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Abstract insight into protein/anesthetic interactions. However,
none of these analogs have mimicked any of the con-

% hv ) Adducts temporary inhaled anesthetics, such as isoflurane.
¢ protein e with protein The molecular targets and sites underlying the effects

AZ"‘SOQ'“ra“e of isoflurane are currently of considerable interest. This

stems not only from an incomplete knowledge of the

Volatility and low-affinity hamper an ability to define targets that contribute to unconsciousness (/, 4), but
molecular targets of the inhaled anesthetics. Photola- also from the targets underlying isoflurane’s neurotoxic
bels have proven to be a useful approach in this regard, (5) and “pr econdl.tlomng” eff.ects. (6). Thus, we descn'be
although none have closely mimicked contemporary here the synthesis and validation of a photoactive
drugs. We report here the synthesis and validation of analog of isoflurane. By incorporating a diazirinyl
azi-isoflurane, a compound constructed by adding a moiety in isoflurane, we produce a molecule that de-
diazirinyl moiety to the methyl carbon of the com- monstrates photoadduction to residues in known anes-
monly used general anesthetic isoflurane. Azi-isoflurane thetic binding sites, and retention of normal in vivo and

is slightly more hydrophobic than isoflurane, and more in vitro actions.

potent in tadpoles. This novel compound inhibits

Shaw2 K channel currents similarly to isoflurane Results and Discussion

and binds to apoferritin with enhanced affinity. Final- Synthesis of Azi-isoflurane (1)
ly, when irradiated at 300 nm, azi-isoflurane adducts to Preparation of azi-isoflurane (1) followed our pre-
residues known to line isoflurane-binding sites in apo- viously described method for the preparation of similar
ferritin and integrin LFA-1, the only proteins with diazirines (Scheme 1) (7). Previously described ester 2 (8)
isoflurane binding sites defined by crystallography. was converted to its hemiacetal using excess lithium
This reagent should allow rapid discovery of isoflurane aluminum hydride at low temperature. We have pre-
molecular targets and binding sites within those viously used DIBAL-H to effect this reduction but have
targets. found that the electron-withdrawing groups in 2 prevent
) N ) ) over-reduction by LiAlH, at this low temperature. The
Keywords: Anesthesia, Shaw2 K channel, integrin I crude hemiacetal was immediately condensed with tert-

domain, photoaffinity labeling, binding, apoferritin butylamine in refluxing benzene to form imine 3 in 75%

overall yield from 2. Treatment of 3 with hydroxyl-
amine-O-sulfonic acid (HOSA) in absolute ethanol and

. . triethylamine produced a 50% yield of diaziridines 4 as
I I | he inhaled general anesthetics are generally an approximately 1:1 mixture of diastereomers as deter-

recogn{zed to be promiscuous pharmaceuthals mined by capillary gc. The mixture of diastereomers 4
whose important molecular targets underlying was converted to azi-isoflurane (1) using N-bromosucci-

any of their many physiological effects are not well- nimide (NBS) in dichloroethane. Final purification of
defined (/). A conventional means of defining targets is racemic 1 was accomplished using preparative gas chro-

through binding assays, but this has been difficult for matography. Figure 1 shows structures of isoflurane and
the general anesthetics since the interactions are of low azi-isoflurane, and NMR spectra for the synthesized

affinity and therefore extremely transient (2). This compounds are contained in the Supporting Information.
transient binding nature is further aggravated by the

volatility of many of the drugs. We have previously Received Date: September 6, 2009
introduced photoaffinity labeling to overcome these pro- Accepted Date: September 28, 2009
blems (3), and this approach has provided considerable Published on Web Date: October 12, 2009
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Scheme 1. Preparation of Azi-isoflurane (1)
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Physicochemical Properties

The properties of azi-isoflurane are similar to those of
isoflurane (Table 1), except that it is more hydrophobic,
the octanol/water partition coefficient being ~300 com-
pared with 125 for isoflurane. The calculated dipole is
1.5 D, while that of isoflurane, calculated the same way,
is 1.67 D. The absorption spectra shows the prominent
double-humped diazirine peak at 280—320 nm; thus all
photolysis exposures were conducted at 300 nm. In
phosphate-buffered saline and with our lamp, the dis-
appearance rate of the diazirine has a ¢, of 3.9 min.

Binding Assays

Titration of azi-isoflurane to horse spleen apoferritin
(HSAF) produced a typical exothermic enthalpogram
as shown in Figure 2. Binding parameters indicate
slightly enhanced affinity compared with isoflurane.

Electrophysiological Studies

The Shaw2 K* channel has been identified as an
archetypical target of n-alcohols and inhaled general
anesthetics (9, 10). This K channel was selected for this
study because it is inhibited by relevant doses of inhaled
anesthetics but is resistant to propofol, a typical intra-
venous general anesthetic. In contrast, ligand-gated ion
channels do not typically exhibit this selectivity (/7).
Therefore, the Shaw2 K™ channel is a more stringent
subject to compare the functional effects of isoflurane
and azi-isoflurane on an individual target. Consistent
with the modulation of Shaw2 K™ channels by ha-
lothane (not shown), whole-oocyte Shaw2 K™ currents
were substantially inhibited by 1 and 2 mM of both
isoflurane and azi-isoflurane (Figure 3), and azi-isoflurane
seemed slightly more potent than isoflurane.

In Vivo Anesthetic Potency

Tadpoles were fully immobilized by both isoflurane
and azi-isoflurane (Figure 4). The Hill slopes were
indistinguishable, but the ECs, value for azi-isoflurane
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Figure 1. Structure comparison of the target drugs: isoflurane on
the left and the photolabel analog, azi-isoflurane, on the right.
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was approximately 2-fold smaller (higher potency) than
for isoflurane. Recovery from both compounds, even at
maximal concentrations, was rapid, and no mortality
out to 24 h was noted.

Photolabeling

For validation of photolabeling reliability, the only
two proteins with crystallographically proven binding
sites for isoflurane were selected (72, 13). HSAF and
both the wild-type (WT) and high-affinity (HA) integrin
inserted (I) domain of LFA-1 (lymphocyte function
associated antigen-1) peptides were incubated with buf-
fer with or without 1 mM azi-isoflurane and exposed to
300 nm illumination for 10 min. Sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS—PAGE) puri-
fication, band excision, and trypsinization was followed
by nano-LC/MS to identify peptides and residues that
had been modified by 196 Da. Both the HSAF (Table 2)
and WT I domain, but not the HA I domain (Table 3)
demonstrated clear evidence of adducted peptides. In
each case, these residues are the same as those found to
interact with isoflurane from X-ray crystallography
studies (PDB codes 1XZ3 and 3F78) (12, 13), and no
other adducted residues were noted. MS spectra are
contained in the Supporting Information.

Discussion

In this study, we have modified isoflurane by the
addition of a diazrinyl group (CHN,) for total mass
addition of 40 Da (about a 20% increase in MW).
Although this group has some polar character, azi-iso-
flurane is somewhat more hydrophobic than isoflurane
but with the same approximate dipole moment (Table 1).

In accordance with the Overton—Meyer relationship
(14, 15), azi-isoflurane is more potent than isoflurane
and has a slightly larger effect on a selective ion channel.
Further, it binds specifically and with a higher affinity to
the general anesthetic binding site on apoferritin (/6) as
shown by isothermal titration calorimetry (ITC). Col-
lectively, these studies suggest that the intact photolabel
is highly analogous and somewhat more active than
isoflurane itself.

Of greatest interest is whether azi-isoflurane can
efficiently report sequence-level binding in its molecular
targets. To validate this, we used the only two isoflurane
binding proteins confirmed with crystal structures that
have been deposited in the PDB. In both HSAF and the
integrin LFA-1 I-domain, the only adducted resides
found with LC/MS are those implicated by the crystal
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structure. In the case of HSAF, thisis arginine-59, which
is positioned at the entrance to the interfacial cavity
where anesthetics bind. The side chain of Arg-59 is
facing solvent, thus we suspect that adduction occurs
to the carbonyl oxygen, facing the cavity. In the integrin
I domain, the adduction occurs at tyrosine-257, the side
chain of which is positioned directly against isoflurane
in 3F78 (13). As crystallographically defined (/7) (PDB
IMQA), the HA mutant of the integrin I-domain is
engineered to distort the allosteric cavity where isoflur-
ane was found to bind in the WT domain and thereby
remove the inhibitory effect of isoflurane (/8). We were
able to show that thisisindeed due to a loss of binding at
this site, in that we could not find the adduct in the same
peptide that was easily detected in the WT domain. This is
the first clear example of a conformational change

Table 1

density, log dipole, HSAF tadpole
MW gmL P? D Kp, uM ECso, uM
isoflurane 184 1.5 2.1 1.67 58+2  230(193—-275)
azi- 224 14 24  1.50 6+1 106 (96—119)

isoflurane

@ Qctanol/water partition coefficient. ® Calculated.

Time (min)

-10 0 10 20 30 40 50 60 70 80 90 100 110

(U ke m e e i B L L L L A R L B

2 T

1.04 ]

154 .

ucal/sec

204 =

-2.54 -

-3.0 4 -

0.0 -

204 -

4.04 _

-6.0 .

KCal/Mole of Injectant

-8.0 -

T T T T T T T "
0 5 10 15 20 25

Molar Ratio

pcal/sec

Article

induced by mutagenesis that actually precludes anesthetic
binding, removing its effect.

An optimal photolabel should not show selectivity
toward amino acids to give confidence that equilibrium
sites are being reliably reported. For example, prior labels
that relied on carbon-centered radicals appeared to show
selectivity toward aromatics like tyrosine (/9) and tryp-
tophan (20). In this study, we find evidence for azi-
isoflurane adduction to arginine, tyrosine, and isoleucine,
and in prior studies, a similar compound labeled serine
and leucine (7). The side chains of these residues exhibit
little chemical similarity, demonstrating a comforting
lack of adduction selectivity. An alternative explanation
is that activated azi-isoflurane may target backbone
atoms, such as the carbonyl oxygen, explaining the lack
of selectivity. Regardless of targeted moiety, photoche-
mical promiscuity is a desirable feature in a photolabel.

Detection of adducted proteins and amino acids in
this study employed mass spectrometry. However, since
the adduction itself renders the peptide more hydro-
phobic, it is possible that some adducted peptides will
either not transit the HPLC column or not volatilize in
the mass analyzer. It might therefore be desirable to
radiolabel azi-isoflurane to allow a different detection
methodology. Azi-isoflurane has the advantage of hav-
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Figure 2. Isothermal titration calorimetry. Titration of azi-isoflurane (left panel) and isoflurane (right panel) into a solution of HSAF resulted
in classic exothermic enthalpograms. Fits to single-class binding models found average K values for isoflurane of 17 260 M~ and for azi-iso-
flurane of 172200 M ™", The enthalpy change was favorable in both cases (AH values averaged —6 kcal for isoflurane and —9.8 kcal for azi-
isoflurane), while the entropy was much more unfavorable for azi-isoflurane (AS = —0.3 for isoflurane and —9.6 for azi-isoflurane).
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Figure 3. Inhibition of Shaw2 K channels by azi-isoflurane and
isoflurane. (A) Whole-oocyte Shaw2 currents evoked by step
depolarizations from —100 to +60 mV delivered at 30 s intervals.
Several superimposed traces are shown with the drug exposure
indicated by a bar. The corresponding time course for the experi-
ment is shown directly below the traces. Azi-isoflurane at 2 and
1 mM inhibited currents by 77% =+ 0.2% (n = 2) and 27% £ 5%
(n = 2), respectively, with rapid recovery on compound washout.
(B) The same experiment as in panel A done with isoflurane with the
corresponding time course below. Isoflurane at 2 and 1 mM
inhibited currents by 67% + 0% (n = 2) and 18% +4% (n = 2),
respectively. (C). Summarized maximal inhibition for both iso-
flurane and azi-isoflurane; n = 2 separate experiments for each
concentration.
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Figure 4. Tadpole potency. Shown are concentration—effect curves
for both isoflurane (®) and azi-isoflurane (O). Points represent the
average of two determinations each in ten tadpoles. Lines are best fit
Hill plots, constraining the bottom to 0. ECs, values (95% CI) for
isoflurane and azi-isoflurane, respectively, were 230 (193—275) uM
and 107 (96—119), and for Hill slope, —5.7 (—11 to —1) and —7.1
(=12 to —2).
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Table 2. Photoadducted Residues in HSAF (Sequence
Coverage 53.7%) Peptide Starting at E53“

UV only UV + azi-isoflurane

b y b y
E 1 130.0499 12 E 1 130.0499 12
L 2 243.1339 1287.665 11 L 2  243.1339 1483.665 11
A 3 314171 1174581 10 A 3  314.171 1370.581 10
E 4 4432136 1103544 9 E 4  443.2136 1299.544 9
E 5 5722562 9745014 8 E 5  572.2562 1170.501 8
K 6 7003512 8454588 7 K 6  700.3512 1041.459 7
R 7 8564523 717.3638 6 R* 7 1052.452  913.3638 6
E 8 9854949 561.2627 5 E & 1181.495 561.2627 5
G 9 1042516  432.2201 4 G 9 1238516  432.2201 4
A 10 1113.553  375.1987 3 A 10 1309.553  375.1987 3
E 11 1242596 304.1615 2 E 11 1438.596  304.1615 2
R 12 175119 1 R 12 175.119 1

“Bold indicates ion detected on MS. Bold with * indicates adducted
residue. Note that b and y ions represent MS “sequencing” in different
directions along the peptide; b ions are those from cleavages moving
from N to C terminus, while y ions are the reverse.

Table 3. Photolabeled Residues in LFA-1 WT
(Sequence Coverage 98.9%) Peptide Starting at Y257¢

UV + azi-isoflurane

b y b y
Y 1 164.0706 7 Y% 1 164.0706 7
I¥ 2 4731547 7964079 6 1 2 473.1547 796.4079 6
I 3 586.2387 4873239 5 I 3 586.2387 487.3239 5
G 4 6432602 3742398 4 G 4 6432602 3742398 4
I 5 7563443 3172183 3 I 5 756.3443 317.2183 3
G 6 8133657 2041343 2 G 6 813.3657 204.1343 2
K 7 1471128 1 K 7 147.1128 1

“Bold indicates ion detected on MS. Bold with * indicates adducted
residues.

ing an exchangeable hydrogen on the chlorine-bearing
carbon, which should allow tritiation. Consistent with
this possibility, preliminary studies have shown efficient
deuterium incorporation at this position under basic
conditions.

In conclusion, we have synthesized a photoactive
analog of isoflurane that is more potent and of higher
affinity than isoflurane, binds to the same protein sites
as isoflurane, and demonstrates rapid and nonselective
photoincorporation into proteins. This reagent should
provide for rapid progress on identification of molecular
targets underlying isoflurane’s many effects.

Methods

Materials
Horse spleen apoferritin (HSAF) was obtained from Sigma
(St. Louis, MO). All other chemicals were of reagent grade or
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better and were obtained from Sigma or Aldrich (St. Louis,
MO) . Isoflurane was obtained from Butler (Dublin, OH).
Caution: All diazirines are potentially explosive and should be
treated with care. The summary NMR and high-resolution
mass spectra given below are consistent with the assigned
structures. Detailed spectra are provided in the Supporting
Information. Final purified products were racemic and
>98% pure by gas chromatographic (GC) analysis using a
30 m dimethylsilicone capillary column and flame ionization
detection. WT and HA integrin LFA-1 ainserted (I) domains
were bacterially expressed as inclusion bodies, refolded, and
purified to homogeneity as previously described (/7).
Preparation of tert-Butyl-(2,2-difluoro-2-(1-chloro-
2,2,2-trifluoroethoxy)ethylidene) Amine (3)

A mixture of 1.5 g (39 mmol) of LiAlH4 powder and 50 mL
of dry ether were stirred at RT for 1 h under N,. This mixture
was added to an addition funnel attached directly to a 250 mL
round-bottom (rb) flask previously filled with 15.2 g (56.3 mmol)
of ester 2, 30 mL of dry ether, and a magnetic stir bar. The
contents of the flask were cooled to —78 °C with stirring under
N,. The LiAIH4 mixture was added dropwise over the course
of 5 min. After being stirred for an additional 30 min at
—78 °C, the mixture was poured into a cold solution of 5 mL of
concentrated H,SO,4 and 500 mL of water. The mixture was
stirred for several minutes until all the solid had dissolved and
was then extracted with ether (3 x 200 mL). The combined
ether extracts were concentrated using a rotary evaporator at
RT. The resulting oil was dissolved in 50 mL of benzene,
12 mL (8.3 g, 114 mmol) of tert-butylamine was added, and
the solution was heated with a Dean—Stark water separator
overnight. The contents of the flask were distilled under
atmospheric pressure to yield 11.8 g (78%) of clear colorless
oil, bp 153—154°C. "H NMR: 6 7.47 (t, 1 H, Jy_¢ = 4.7 Hz),
6.20(q, 1 H, Jy_r = 4.0Hz), 1.23 (s, 9 H). "CNMR: 6 145.5
(t,Jo—r =146 Hz), 120.3 (q, Jc—r = 280 Hz), [ 17.9 (t, Jc—F =
270 Hz), 78.8 (qt, Jo_r = 40, 5.5 Hz), 58.9, 28.7. 'F NMR: 6
—78.22 (bd, 1 F, Jp_g = 146 Hz), —78.96 (dd, 1 F, Jp_g =
146 Hz, Jy_g = 4.7 Hz), —80.0 (bs, 3 F). HRMS (CI+): m/z
calculated for CgH»,CIFsNO (M + H)" 268.0528; found
268.0525.

Preparation of 1-zert-Butyl-3-(difluoro-(1-chloro-
2,2,2-trifluoroethoxy)methyl)diaziridine (4)

To a 25 mL rb flask with stir bar was added 1.08 g
(4.0 mmol) of 3and 2 mL of absolute ethanol, and the solution
was cooled in an ice bath. A mixture of 0.48 g (4.2 mmol) of
hydroxylamine-O-sulfonic acid (HOSA)in 2.5 mL of absolute
ethanol was cooled in an ice bath, and 0.40 g (4.0 mmol) of
triethylamine was added dropwise over the course of 2 min
with good stirring. The resulting clear, colorless HOSA solu-
tion was added dropwise to the solution of 3 over the course of
5 min, and the resulting solution was stirred for 20 min at 0 °C.
The ice bath was removed, and the mixture was allowed to stir
at rt for 1 h during which time white precipitate formed. The
mixture was evaporated on a rotary evaporator, and the
resulting semisolid was triturated with ether (3 x 20 mL).
Evaporation of the ether left 0.56 g (50%) of clear, colorless oil
that was sufficiently pure for conversion to diazirine. An
analytical sample was purified by silica gel chromato-
graphy using 1:10 ethyl acetate/hexane. The product was an
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approximately 1:1 mixture of two diastereomers as analyzed
by capillary gas chromatography. "H NMR: ¢ 6.14 (m, 1 H),
3.19 (m, 1 H), 2.16 (m, 1 H) 1.30 (m, 9 H). '*C NMR: 6 121.39
(t, Jo—g = 271 Hz), 120.28 (q, Jc—r = 280 Hz), 78.53 (m),
55.84, 50.92 (t, Jo—¢ = 35.8 Hz), 50.89 (t, Jc—g = 36.4 Hz),
25.25,25.23. ""F NMR: 6 —80.16 (m, 6 F), —83.07 (bd, 1 F,
Jr—r= 144 Hz), —83.55(bd, | F, Jp_g = 144 Hz), —83.60 (bd,
1F,Jp—p=141Hz),—84.47(dd, 1 F, Jp_p = 141 Hz). HRMS
(CI4): m/z calculated for CgH3CIFsN>O (M + H) " 283.0637;
found 283.0625.

Preparation of Azi-isoflurane (1)

A 25 mL rb flask with stir bar was filled with 0.18 g (0.64
mmol) 4 and 0.55 g of dichloroethane. The solution was
cooled in an ice bath with stirring, and 0.12 g (0.67 mmol)
of N-bromosuccinimide was added in one portion. After the
mixture was stirred for 10 min, the ice bath was removed, and
the solution was allowed to stir for 1 h at rt. The volatiles were
transferred to a U-trap cooled to —78 °C under continuous
pumping with a vacuum pump. Purification of the solution by
preparative gas chromatography was accomplished using a
10 ft x 0.25 in. column packed with 10% Carbowax 20 M on
Chromasorb W. GC collection conditions were as follows:
injector 75 °C; column 50 °C; detector 70 °C; helium flow
rate = 120 mL/min. The order of elution was ferz-butylbromide,
1, and dichloroethane. Product 1 was collected in a U-trap
cooled to —78 C °C. '"H NMR: ¢ 6.05 (qd, 1 H, Ji;_r = 4.0,
1.0 Hz), 1.68 (t, 1 H, Jy_r = 4.3 Hz). 3*C NMR: 6 120.4 (q,
chp = 280 HZ), 120.2 (t, JC*F =269 HZ), 78.6 (qt, JC*F =
41.1,5.5Hz), 20.7 (t, Jo—p = 42 Hz). P"FNMR: 6 —75.42 (bd,
I F,Jp—y=147Hz),—76.40(dd, 1 F, Jp_p = 147THz, Jy_g =
4.5 Hz), —80.11 (m, 3 F). HRMS (CI+): m/z calculated for
C4H-CIF4NLO (M — F)* 204.9792; found 204.9794.

Physical Properties. Water Solubility and
Hydrophobicity

Density was measured directly in tared, sealed vials. Max-
imal water solubility was measured by vigorous mixing of
excess azi-isoflurane in water, centrifugation at 1000g for 10
min, and then measuring absorbance at 300 nm (after using
methanolic solutions to calculate an extinction coefficient, 126
M~ " at 300 nm). This water solution (9.9 mL) was then loaded
into 10 mL gastight Hamilton syringes. Absorbance at 300 nm
of an aliquot was recorded to allow calculation of maximal
water solubility, and then exactly 0.1 mL of octanol was added
to the syringe, and the two phase system was mixed by
rotation for an hour. The octanol—water mixture was allowed
to completely separate for another hour, and then absorbance
of the water phase was measured again. Molar partition was
calculated by multiplying the difference in water absorbance
by the ratio of water to octanol volume and dividing by the
ending water absorbance.

Electronic structure calculations at the ab initio B3LYP/6-
3114+G(d,p) geometry optimized level (27) reveal that there
are three lowest energy conformations for azi-isoflurane.
These three lowest energy conformations are related to each
other by rotation about the C—C bond connecting the CF,
group and the diazirine ring. The total energy of each of these
three conformations differed by less than 120 cal. The calcu-
lated dipole moment for the separate conformations was 2.16,
1.26, and 1.17 D, respectively. The dipole moment for
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azi-isoflurane is predicted to be 1.5 D assuming that each
conformation contributes equally to the average molecular
dipole moment at room temperature. A similar calculation
on isoflurane (22) predicts that the average molecular
dipole moment for this molecule is 1.67 D at room temperature.
Isothermal Titration Calorimetry

The thermodynamic parameters for the binding of azi-
isoflurane to HSAF at 20 °C were determined by ITC using a
Microcal, Inc. VP ITC (Northampton, MA; http://www.
microcalorimetry.com/). The ITC consists of a matched pair
of sample and reference vessels (1.43 mL) enclosed in an
adiabatic enclosure and a rotating stirrer-syringe for titrating
aliquots of the ligand solution into the sample vessel. The
sample cell contained 0.01 mM HSAF, and the reference
cell contained water. Saturated photolabel (1.1 mM azi-
isoflurane) was loaded in the syringe (volume = 0.28 mL)
for injecting into the sample. Four separate titrations were
performed, including three controls, ligand into buffer, buffer
into protein, and buffer into buffer, which were then used to
correct the experimental titration, ligand into protein. Origin
5.0 (Microcal Software, Inc., Northampton, MA) was used to
fit thermodynamic parameters (single binding site class) to the
heat profiles.
Oocyte Expression and K™ Channel
Electrophysiology

The Shaw?2 F335A mutant channel was used in this study
because it expresses more robustly than the corresponding
wild-type in Xenopus oocytes and exhibits unaltered biophy-
sical and pharmacological properties (9, 23). To harvest
oocytes, Xenopus laevis frogs were handled according to a
protocol approved by the IACUC of Thomas Jefferson
University. The mRNA was synthesized in vitro and micro-
injected into individual oocytes as described previously
(23, 24). According to established procedures, the two-
electrode voltage-clamp method was used to record the result-
ing whole-oocyte currents in normal extracellular bath solu-
tion (24). Dilutions of azi-isoflurane and isoflurane were
prepared fresh before each experiment at 1 and 2 mM final
concentrations in a gastight glass screw-top vial (penetrable
Tuf-Bond Teflon septa; Thermo Scientific, Rockford, TIl.).
Dissolved compounds were delivered through Teflon tubing
directly into the recording chamber via a 50 mL Hamilton
gastight syringe and syringe pump. Generally, macroscopic
currents were low-pass filtered at 0.5—1 kHz and digitized at
1—2 kHz. The program pClamp 8—9 (Axon Instruments and
Molecular Devices, Sunnyvale, CA) was used for acquisition,
data reduction, and initial analysis of the recorded currents.
Leak current was subtracted off-line by assuming a linear leak.
All recordings were obtained at room temperature (23 & 1 °C).
Tadpole Studies

Xenopus tadpoles were used to examine the anesthetic
potency of both azi-isoflurane and isoflurane. Briefly, groups of
10 tadpoles were placed in 20 mL sealed glass vials contain-
ing pond water and increasing concentrations of the compounds,
presolubilized by vigorous shaking/sonication of pondwater
with aliquots of neat compound. Volumes were adjusted to
minimize gas volume in the vials (~5%). After a 5 min exposure,
tadpoles were transferred to Petri dishes and scored for the
presence of a startle reflex. The pond water was then changed
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and recovery documented for 24 h. Control experiments verified
an absence of effect of the manipulations on tadpole activity in
the absence of added compound. Percent mobile at each con-
centration were fitted to variable slope Hill plots.
Photolabeling and Nano-L.C/nanospray/LTQ
Photolysis rates were determined in azi-isoflurane/buffer
solutions by measuring the loss of absorbance at 300 nm over
time of exposure to 300 nm light in quartz cuvettes at a
distance of 6 mm from bulb surface. Small aliquots of pH 7
phosphate buffer containing 1 mg/mL HSAF and integrin
LFA 1 domains with and without saturated azi-isoflurane
were placed in a | mm path length quartz cuvette and exposed
to 300 nm light (Rayonet RPR-3000 lamp; emission from
280 to 320 nm) at 2 mm distance for 15 min. Control samples
received only UV irradiation. The UV-treated proteins were
then passed through an HPLC C-18 analytical column to
separate the labeled apoferritin H and L subunits, which were
then resuspended in 0.1% TFA. Mass spectrometry equip-
ment and software were available in the Proteomics Core
Facility at the University of Pennsylvania. Small aliquots of
UV-treated sample L chain were trypsinized and injected into
a 10 cm CI18 capillary column to separate the digested pep-
tides. Eksigent NanoLL.C proteomics experiments were run at
200 nL/min for 60 min with gradient elution. Nanospray
was used to spray the separated peptides into LTQ (Thermo
Electron). Xcalibur is used to acquire the raw data, and
modified (photolabeled) peptides were identified using Sequest.
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