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ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes
chronic lung infections in people with cystic fibrosis (CF). Chronic P. aeruginosa iso-
lates generally do not express O antigen and often have a mucoid phenotype,
which is characterized by the overproduction of the exopolysaccharide alginate.
Therefore, O antigen expression and the mucoid phenotype may be coordinately
regulated upon chronic adaption to the CF lung. Here we demonstrate that PDO300,
a mucoid strain derived from the nonmucoid laboratory isolate PAO1, does not pro-
duce very long O antigen due to decreased expression of Wzz2, the very long O an-
tigen chain length control protein, and that mucoid clinical isolates express reduced
levels of Wzz2 compared to nonmucoid isolates. Further, we show that forcing the
expression of very long O antigen by PDO300, by providing wzz2 in trans, does not
alter alginate production, suggesting that sugar precursors are not limited between
the two biosynthesis pathways. Moreover, we confirm that AmrZ, a transcription fac-
tor highly expressed in mucoid strains, is a negative regulator of wzz2 promoter ac-
tivity and very long O antigen expression. These experiments identify the first tran-
scriptional regulator of O antigen chain length in P. aeruginosa and support a model
where transition to a chronic mucoid phenotype is correlated with downregulation
of very long O antigen through decreased Wzz2 production.

IMPORTANCE Detection of mucoid Pseudomonas aeruginosa, characterized by the
overproduction of alginate, is correlated with the establishment of a chronic pulmo-
nary infection and disease progression in people with cystic fibrosis (CF). In addition
to the overproduction of alginate, loss of O antigen lipopolysaccharide production is
also selected for in chronic infection isolates. In this study, we have identified the
regulatory network that inversely regulates O antigen and alginate production. Un-
derstanding the regulation of these chronic phenotypes will elucidate mechanisms
that are important for the establishment of a long-term P. aeruginosa lung infection
and ultimately provide an opportunity for intervention. Preventing P. aeruginosa
from chronically adapting to the CF lung environment could provide a better out-
come for people who are infected.
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Pseudomonas aeruginosa is capable of causing chronic lung infections in people with
cystic fibrosis (CF) (1, 2). Upward of 50% of people with CF are infected with P.

aeruginosa, and lifelong infections are the leading cause of morbidity and mortality
(3–6). CF is caused by mutations in the cystic fibrosis transmembrane conductance
regulator (cftr) that result in altered ion transport and improper lung function (7, 8). This
altered lung environment increases mucus accumulation in the lungs, reducing muco-
ciliary clearance, which ultimately leads to bacterial persistence (9). Attempts at treating
these life-threatening infections have fallen short due to P. aeruginosa’s ability to adapt
to the CF lung and survive in the altered lung environment (10). This survival is reflected
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by the expression of rare phenotypes that distinguish chronic CF isolates from P.
aeruginosa obtained from other sources or types of infections. The accumulation of
these features is often referred to as the “chronic infection phenotype” (11).

One distinct chronic phenotype that has been observed is related to the expression
of lipopolysaccharide (LPS). Environmental and acute infection isolates express an
LPS-smooth phenotype, while P. aeruginosa isolates from chronic pulmonary infections
are often LPS-rough, meaning they do not express O antigen (11–16). In LPS-smooth
strains, the serotype-specific O antigen expressed is characterized based on size; long
O antigen is regulated by the chain length control protein Wzz1, while very long O
antigen is regulated by the chain length control protein Wzz2 (17–20).

In addition to the loss of O antigen expression, P. aeruginosa strains isolated from
chronic infections are often mucoid (21, 22). Furthermore, these mucoid clinical strains
are LPS-rough (23, 24). Detection of the mucoid phenotype, characterized by the
overproduction of the exopolysaccharide alginate, is correlated with pulmonary disease
progression (25–28). The most common mutations that lead to mucoid conversion in
CF isolates are found in mucA (21, 29–31). MucA is an anti-sigma factor responsible for
sequestering AlgT, the sigma factor that initiates transcription of the alginate biosyn-
thesis operon and approximately 300 other genes of the AlgT regulon (32). When MucA
is inactivated, AlgT constitutively transcribes the alginate biosynthesis operon, resulting
in overproduction of alginate and the mucoid phenotype.

Given the apparent correlation between alginate overexpression and loss of O
antigen in chronic infection isolates, it has been speculated that alginate and O antigen
are coordinately controlled. In support of this premise, Kelly et al. compared the LPS
profiles of the nonmucoid laboratory strain PAO1 and a series of phage-induced
mucoid variants (33). They noted that the mucoid strains had lost expression of the
high-molecular-weight portion of the LPS molecule and that nonmucoid reversion
could restore production. Ma et al. (34) expanded upon the results of Kelly et al. by
comparing O antigen production of PAO1 to that of PDO300, a well-studied isogenic
mucoid variant of PAO1 (35). PDO300 contains the most common clinically observed
mucA mutation mucA22 (21). The authors observed that high-molecular-weight O
antigen was reduced in PDO300 compared to PAO1. Both groups suggested that the
overproduction of multiple mannose-rich exopolysaccharides results in a competition
for a shared sugar pool by O antigen and alginate biosynthesis pathways. However,
these results do not account for why the low-molecular-weight fractions of O antigen
are unaffected since both low- and high-molecular-weight O antigens contain the same
sugars.

Previous research has primarily focused on the mucoid phenotype and the regula-
tion of alginate biosynthesis. In contrast, it is not known how O antigen is regulated
during chronic infections, even though loss of O antigen expression is a common
chronic phenotype. Given the failure of the shared precursor model to adequately
explain why nonmucoid reversion of clinical isolates does not restore O antigen
production or why only one chain length of O antigen is affected by mucoid conver-
sion, we fill this gap in knowledge by, instead, identifying an overlapping transcrip-
tional regulator that inversely controls alginate and O antigen expression at a genetic
level. Understanding the coordinated regulation between the mucoid phenotype and
O antigen production will elucidate mechanisms that are selected for during the
establishment of a long-term infection and inform us about host-pathogen interactions
during chronic infections. We suggest that interfering with the expression of these
chronic infection phenotypes and the subsequent adaption of P. aeruginosa to the CF
lung environment could provide a better outcome for people living with CF.

RESULTS
Mucoid strains produce less Wzz2 than nonmucoid strains, resulting in less

very long O antigen. Previous studies by Kelly et al. and Ma et al. showed that mucoid
strains often do not express high-molecular-weight O antigen (33, 34). To begin to
understand the mechanism responsible for the change in O chain length expression in
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mucoid strains, we first sought to confirm the observation made by Ma et al. (34). We
isolated LPS and compared the O antigen profiles between nonmucoid (NM) PAO1 and
mucoid (M) derivative PDO300 (35). When PAO1 LPS was separated based on size and
probed using serotype O5-specific antigen antibodies, long and very long O antigen
modalities were clearly visible (Fig. 1A). When LPS isolated from PDO300 was separated
in the same manner, little high-molecular-weight O antigen was observed (Fig. 1A) as
previously reported (34). We specifically noted that the O antigen modality of PDO300
looks similar to that of a PAO1 wzz2::Tn transposon mutant (19). This transposon is
inserted in the first half of wzz2, likely disrupting Wzz2 protein function. Wzz2 is known
to regulate the very long O antigen lengths, and in the absence of wzz2, PAO1 does not
make very long O antigen (Fig. 1A).

We therefore hypothesized that loss of this high-molecular-weight O antigen is the
specific loss of very long O antigen chain lengths in PDO300 and further that this is
likely due to decreased production of Wzz2. Using polyclonal antibody to Wzz2 in
Western blot analysis of protein extracts from PAO1, PDO300, and PAO1 wzz2::Tn, Wzz2
production of each strain was examined; reactivity was seen with an �49-kDa protein,
as expected. Reactivity was also consistently seen with a protein of �65 kDa in all of the
samples tested, including the wzz2 mutant. Because of this, we are confident this
cross-reacting band does not belong to Wzz2, and it has been cropped from the
images. In support of our hypothesis, Wzz2 production was reduced in PDO300
compared to PAO1 (Fig. 1A). Comparison of protein levels by densitometry analysis
determined that PDO300 makes about 65% less Wzz2 than PAO1. PAO1 wzz2::Tn, as
expected, does not make Wzz2 (Fig. 1A). Altogether, these data indicate that the loss
of high-molecular-weight O antigen expression in PDO300 is due to decreased expres-
sion of Wzz2 and thereby loss of very long O antigen modalities.

As Wzz2 is conserved among P. aeruginosa strains (19), we also compared Wzz2 and
O antigen production in serotype O10 laboratory strain PA14 and a mucoid derivative
that we generated (PA14 mucA22). PA14 mucA22 has reduced levels of Wzz2 and fewer
high-molecular-weight O antigen chain lengths than PA14 (see Fig. S1 in the supple-
mental material), confirming that the inverse relationship between alginate production
and O antigen chain length is not strain or serotype specific.

FIG 1 Mucoid strains produce less Wzz2 than nonmucoid strains, resulting in less very long O antigen. (A) Analysis of protein and LPS extracts from nonmucoid
and mucoid strains by Western blotting. Wzz2 or EF-Tu (loading control) was visualized using anti-Wzz2 or anti-EF-Tu antibodies. Serotype O5-specific antibodies
were used to visualize O antigen production. PAO1 wzz2::Tn is a transposon mutant from the PAO1 library (68, 69) and is used as a control for no Wzz2 or very
long O antigen production. (B) CF isolates CFBRPA10, 34, 44, and 20 are nonmucoid, while CF isolates CFBRPA08, 11, 33, and 32 are mucoid. These isolates were
obtained from the Emory-Children’s Healthcare Cystic Fibrosis Biospecimen Registry (CFBR). All Western blots are representative of three or more independent
experiments. Abbreviations: NM, nonmucoid; M, mucoid; Tn, transposon.
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Since loss of O antigen expression is a recognized phenotype of CF isolates, we next
determined whether decreased expression of Wzz2 by PDO300 held true in mucoid P.
aeruginosa CF isolates. We used the Wzz2 polyclonal antibody to screen a series of
random nonmucoid and mucoid CF isolates obtained from the Cystic Fibrosis Biospeci-
men Registry (CFBR). CFBRPA10, 34, 44, and 20 are all nonmucoid strains and, overall,
expressed higher levels of Wzz2 than the mucoid isolates CFBRPA08, 11, 33, and 32
(Fig. 1B). Wzz2 was barely detectable in all of the mucoid isolates, and these appeared
similar to the PAO1 wzz2::Tn control. CF isolates are generally LPS-rough and nontype-
able (13); thus, O antigen production was not monitored in these strains.

Overexpression of wzz2 in PDO300 increases very long O antigen production.
We next wanted to determine if we could restore expression of Wzz2 and very long O
antigen to PDO300 by providing wzz2 in trans and whether this would alter alginate
production. If there is a shared pool of precursor sugars, we should not be able to
express very long O antigen in PDO300 without compromising alginate production. To
test this, we cloned wzz2 behind an arabinose-inducible promoter contained on the
plasmid pHERD20T (36) to generate pHERD20T-wzz2. This plasmid has a P. aeruginosa
origin of replication and can be maintained in multicopy to facilitate overexpression of
genes. pHERD20T-wzz2 was transferred into PAO1 and PDO300, and production of
Wzz2 and very long O antigen was monitored when wzz2 was induced using 0.4%
L-arabinose and compared to a vector-only (pHERD20T) control. When wzz2 was
overexpressed in PAO1, which already expresses very long O antigen, there was a
modest increase in the amount of very long O antigen produced (Fig. 2). When wzz2
was overexpressed in PDO300, we successfully restored Wzz2 and very long O antigen
production to PAO1 levels (Fig. 2). There was no effect on Wzz2 or very long O antigen
production when PAO1 pHERD20T and PDO300 pHERD20T vector-only controls were
grown in 0.4% L-arabinose.

To determine if alginate production had been impacted in PDO300 when wzz2 and
very long O antigen were overexpressed, we monitored the mucoid phenotype. When
grown on a plate containing 0.4% L-arabinose to induce wzz2 expression, PDO300
pHERD20T-wzz2 maintained a mucoid phenotype (data not shown). We quantified the
amount of alginate that was made by PDO300, a PDO300 vector-only control (PDO300
pHERD20T), and PDO300 pHERD20T-wzz2 when each strain was grown to stationary
phase in the absence or presence of the inducer. PDO300 pHERD20T-wzz2 grown
without inducer produced 570.52 �g/ml of alginate (Table 1). When grown in inducer,
PDO300 pHERD20T-wzz2 had a 12% decrease in alginate production. As a control, we
also compared alginate expression of the vector-only PDO300 control and noted a 21%

FIG 2 Overexpression of wzz2 in PDO300 increases very long O antigen production. O antigen and Wzz2
production of strain overexpressing wzz2 on pHERD20T (right) compared to vector-only control (left). All
strains were grown in 0.4% L-arabinose inducer. Western blotting was performed as described for Fig. 1.
Abbreviations: NM, nonmucoid; M, mucoid.
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decrease in alginate production when this strain was grown with inducer compared to
growth without inducer (Table 1). Altogether, this suggests that there is no major
difference in alginate produced when very long O antigen is made by a mucoid strain,
suggesting that a limited pool of sugar precursors, under these conditions, does not
account for loss of very long O antigen production in PDO300. This supports our
hypothesis that decreased very long O antigen in PDO300 results from decreased
expression of Wzz2 rather than a competition of sugar precursors.

The wzz2 steady-state mRNA levels and promoter activity are repressed in
PDO300. To determine how Wzz2 is regulated in PDO300, we investigated both wzz2
steady-state mRNA levels and transcription initiation. We utilized quantitative reverse
transcriptase PCR with wzz2 gene-specific primers, which anneal on sites upstream and
downstream of the transposon insertion, to measure relative wzz2 transcript levels in
PAO1, PDO300, and control strain PAO1 wzz2::Tn, which does not express wzz2 (Fig. 3A).
Transcript levels were normalized to the housekeeping gene rpoD (37). PDO300 ex-
pressed about one-third the relative number of wzz2 transcripts compared to PAO1
(Fig. 3A). Since wzz2 mRNA expression is reduced in PDO300, we suspected that wzz2
is transcriptionally repressed in this strain. To test this, we fused the 5= promoter region
of wzz2 to a promoterless lacZ and inserted this construct, in single copy, into the CTX
phage attachment site in PAO1 and PDO300. Subsequently, �-galactosidase enzymatic
activity was used as a readout of wzz2 promoter activity in each strain. As speculated,
analysis of wzz2 promoter activity revealed that PDO300 had a significant 17-fold
decrease in wzz2 promoter activation compared to PAO1 (Fig. 3B), indicating that wzz2
is transcriptionally repressed in PDO300.

Nonmucoid isolates of mucoid strains express more Wzz2 and very long O
antigen. To further interrogate the relationship between Wzz2 and alginate produc-
tion, we monitored Wzz2 expression in nonmucoid revertants of two mucoid CF
isolates (38). The mucoid phenotype is unstable, and these strains frequently revert to
nonmucoid in the laboratory (39). We hypothesized that loss of alginate production by

TABLE 1 Alginate produced by strains overexpressing wzz2

Strain
Inducer (0.4%
L-arabinose)

Alginate
(�g/ml) SD

Fold
change

PDO300 � 615.89 75.94
� 610.50 126.59 0.99

PDO300 pHERD20T � 706.99 142.33
� 555.00 210.39 0.79

PDO300 pHERD20T-wzz2 � 570.52 213.50
� 503.03 181.18 0.88

FIG 3 The wzz2 steady-state mRNA levels and promoter activity are repressed in PDO300. (A) qRT-PCR
to examine mRNA expression in PAO1 compared to PDO300. qPCR was performed using primers specific
to wzz2 and normalized to the housekeeping gene rpoD, which is known to be stably expressed (37). The
PAO1 wzz2 transposon mutant (PAO1 wzz2::Tn) was used as a negative control. (B) wzz2 was fused to a
promoterless lacZ containing an optimized ribosome-binding site (RBS) to make a transcriptional fusion.
This fusion was used to measure wzz2 promoter activity in each strain using �-galactosidase assays.
Significance for each experiment was determined using one-way ANOVA with Tukey’s multiple-
comparison analysis. Error bars represent SD from three biological replicates with technical triplicates. **,
P � 0.01; ***, P � 0.001; ns, not significant.
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a mucoid strain would restore Wzz2 expression. Importantly, isolation of nonmucoid
revertants also allows us to study the effect of alginate and Wzz2 regulation in isogenic
clinical isolates. We used Western blot analysis to compare Wzz2 production levels in
mucoid clinical isolates CFBRPA32 and CFBRPA43 as well as two isogenic nonmucoid
revertants of each. Each pair of nonmucoid revertants was obtained from the same
mucoid parental culture. Both pairs of nonmucoid revertants, nmr1 and nmr2, had
substantial increases in Wzz2 expression compared to each isogenic mucoid parental
strain (Fig. 4A).

Frequently, nonmucoid reversion results from inactivating mutations in the sigma
factor algT (30, 31, 40, 41). We sequenced algT in each nonmucoid revertant and
discovered that three of the four strains contained mutations in the algT coding
sequence. CFBRPA32nmr1 and nmr2 both had an in-frame duplication of bp 127 to 135
(GACGCCCAG). This results in insertion of amino acids DAQ. Since the two revertants
had the same mutation, this is likely a result of a single clone overtaking the entire
population early in passaging of this culture. CFBRPA43nmr1 had no mutations iden-
tified in the algT coding sequence, and therefore, a mutation upstream in the regula-
tory region or elsewhere in the chromosome resulted in nonmucoid reversion. Finally,
CFBRPA43nmr2 had a C-to-A transversion at nucleotide 245 of algT, resulting in a
threonine-to-asparagine change at amino acid 82. Both amino acids are polar and
uncharged. These data provide a connection between algT and the regulation of Wzz2.

Since clinical isolates are often LPS-rough (23, 24), whether nonmucoid reversion is
sufficient to restore very long O antigen expression remained unclear. Therefore, we
utilized PDO300, which can express O antigen, to determine if nonmucoid reversion
would restore very long O antigen production. We isolated a nonmucoid revertant of
PDO300, PDO300nmr1, by daily serial passaging in a static broth culture. Interestingly,
sequencing of algT in this nonmucoid revertant revealed the same duplication of bp
127 to 135 in algT as described for the CFBRPA32 nonmucoid revertants. We isolated
and separated LPS by SDS-PAGE and analyzed O antigen expression using serotype-
specific antibodies. As predicted, nonmucoid reversion of PDO300 restored very long O
antigen production and resulted in increased Wzz2 production compared to PDO300
(Fig. 4B).

Overexpression of algT results in less very long O antigen and decreased wzz2
promoter activity. To expand upon our observations that mutations in algT result in
increased Wzz2, we next sought to determine if overexpression of algT in trans would
decrease Wzz2 and very long O antigen. To do this, we overexpressed algT on
multicopy plasmid pHERD20T in PAO1, which usually does not express large amounts
of algT. We then compared the effects of uninduced and induced pHERD20T-algT in

FIG 4 Nonmucoid isolates of mucoid strains express more Wzz2 and very long O antigen. (A) Nonmucoid
revertants of mucoid CF isolates were isolated by daily passage in the laboratory. (B) PDO300nmr1 is a
nonmucoid revertant of PDO300. Western blotting was performed as described for Fig. 1. Abbreviations:
NM, nonmucoid; M, mucoid.
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PAO1 on Wzz2 and O antigen production. PAO1 grown without inducer and therefore
with low algT expression produced both Wzz2 and very long O antigen. In contrast,
when algT was induced with 0.4% arabinose, PAO1 produced no Wzz2 or very long O
antigen and looked strikingly similar to PDO300 (Fig. 5A).

We next investigated whether overexpression of algT would repress wzz2 promoter
activity. To test this, we cloned algT behind an IPTG-inducible promoter in a mini-Tn7T
plasmid and inserted this construct in single copy into PAO1 and PDO300nmr1 at the
Tn7 transposon insertion sites. When algT is overexpressed, nonmucoid strains become
mucoid (41, 42). We measured the amount of alginate produced by PAO1 and
PDO300nmr1 when algT was induced compared to when it was uninduced. PAO1
became mucoid when grown on inducer and produced a large 161.85-fold-increase in
alginate compared to when algT was uninduced (Table S1). In contrast, when we
quantified alginate production from PDO300nmr1 when algT was overexpressed, the
mucoid phenotype was slightly restored. However, there was no significant increase in
the amount of alginate that was made compared to that under uninduced conditions
(Table S1). Since AlgT is known to regulate its own transcription in a positive-feedback
loop (41, 43), we suspect that disrupting this autoregulation and only supplying algT in
single copy fails to promote alginate overexpression. It could also be possible that this
particular mutation in algT results in a dominant negative phenotype inactivating AlgT.

To measure wzz2 promoter activity when algT was overexpressed, we inserted the
wzz2 promoter-lacZ fusion at the CTX site of PAO1 and PDO300nmr1. Both strains
contain an IPTG-inducible copy of algT at the Tn7 site. First, we measured wzz2
promoter activity in PAO1 when algT was overexpressed. When algT was induced, PAO1
had a significant 18-fold decrease in wzz2 promoter activity compared to when algT
was uninduced (Fig. 5B). We also measured wzz2 promoter activity in PDO300nmr1
grown without inducer. When algT was uninduced, PDO300nmr1 had high levels of
wzz2 promoter activity (Fig. 5B). When PDO300nmr1 was grown on inducer to express
algT, wzz2 promoter activity was reduced 6-fold. Taken together, these data pinpoint
AlgT as the critical inverse regulator of alginate production and very long O antigen.

Overexpression of amrZ represses wzz2 promoter activity. When active, AlgT
transcribes the genes encoding three global transcriptional regulators: AlgB, AlgR, and
AmrZ (44–47). We reasoned that one of these regulators would be a likely candidate for
regulating wzz2 transcription. Published microarray data for AlgB and AlgR did not

FIG 5 Overexpression of algT results in less very long O antigen and decreased wzz2 promoter activity.
(A) Wzz2 and O antigen were monitored when algT coding was overexpressed using pHERD20T.
Uninduced (Unind) expression indicates growth without inducer, and induced (Ind) indicates growth in
0.4% L-arabinose. Western blotting was performed as described for Fig. 1. Abbreviations: NM, nonmucoid;
M, mucoid. (B) wzz2 promoter activity was monitored when algT was uninduced or induced using 1 mM
IPTG. �-Galactosidase assays were performed as described for Fig. 3B. Error bars represent SD from three
biological replicates with technical triplicates. Significance was determined using two-way ANOVA with
Sidak’s multiple-comparison analysis. ****, P � 0.0001.

Remodeling of O Antigen in Mucoid P. aeruginosa ®

January/February 2019 Volume 10 Issue 1 e02914-18 mbio.asm.org 7

https://mbio.asm.org


provide evidence that wzz2 was part of either regulon under the conditions tested
(48–50). On the other hand, published RNA-sequencing and ChIP-sequencing data by
Jones et al. provided evidence that, when amrZ is overexpressed in PAO1, AmrZ will
bind upstream of wzz2 and reduce wzz2 mRNA production (51). The predicted binding
site of AmrZ is CGATAGCATAATG at �88 to �75 nucleotides upstream of the wzz2 start
codon (51). In order to directly test whether AmrZ regulates wzz2 transcription initia-
tion, we reproduced an experiment similar to the one performed by Jones et al. by
overexpressing amrZ in PAO1 and then measuring wzz2 promoter activity. To do this,
we inserted the amrZ coding sequence downstream of an IPTG-inducible promoter and
inserted this construct at the Tn7 attachment site of PAO1. This strain (PAO1 Ptac-amrZ)
also contains the wzz2 promoter-lacZ fusion at the CTX site so that we can measure
wzz2 promoter activity when amrZ is being overexpressed. When amrZ expression is
induced in the PAO1 background, this strain background had 4-fold less wzz2 promoter
activity than under uninduced conditions (Fig. 6). This was comparable to wzz2 pro-
moter levels in the PDO300 background (PDO300 Ptac-amrZ), which were not altered
when amrZ was induced or uninduced.

Likewise, to determine if disruption of amrZ, in the context of a mucoid strain, would
alleviate repression of wzz2, we inserted the mucA22 allele from PDO300 into a PAO1
amrZ transposon mutant to generate PAO1 mucA22 amrZ::Tn. Inserting mucA22 into
PAO1 replicates the original construction of PDO300. We then assayed wzz2 promoter
activity in PAO1 mucA22 amrZ::Tn by inserting the wzz2 promoter-lacZ fusion at the CTX
site of this strain. Supporting our premise, when amrZ was inactivated and grown under
uninduced conditions, PAO1 mucA22 amrZ::Tn had about a 14-fold increase in wzz2
promoter activity over PDO300 (Fig. 6). We then complemented the amrZ defect by
providing amrZ in trans. When amrZ was overexpressed in PAO1 mucA22 amrZ::Tn, wzz2
promoter activity was reduced 3-fold, close to native PDO300 levels (Fig. 6). These data
validate AmrZ as a negative regulator of wzz2 promoter activity and therefore very long
O antigen in mucoid P. aeruginosa. We also tested whether overexpression of amrZ in
PAO1 mucA22 amrZ::Tn would complement this strain back to mucoid. When amrZ was
induced, this strain became mucoid and alginate production was increased almost
50-fold (Table 2). Although there was a large increase in alginate produced when amrZ
was induced, this was still 4 times less than the amount of alginate made by PDO300.
This was surprising since the two strains looked similarly mucoid when grown on agar
medium. As expected, overexpression of amrZ in PAO1 or PDO300 did not alter alginate
production of these strains; PAO1 remained nonmucoid and PDO300 remained mucoid.

Disruption of amrZ restores Wzz2 production in mucoid strains. We also wanted
to confirm that disruption of amrZ in the context of mucA22 would restore very long O

FIG 6 Overexpression of amrZ represses wzz2 promoter activity. wzz2 promoter activity was monitored
when amrZ expression was uninduced or induced using 1 mM IPTG. �-Galactosidase assays were
performed as described for Fig. 3B. The mucA22 allele was inserted into PAO1 amrZ::Tn, a transposon
mutant from the PAO1 library (68, 69), to generate PAO1 mucA22 amrZ::Tn. Error bars represent SD from
three biological replicates with technical triplicates. Significance was determined using two-way ANOVA
with Sidak’s multiple-comparison analysis. **, P � 0.01; ****, P � 0.0001; ns, not significant.
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antigen production. When protein and O antigen from PAO1 mucA22 amrZ::Tn were
visualized using Western blot analysis, both Wzz2 and very long O antigen were
restored to wild-type PAO1 levels (Fig. 7A). This supports our hypothesis that AmrZ also
regulates very long O antigen production. To confirm that this regulation is dependent
on mucA22, we measured O antigen in PAO1 amrZ::Tn. There is no difference in Wzz2
or very long O antigen when amrZ is disrupted in PAO1, which is expected since PAO1
does not characteristically produce high levels of amrZ (Fig. S2). This indicates that
AmrZ does not regulate very long O antigen in the absence of mucA disruption. Finally,
to support the finding that amrZ negatively regulates Wzz2 in our laboratory strains, we
also wanted to determine if deletion of amrZ in a mucoid clinical isolates would restore
Wzz2 production. Therefore, we tested Wzz2 levels in mucoid LPS-rough CF isolate
FRD1 and an isogenic FRD1 amrZ mutant (23, 39, 45, 52). Comparably to other mucoid
CF isolates, FRD1 does not produce detectable levels of Wzz2 (Fig. 7B). Deletion of amrZ
in FRD1, however, greatly increases Wzz2 production levels. Expression of Wzz2 in the
FRD1 amrZ mutant provides evidence that AmrZ inhibits Wzz2 expression in mucoid
clinical isolates as well.

DISCUSSION

P. aeruginosa isolates from chronic pulmonary infections exhibit unique character-
istics, collectively termed the “chronic infection phenotype,” compared to isolates from

TABLE 2 Alginate produced by strains overexpressing amrZ

Strain
Inducer
(1 mM IPTG)

Alginate
(�g/ml) SD

Fold
change

PAO1 Ptac-amrZ � BDa

� BD
PDO300 Ptac-amrZ � 184.75 23.10

� 187.28 37.76 1.01
PAO1 mucA22 amrZ::Tn Ptac-amrZ � 1.07 4.40

� 52.17 1.47 48.76
aBD, below detection.

FIG 7 Disruption of amrZ restores Wzz2 production in mucoid strains. (A) Wzz2 and very long O antigen
were monitored when amrZ was disrupted. (B) Mucoid LPS-rough clinical isolate FRD1 was originally
isolated from a person with CF (39), and nonmucoid FRD1 ΔamrZ contains a clean deletion of amrZ (52).
Western blotting was performed as described for Fig. 1. Abbreviations: NM, nonmucoid; M, mucoid.
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other types of infections (11). These strains are typically mucoid and nonmotile and
have an LPS-rough phenotype, defined as lacking the O antigen portion of LPS (11–15).
Mucoid conversion is well studied (53, 54), as is the mechanism responsible for the
nonmotile phenotype of chronic infection isolates (47, 55). On the other hand, little
progress has been made in understanding how O antigen and the LPS-rough pheno-
type are regulated in the context of a chronic infection.

To fill this gap in knowledge, we first focused our studies on LPS-smooth mucoid
laboratory strains in order to determine why O antigen production is altered in these
strains and to identify possible regulators of O antigen chain length. In concentrating
our studies on known transcription factors that are upregulated in mucoid strains, we
found that AmrZ, which is an activator of alginate biosynthesis and a repressor of
motility (47, 51, 55–57), negatively regulates wzz2 promoter activity and therefore very
long O antigen production (Fig. 6). From the data presented here, we can now build a
model for the regulation of very long O antigen in mucoid P. aeruginosa (Fig. 8).
Nonmucoid strains expressing wild-type mucA have little AlgT activity. Under these
conditions, the algT regulon, including the alginate biosynthesis operon, algB, algR, and
amrZ, are not transcribed. Because AmrZ is not produced, wzz2 transcription is high and
Wzz2 is free to mediate the assembly of very long O antigen. When algT expression is
induced or mucA acquires mutations, AlgT is unrestricted and amrZ expression is
induced. Overproduction of AmrZ represses wzz2 expression and results in loss of very
long O antigen chain lengths (Fig. 8).

While we are closer to understanding regulation of O antigen in mucoid P. aerugi-
nosa, there may be other factors responsible for regulating chain length in other
contexts. For example, McGroarty and Rivera reported that high temperatures, low
pH, or low concentrations of phosphate or high concentrations of NaCl, MgCl2,
glycerol, or sucrose resulted in decreased amounts of very long O antigen (58), but
whether these conditions affect expression of wzz2 has not been tested. Conse-
quently, no known transcriptional regulators of O antigen chain length have been
identified in nonmucoid P. aeruginosa. Conversely, temperature was shown to
regulate transcription of the O antigen gene cluster in Yersinia enterocolitica (59).
Additionally, the PmrA/B and Rcs systems were reported to directly regulate
transcription of wzz genes in Salmonella enterica serovar Typhimurium (59, 60).

FIG 8 Model for the inverse regulation of alginate and very long O antigen in mucoid P. aeruginosa. (Left) In
LPS-smooth nonmucoid P. aeruginosa, wild-type MucA sequesters the sigma factor AlgT, rendering it inactive.
When AlgT is inactive, the AlgT regulon, including AmrZ and the alginate operon, is not transcribed. Therefore,
wzz2 and very long O antigen are expressed. (Right) When MucA acquires mutations, such as mucA22, AlgT is free
to transcribe genes of its regulon. AmrZ now represses wzz2, resulting in loss of very long O antigen production.
Abbreviations: IM; inner membrane, OM; outer membrane.

Cross and Goldberg ®

January/February 2019 Volume 10 Issue 1 e02914-18 mbio.asm.org 10

https://mbio.asm.org


Ongoing experiments in our laboratory aim to unravel additional circuits that
regulate wzz expression in P. aeruginosa.

It is postulated that nonmucoid, mucoid, and nonmucoid revertant P. aeruginosa
strains coexist during infection (61). In a recent study, 54% of nonmucoid CF isolates
from 40 patients contained mucA mutations (62). Half of these also contained algT
mutations, leading the authors to classify these strains as nonmucoid revertants.
Surprisingly, the CFBRPA32 nonmucoid revertants and the PDO300 nonmucoid
revertant we isolated each had an in-frame duplication of bp 127 to 135. Candido
Caçador et al. also described a 9-bp insertion in this region (62). Sequence align-
ment of AlgT to Escherichia coli RpoE by Sautter et al., who also described mutations
in this area, predicted that this region is involved in promoter melting (31).
Mutations here may represent a hot spot for algT mutations that result in nonmu-
coid reversion.

Altogether, it appears that coordinating the overproduction of alginate with de-
creased Wzz2 and thereby very long O antigen is an important first step involved in
establishing the chronic phenotype and may represent an intermediate phenotype
between the transition from a nonmucoid LPS-smooth isolate to a mucoid LPS-
rough isolate. Importantly, we have shown that different serotypes regulate very
long O antigen through downregulation of Wzz2 (see Fig. S1 in the supplemental
material) and that independent clinical isolates also downregulate Wzz2 (Fig. 1B,
Fig. 4A, and Fig. 7B). Translating this across laboratory strains and CF isolates
strengthens the relevance of our findings. Unlike wzz1, which is serotype specific
and located at the beginning of the O antigen biosynthesis operon, wzz2 is highly
conserved among P. aeruginosa strains, and so having a regulatory circuit main-
tained within strains is not unexpected.

In support of this, nonmucoid strains of P. aeruginosa begin to express alginate
during initial colonization of the lung (63), implying that wzz2 and very long O antigen
are also likely being repressed at this time. Loss of O antigen regulation was also
observed for LPS-rough mucoid CF isolate 2192 (24). When the mutation respon-
sible for the LPS-rough phenotype was identified and complemented back in trans,
2192 produced low-molecular-weight O antigen but not high-molecular-weight O
antigen. This provides evidence that even mucoid LPS-smooth strains from CF still
do not make very long O antigen. Still, these strains are usually LPS-rough, so why
repress Wzz2? The benefit of regulating only Wzz2 and very long O antigen upon
mucoid conversion, when the LPS-rough phenotype is ultimately selected, remains
unexplained.

A long-term chronic P. aeruginosa infection model has not been established but
will be crucial to determine the benefits of the coregulation of alginate and very
long O antigen as well as the intermediate steps involved in the establishment of
an LPS-rough phenotype. Understanding the coordinated regulation between the
mucoid phenotype and O antigen expression will elucidate mechanisms that are
selected for during the establishment of a long-term infection. Interfering with the
expression of these chronic infection phenotypes and subsequent adaption of P.
aeruginosa to the CF lung environment could provide a better outcome for people
with CF.

MATERIALS AND METHODS
Bacterial strains and culture conditions. Escherichia coli DH5� and SM10 were maintained on

lysogeny broth (LB; Teknova) plates or in broth with or without 10 �g/ml tetracycline, 15 �g/ml
gentamicin, 100 �g/ml carbenicillin, or 30 �g/ml kanamycin, as appropriate. P. aeruginosa strains were
grown in LB medium or Vogel-Bonner minimal medium (VBMM) (64) supplemented with 100 �g/ml
tetracycline, 60 �g/ml gentamicin, or 300 �g/ml carbenicillin, where necessary. For allelic exchange, 15%
sucrose was used in no-salt LB plates (10 g/liter tryptone and 5 g/liter yeast extract). All plates were
supplemented with 1.5% agar (Apex). Strains were grown at 37°C, and all conjugations were performed
at 30°C as previously reported (65). Plasmids were transformed into electrocompetent PAO1 and
PDO300, as previously described (66, 67). A complete list of strains and plasmids is available in Table S2,
and a complete list of primers is available in Table S3. A detailed description of the construction of
plasmids can be found in Text S1 in the supplemental material.
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Mucoid to nonmucoid reversion. CFBRPA32 and CFBRPA43 nonmucoid revertants were isolated as
previously described (38). Passaging PDO300 in LB, without shaking, daily for 5 days isolated PDO300
nonmucoid revertant PDO300nmr1. Single-colony PCR using primers oAC221/oAC222 was used to
amplify algT, which was then column purified (Qiagen miniprep kit) and sent to Genewiz for sequencing
to identify algT mutations.

Construction of PAO1 mucA22 amrZ::Tn and PA14 mucA22. pEXG2-mucA22 was transformed into
chemically competent SM10 and then mated with PA14 or the PAO1 amrZ::Tn transposon mutant (68,
69) in a 3:1 ratio, according to the puddle-mating protocol described by Hmelo et al. (65). After patching,
single-colony PCR using primers oAC089/oAC090 was used to amplify mucA from gentamicin-sensitive
colonies. PCR-purified products were then sent to Genewiz for sequencing and verification that the
mucA22 allele had inserted into the strain.

Sample preparation and Western blot analysis. Exponential-phase bacterial cultures were nor-
malized to an OD600 of 0.5 in 1 ml and centrifuged at 12,000 � g for 2 min. The cell pellet was
resuspended in 50 �l of lysis solution (20 mM Tris, 1 mM EDTA, 10 mM MgCl2, 10 �g/ml DNase, 10 �g/ml
RNase, and 1� GoldBio ProBlock protease inhibitor) and incubated at 37°C for 15 min. Fifty microliters
of 2� Laemmli buffer (Bio-Rad) was added, the reaction mixture was boiled for 5 min, and LPS was
prepared as previously reported (70), but without organic extraction by stopping after the proteinase K
treatment. Proteins and LPS were separated by SDS-PAGE and transferred to a polyvinylidene difluoride
(PVDF) membrane (Bio-Rad). The membranes were blocked in PBS-T containing 5% instant nonfat dry
milk (Publix) and probed using specific polyclonal antibodies. Detailed sample preparation and Western
blot analysis can be found in Text S1 in the supplemental material.

qRT-PCR. Quantitative reverse transcriptase PCR (qRT-PCR) was performed as previously described
(16) with modifications described in Text S1 in the supplemental material.

�-Galactosidase assay. Reporter assays were performed as described previously by Miller (71) with
modifications (72).

Alginate isolation and quantification. Alginate was purified and quantified as described previously
(73) with modifications described in Text S1 in the supplemental material.

Statistical analysis. Data were analyzed using GraphPad Prism software (version 6). Experiments
were compared using one-way analysis of variance (ANOVA) with Tukey’s multiple comparisons analysis
or two-way ANOVA with Sidak’s multiple-comparison analysis. All data represent biological triplicate data
with technical replicates. Graphs show mean values, and error bars represent standard deviation (SD).
Significance is shown as follows: *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.

SUPPLEMENTAL MATERIAL
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.02914-18.
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