple). Because there are fewer complexes relative to proteins, it

also reduces the overkill impact from multiple test correction.23

Besides being higher-level organizations, complexes can also

offer explainability because these entities are highly enriched

with meta-information and annotations.24 Knowledge about

where they exist, what they do, and the various pathways and

mechanisms associated with them already exist. These can be

leveraged to achieve explainability.25 For example, if our feature

set contains complexes associated with cancer pathways in a

study of breast cancer, we should feel quite assured. Conversely,

if the feature set instead comprises hibernation pathways, it is

likely that errors in computation might have occurred.

However, what if we do not have good-quality context? Ordi-

nation-based approaches such as principal components anal-

ysis (PCA) can also help. PCA is a technique that resolves

high-dimensional variable space into a reduced set of principal

components (PCs) that are orthogonal to each other. This means

that each PC acts independently of others and can be effectively

considered a variable in its own right. Indeed, using PCs as

feature sets have been proposed in the literature as a possible

statistical strategy,26,27 and have been proved to work in actual

practice.28 To provide explainability, each PC can be annotated

with some meta-information; the easiest way of achieving this is

to apply a statistical test on each PC to check for correlation with

a specific co-variate.28,29

Although most machine learners do not offer explainability,

some do, a classic example being decision trees. While not as

powerful as more recent implementations based on ensemble

approaches or neural networks, decision trees nonetheless offer

highly interpretable insights such that if the order of rules makes

sense, this means that the classifier has learned in a sensible
Patterns 1, May 8, 2020 5
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manner and is therefore not likely to falter in future validations

(Figure 3). A key weakness of the decision tree is that it does

not scale well when there aremany variables and/or the variables

offer similar information value due to autocorrelation. Another

weakness is that when there are two or more key independent

explanations for the class labels a decision tree forces these to

be merged, thus convoluting two independent sets of rules.

For example, suppose bad genes cause lung cancer and smok-

ing too many cigarettes also cause lung cancer. These are inde-

pendent causes. There should thus be two rules: (1) if got bad

genes, then lung cancer; and (2) if smoke a lot, then lung cancer.

However, it is not possible to express this knowledge in a stan-

dard decision tree: the tree forces us to pick one of the condi-

tions to be the ‘‘root,’’ so we obtain a tree such as: if got bad

genes then lung cancer else {if smoke a lot then lung cancer

else no lung cancer}; or a tree such as: if smoke a lot then lung

cancer else {if got bad genes then lung cancer else no lung can-

cer}. Both weaknesses can lead toward tree structure instability

or create unnecessary complexity whereby the tree becomes

very deep by attempting to force-fit as many variables as

possible. In such cases, it is useful to transform the variables

into higher-order features (e.g., using context or ordination

methods) before input to the decision tree.

Explainability provides a rational basis for machine learning

and is far more important than a blind reliance on traditionally

used metrics such as CV accuracy. This is because any cross-

validation on an AI’s performance is inherently limited in its world

view, and that when challenged with all possibilities no one AI or

method should be expected to be superior to another. This is

also known as the ‘‘no-free-lunch’’ theorem.1 The no-free-lunch

results are subtle and can generally mean, over all possible in-

puts, that two separate models are likely to disagree over a large

fraction of these inputs. Not all inputs are necessarily real or cor-

rect, but these do constitute a subset of all possible inputs. The

models only need to be shown to agree on real inputs (while their

disagreement on other irrelevant inputs can be disregarded).

This approach is analogous to the way class-label permutations

are performed to compute values in a network-based feature

method such as PFSNET.30 We do not generate null samples

by arbitrary permutations. We generate only by class-label per-

mutations. This is because null samples are required to satisfy

or are assumed to satisfy the null hypothesis (which in PFSNET’s

case is that the feature is irrelevant to class).

As discussed by Giraud-Carrier and Provost,31 if cross-valida-

tion is to be used for inducing meaningful performance differen-

tials, it requires incorporation of a meaningful meta-learning

component during the training process. However, in large part

no-free-lunch critics did not or were unable to formally charac-

terize which subset of input to restrict it to. Therefore, they cannot

find a reasonable way to escape the no-free-lunch theorem.

Problem 6: Accuracy Depends on Class Proportion of
the Test Set
The final issue is that accuracy depends on class proportion (the

relative representation of class labels). For example, if male and

female are equally represented in an evaluation of gender, the

class proportion would be one-half for either gender of the test

set. If this differs too much from real-world proportions, it can

be misleading.
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In fact, ensuring a test set’s fidelity to actual population distri-

butions is an important methodological point that is often over-

looked. If a test set is not faithful to actual population distribu-

tions, some typical performance measures (e.g., accuracy and

precision) determined from the test set may considerably deviate

in new data. For example, let us say we have a well-trained clas-

sifier C with 80% sensitivity and 90% specificity. On a test set A

where the positive samples fully reflect the properties of positive

population and negative samples fully reflect the properties of

negative population but the proportion of positive to negative

samples is 100:1,000, the precision of this classifier C on test

set A will be 80/(80 + 100) = 44% and its accuracy will be (80 +

900)/(100 + 1,000) = 89%.On a test set Bwhere the positive sam-

ples fully reflect the properties of positive population and

negative samples fully reflect the properties of negative popula-

tion but the proportion of positive to negative samples is

1,000:100, the precision of this classifier C on test set B will be

800/(800 + 10) = 99% and its accuracy will be (800 + 90)/

(1,000 + 100) = 81%.

As we can see, the performance changes dramatically with

different class proportions. If the actual population distribution

is 1,000:100, the performance on test set B is one that will give

a better sense of what the performance of classifier C will be

on real data, whereas the performance on test set A will

completely mislead.

Given an actual 1,000:100 population distribution, test set A

can be calibrated so that every positive sample counts as 100

while every negative sample counts as 1. After this calibration,

the ‘‘proportion’’ of positive to negative in test set A becomes

100 3 100:1000 (= 10,000:1,000 = 1,000:100), faithful to the

actual population distributions, and the calibrated precision be-

comes 99% and accuracy 81%, more closely reflecting the per-

formance of classifier C that one can expect with real data

(assuming the positive and negative samples in test set A are

indeed respectively representative of the positive and negative

populations).

Conclusion
Class-prediction accuracy is an oversimplified measure that

does not inform on the reproducibility of the results or meaning-

fulness of the feature set. It is also not a proxy for statistical sig-

nificance, as high accuracy can also at times be achieved with

meaningless, randomly assimilated feature sets. Similar accu-

racies, given a single benchmark, are also an unreliable indicator

of future performance. Therefore, we propose the use of addi-

tional measures to augment the class-prediction accuracy.

While additional measures provide informative proxies on how

learning is achieved, the best way is to extract explainability

from the classifier. When it is not possible to isolate the deci-

sion-making layers, using context or ordination approaches

helps. One should also note that class-prediction accuracy is

sensitive to class-proportion effects.

Given the limitations of evaluativemetrics (the class-prediction

accuracy is not the only oversummarization-type metric), a

‘‘black box’’ produced by a machine-learning method may not

be all that we think it is. We advise that it is used with caution

and avoided unless there is no choice: if the data are sound

and the feature set is informative, good results will be obtained

even with simple statistical tests anyway.
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