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Testing for Sufficient-Cause 
Interactions in Case-Control Studies 
of Non-Rare Diseases
Jui-Hsiang Lin & Wen-Chung Lee

Sufficient-cause interaction (also called mechanistic interaction or causal co-action) has received 
considerable attention recently. Two statistical tests, the ‘relative excess risk due to interaction’ (RERI) 
test and the ‘peril ratio index of synergy based on multiplicativity’ (PRISM) test, were developed 
specifically to test such an interaction in cohort studies. In addition, these two tests can be applied in 
case–control studies for rare diseases but are not valid for non-rare diseases. In this study, we proposed 
a method to incorporate the information of disease prevalence to estimate the perils of particular 
diseases. Moreover, we adopted the PRISM test to assess the sufficient-cause interaction in case–
control studies for non-rare diseases. The Monte Carlo simulation showed that our proposed method 
can maintain reasonably accurate type I error rates in all situations. Its powers are comparable to the 
odds-scale PRISM test and far greater than the risk-scale RERI test and the odds-scale RERI test. In light 
of its desirable statistical properties, we recommend using the proposed method to test for sufficient-
cause interactions between two binary exposures in case–control studies.

The assessment of interactions is a critical issue in epidemiology. Recently, a particular kind of interaction, the 
sufficient-cause interaction (also called mechanistic interaction or causal co-action), has received much atten-
tion1. Two statistical tests, the ‘relative excess risk due to interaction’ (RERI) test1–5 and the ‘peril ratio index of 
synergy based on multiplicativity’ (PRISM) test6, were developed specifically to test such an interaction. A RERI 
test is based on risk additivity, and a PRISM test is based on log peril additivity, where peril is defined to be the 
inverse of a survival. Risks and perils should be estimated in a cohort study; therefore, both tests are to be used 
in such a study.

Previously, Lee6,7 and Lin and Lee8 mentioned that risks and log perils can be approximated by odds ratios 
under the rare-disease assumption. The above two tests then become a RERI test on the odds ratio scale, and 
therefore can be used in a case–control study6–11. (Odds ratios are readily estimable in a case–control study.) 
However, the approximation would break down for non-rare diseases. Lin and Lee8 showed that risks and per-
ils cannot be estimated in case–control studies unless the sampling fractions of cases and controls are known; 
however, researchers rarely have this information. At present, neither RERI nor PRISM tests can be valid for 
sufficient-cause interaction in case–control studies for non-rare diseases6–11.

In this study, we proposed a method to incorporate the information of disease prevalence to estimate dis-
ease perils. Then, we adopted a PRISM test to assess the sufficient-cause interaction in a case–control study for 
non-rare diseases6. We examined the statistical properties of the proposed method using a Monte Carlo simula-
tion and demonstrated its use on real data.

Method
We evaluated the sufficient-cause interaction between two binary exposures (X and Z) and a binary outcome. In 
a cohort study of a population within a certain time interval, T(0, ), we used a PRISM test to assess the 
sufficient-cause interaction proposed by Lee6. Here, we used the same notations as in the previous studies6–8. For 
people in the population with exposure profiles of X x=  and =Z z for ∈x z, {0, 1}, Riskx z,  denoted the disease 
risk in T(0, ); Oddsx z, , the disease odds in T(0, ); and Peril (1 Risk )x z x z, ,

1= − − , the disease peril in T(0, ). We 
calculated = − − +logPRISM logPeril logPeril logPeril logPeril1,1 1,0 0,1 0,0, and sufficient-cause interactions 
were declared when logPRISM was statistically different from zero6.
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Assuming that a case–control study recruited a total of N1 cases and N0 controls, qx z,ˆ  denoted the sample pro-
portion of subjects with an exposure profile of X x=  and =Z z recruited in the case group and r̂x z,  in the control 
group. Because disease perils cannot be estimated in a case–control study, a PRISM test cannot be applied directly 
in such a study6–8. Therefore, we proposed a method to estimate disease perils in a case–control study. First, we 
required an estimate of the overall disease prevalence ˆ =p D

N
 of the study population from vital statistics, where 

N  denoted the population size and D denoted the total number of the diseased subjects. According to Bayes’ the-
orem1,12–14, we could then estimate the log perils as ˆ
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Note that here an estimate of the overall disease prevalence (p̂) suffices. There is no need to further obtain sex, age, 
or exposure profile-specific disease prevalence.

Next, we calculate
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The PRISM test is a Z-test: 



=Z logPRISM

Var(logPRISM)
, where Var(logPRISM) is detailed in S1 Exhibit. Sufficient-cause 

interactions can be declared when the test statistics Z  is in the rejection region (for the null hypothesis of no 
sufficient-cause interaction). R code (S2 Exhibit) and SAS code (S3 Exhibit) are provided for all computations.

Simulation studies.  A Monte Carlo simulation was conducted to evaluate the proposed method. We 
assumed that in the study population, the prevalence values of both X and Z were 0.5, the relative risk for X was 
RR 31,0 =  and the relative risk for Z was =RR 20,1 , where =RRx z,

Risk
Risk

x z,

0,0
. We considered different sample sizes 

and assumed that a case–control study recruited 500 cases and 500 controls (Panel A in Fig. 1, and Panels A and 
D in Fig. 2), 1000 cases and 1000 controls (Panel B in Fig. 1, and Panels B and E in Fig. 2), and 5000 cases and 5000 
controls (Panel C in Fig. 1, and Panels C and F in Fig. 2), respectively. We checked the type I error rate under the 
null hypothesis of no sufficient-cause interaction (PRISM 1= ) when the disease prevalence was 0.01, 0.02, 0.05, 
0.1, 0.2, 0.3, 0.4, and 0.5, respectively. We examined the powers under the alternative hypothesis, respectively, 
when the disease prevalence was 0.02 ( = .PRISM 1 0155, .1 0109, and .1 0048, for Panels A, B, and C in Fig. 2, 
respectively) and when it was 0.2 (PRISM 1 1710= . , 1 1172. , and 1 0500.  for Panels D, E, and F in Fig. 2, respec-
tively). We assumed that the estimates of the disease prevalence were derived from the vital statistics with the 
population size N 106= . A total of 10,000 simulations were performed for each scenario. The level of significance 
was set at 0 05α = . .

For comparison, we also performed a risk-scale RERI test, an odds-scale RERI test, and an odds-scale PRISM 
test. For the risk-scale RERI test, we incorporated p̂ from vital statistics to the case–control study to estimate the 

Figure 1.  Type I error rates under the null hypothesis of no sufficient-cause interaction: 500 cases and 500 
controls (A), 1000 cases and 1000 controls (B), and 5000 cases and 5000 controls (C). Solid lines are the type I 
error rates for the proposed method, dashed lines, those for the risk-scale RERI test, dotted lines, those for the 
odds-scale RERI test, and dashdotted lines, those for the odds-scale PRISM test.



www.nature.com/scientificreports/

3SCIENTIfIC Reports |  (2018) 8:9274  | DOI:10.1038/s41598-018-27660-2

disease risks necessary for calculating RERI, similar to what we did to estimate the disease perils necessary for 
calculating PRISM (more details in S4 Exhibit). Both the odds-scale RERI test and the odds-scale PRISM test are 
the approximation mentioned in the previous studies6–11. For the odds-scale RERI test, we used odds ratios to 
approximate relative risks7–9. For the odds-scale PRISM test, we used the approximation6–8:

≈ − − + .logPRISM Odds Odds Odds Odds1,1 1,0 0,1 0,0

Figure 1 shows the type I error rates. For the proposed method, the type I error rates are very close to the 
nominal α level for all scenarios. For the odds-scale PRISM test, type I error rates are stable at 0.05 at low disease 
prevalence but are inflated when the disease prevalence is greater than 0.2. With a larger sample size, the type I 
error rates for the odds-scale PRISM test are inflated even at low disease prevalence values. By contrast, the 
risk-scale RERI test is a very conservative test with extremely small type I error rates. As for the odds-scale RERI 
test, its type I error rates are small at low disease prevalence values but can become inflated when the disease 
prevalence is greater than 0.4.

Figure 2 shows the simulation results of the powers. The powers of the proposed method reached more than 
80% in all scenarios. The powers of the odds-scale PRISM test are comparable to (when the disease prevalence is 
0.02) and greater than (when the disease prevalence is greater than 0.2) those of the proposed method. However, 
we should note that the type I error rates of the odds-scale PRISM test are inflated when the disease prevalence 
is 0.2. The risk-scale RERI test and the odds-scale RERI test are much less powered compared with the proposed 
method. Table 1 summarized the comparative results of four methods.

The proposed method also reveals the desirable statistical properties in further simulation with unbalanced 
sample sizes between the case and control groups and unequal prevalence between two exposures.

An Example.  We used Tong et al.’s15 case–control data on essential hypertension to demonstrate our method. 
The case–control study assessed the effects of A1166C site of AT1R gene polymorphism (AC+CC versus AA gen-
otypes) and noise exposure (≥85dB versus <85 dB) on essential hypertension (see Table 2). Based on a multiplica-
tive model, Tong et al.15 concluded that gene-noise multiplicative interaction may play a role for essential 
hypertension.

To use our method, we need an estimate of disease prevalence for the study population. Tong et al. mentioned 
in their paper15 that the hypertension prevalence is 25.2% with a population size of 100,000. With this informa-
tion and using the method presented in this paper, we calculated the log perils for the four exposure profile 

Figure 2.  The powers under the alternative hypothesis, respectively, when the disease prevalence is 0.02 (upper 
panel) and when it is 0.2 (lower panel): 500 cases and 500 controls (A,D), 1000 cases and 1000 controls (B,E), 
and 5000 cases and 5000 controls (C,F).
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(Table 2). For this example, the logPRISM is 0.121 with a 95% confidence intervals of ( 0 214, 0 456)− . .  and a P 
value of 0.478. We therefore conclude that there is no gene-noise sufficient-cause interaction on essential 
hypertension.

Discussion
We proposed a method to incorporate information regarding disease prevalence to estimate disease perils, and 
then adopted a PRISM test to assess the sufficient-cause interaction in a case–control study. In our method, only 
the disease prevalence of the population at large is required ( p̂) and not the detailed sex, age, or exposure 
profile-specific prevalence; the overall prevalence is readily available from vital statistics or previously published 
studies. For non-rare diseases, we showed that the odds-scale RERI test and the odds-scale PRISM test (where 
risks and log perils are approximated by odds directly) tend to become too liberal. Furthermore, we showed that 
the external information (regarding the overall disease prevalence) need not be exact (S5 Exhibit). Researchers 
can comfortably apply the disease prevalence estimated from a study with sample size as small as 1000 without 
excessively impairing the power. For rare diseases, the odds-scale PRISM test is comparable to the proposed 
method; however, it is not applicable (the approximation breaks down) at lower prevalence with a larger sample 
size. We recommended using the proposed method for its reliable performance in all situations.

In a case–control study, the odds ratio is readily estimable to admit inferences about exposure–disease asso-
ciations. Inferences can also be made using the risk ratio scale by invoking the rare-disease assumption.1 For 
non-rare diseases, Cornfield and other researchers12–14 noted that if an estimate of the disease prevalence of the 
study population at large is available, then absolute disease risks/odds for each exposure profile can be estimated. 
We followed Cornfield’s logic to incorporate the overall disease prevalence to estimate absolute disease risks/
perils for each exposure profile. Therefore, the proposed method can be valid in assessing sufficient-cause inter-
action in case–control studies for non-rare diseases. Also, it can maintain reasonably accurate type I error rates. 
Its powers are comparable to those of the odds-scale PRISM test and far greater than those of the risk-scale RERI 
test and the odds-scale RERI test.

In conclusion, in light of its desirable statistical properties, we recommend using the proposed method to test 
for sufficient-cause interactions between two binary exposures in case–control studies. Further work is warranted 
to cast the proposed method in a general regression framework.
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rate
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all scenarios.

Extremely small, very 
conservative test.

Small at low disease prevalence 
values, but inflated when the disease 
prevalence is greater than 0.4.

Stable at 0.05 at low disease prevalence, 
but inflated even at low disease prevalence 
values with larger sample sizes.

Power
Reached more 
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Much less powered compared with 
the proposed method
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(when the disease prevalence is greater 
than 0.2) those of the proposed method.
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AA <85 dB 117 319 0.221

Table 2.  Testing for sufficient-cause interaction in a case–control study on essential hypertension. 
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