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A B S T R A C T   

Pork floss is a traditional Chinese food with a long history. Nowadays, pork floss is known to consumers as a 
leisure food. It is made from pork through a unique process in which the muscle fibers become flaky or granular 
and tangled. In this study, a deep learning-based approach is proposed to detect the quality characteristics of 
pork floss structure. Describe that the experiments were conducted using widely recognized brands of pork floss 
available in the grocery market, omitting the use of abbreviations. A total of 8000 images of eight commercially 
available pork flosses were collected and processed using sharpening, image gray coloring, real-time shading 
correction, and binarization. After the machine learning model learned the features of the pork floss, the images 
were labeled using a manual mask. The coupling of residual enhancement mask and region-based convolutional 
neural network (CRE-MRCNN) based deep learning framework was used to segment the images. The results 
showed that CRE-MRCNN could be used to identify the knot features and pore features of different brands of pork 
floss to evaluate their quality. The combined results of the models based on the sensory tests and machine vision 
showed that the pork floss from TC was the best, followed by YJJ, DD and HQ. This also shows the potential of 
machine vision to help people recognize the quality characteristics of pork floss structure.   

1. Introduction 

Pork floss (Zhu Rou Song) has been a traditional food in China for 
hundreds of years (Wang et al., 2023). At present, it is well-known to 
Chinese consumers because it is a leisure food that can be found 
everywhere. It is a kind of meat product made of fresh lean meat, which 
is formed into flakes or muscle fiber bundles through several processes 
such as pretreatment, cooking, beating, seasoning and frying. The re-
quirements for high-quality pork floss are flocculent, soft, and fluffy fi-
bers, with a few knots allowed (Chinese Standards, 2009). The 
“fluffiness” of meat floss is mainly reflected in the porous medium 
(porous structure) formed by the random arrangement of protein fibers, 

which is mainly composed of protein fibers and air (Li et al., 2021). This 
fluffy and porous structure is also a unique structural feature of pork 
floss (Li et al., 2021). The pore structure is the characteristic feature of 
porous media, but also the form of the existence of porous media. In 
general, the pores of porous media are arranged in an irregular 
two-dimensional network (Esser et al., 2021). The knots are the 
unloosened part of the muscle fiber. High temperatures and tossing 
cause varying degrees of loosening of muscle bundles and myogenic fi-
bers of pork during roasting. However, uneven panning or high tem-
peratures cause the myogenic fibers to form unopened tangles. The 
presence of knots affects the fluffiness of pork floss. Pore size, pore 
number, and pore distribution are general characteristics obtained from 
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the pore structure of porous media (Münch and Holzer, 2010; Fu et al., 
2021). The total knots area, the total circumference of knots, and the 
number of knots were extracted from the knot features based on the 
degree of looseness of muscle fibers. The pore and knot characteristics 
are closely related to the mechanical properties, which are important for 
sensory quality of pork floss, characterization of pork floss and quality 
evaluation. 

In recent years, machine vision-based image processing methods 
have been widely used for visual food quality assessment (Li et al., 2018; 
Taheri-Garavand, Fatahi, Shahbazi and de la Guardia, 2019). In contrast 
to traditional food structure evaluation by sensory assessors, machine 
vision can determine information about color, texture, shape, and other 
food structure characteristics more quickly and accurately, and can 
quantitatively analyze this feature information (Taheri-Garavand et al., 
2019a,b). 

The Convolutional Neural Network (CNN) is a deep learning method 
with hierarchical feature learning capability that has made a significant 
breakthrough in image analysis (Ali et al., 2014; Lecun et al., 2015). 
Meanwhile, image segmentation methods based on neural network 
techniques are receiving increasing attention and improved algorithms, 
such as Fast R–CNN (Girshick, 2015), Mask R–CNN (He et al., 2017), 
which achieve better and faster results than typical CNNs in object 
recognition. Based on Mask R–CNN, a new image segmentation algo-
rithm, Coupling Residual Enhancement-Mask Region CNN 
(CRE-MRCNN), is proposed in this study. 

Therefore, the first objective of this study was that CRE-MRCNN was 
applied to images of commercial pork floss. Image segmentation was 
used to extract knot features and pore features from commercial pork 
floss to evaluate quality. The second objective was to develop a machine 
vision-oriented evaluation model with a higher weighting of machine 
vision judgment and a sensory test-oriented evaluation model with a 
higher weighting of sensory characteristics judgment to evaluate and 
rank selected commercially available pork floss based on a gradient 
descent algorithm. 

2. Materials and methods 

2.1. Experimental samples 

The eight most common and widely sold brands of pork floss in the 

grocery market were investigated, labeled as DD, HQ, LYW, MZX, SS, 
TC, WSM, and YJJ. They were purchased from the Jingdong online 
shopping mall (Jingdong.com), Taobao online shopping mall (Taobao. 
com), and RT-Mart supermarket in Jinzhou, Liaoning. The total 
amount of each brand was 5.5 kg. 

2.2. Deep learning-based framework for pork floss structure recognition 

The specifics and process of the deep learning framework for iden-
tifying the structural features of pork flosses are described. Fig. 1 illus-
trates the overall process of the proposed deep learning-based 
framework, including the following steps: data acquisition, data pre- 
processing, deep learning architecture creation, and result analysis. 
The dataset is obtained from the image acquisition and image pre-
processing steps. Subsequently, the CRE-MRCNN model was used to 
identify the structure of eight brands of pork flosses from the dataset and 
compared with several other models. Finally, the image segmentation 
structures were evaluated as well as extracting features of the pork 
flosses, including knot features and pore features of the pork flosses. 
Detailed information is described in the following sections. 

2.2.1. Image acquisition 
So that the pork floss is evenly distributed in the cylindrical shape, 

the three-dimensional structure of the pork floss is fully restored, and the 
porous structure of the pork floss is better expressed. As shown in Fig. 2, 
10 g of pork floss of each brand was weighed and uniformly shaken into 
a cylindrical mold with a diameter of 10 cm and a height of 5 cm until 
the mold was filled. The mold was placed on the sample support plate, 
which was directly below the center of the ring-shaped shadowless lamp 
and lens. To obtain the maximum pore structure of the pork floss, the 
light intensity of the shadowless ring lamp must be adjusted. The digital 
image signal of the pork floss was captured by the CDD industrial 
camera, transferred to the computer via the Ethernet port, and the 
captured images were stored and analyzed in PNG format using the 
image processing system KV-X (Suzhou Kelvis Automation Technology 
Co., Ltd., Suzhou, Jiangsu). The pixel size of the RGB images captured by 
the CCD camera was 2448 pixels (W) × 2048 pixels (H) with a bit depth 
of 24. 

Fig. 1. Overview of the deep learning-based framework.  

C. Shen et al.                                                                                                                                                                                                                                    

http://Jingdong.com
http://Taobao.com
http://Taobao.com


Current Research in Food Science 7 (2023) 100587

3

2.2.2. Image pre-processing 
The core technology of machine vision mainly refers to image pro-

cessing and analysis. Image processing consists of a series of image 

operations that improve image quality to eliminate image errors caused 
by, for example, geometric distortion, improper focusing, repetitive 
noise, uneven illumination, and camera motion. Image analysis is the 

Fig. 2. Construction of computer vision system.  

Fig. 3. Pork floss image pre-processing. (a) Sharpened image; (b) grayscale image; (c) image of real-time shading correction; (d) histogram of the sharpened image; 
(e) histogram of the grayscale image; (f) histogram of the real-time shading correction image; (g) binarization-processed image. 
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process of identifying the target (That is, the ROI portion of the selected) 
against the background and generating quantitative information that is 
used for subsequent control system decisions (Zhang et al., 2020). Due to 
the low and indistinguishable gray scale contrast between some knots 
and the non-knots part of the pork floss in the original images, it was 
necessary to sharpen all images of pork floss captured by the CCD in-
dustrial camera. 

The ROI regions of the sharpened images were intercepted with five 
random image regions of 900 pixels × 900 pixels on the left, right, top, 
bottom and center of the images. 500 original images of each mark were 
collected. After intercepting ROI, 1000 images were collected for each 
brand, so that a total of 8000 images were collected for eight brands of 
pork floss. As a representation of color features in images, histograms 
are commonly used to express the information distribution of pixel in-
tensities in digital images (Javadi et al., 2020). In an image, each pixel 
contains three groups of information, namely the R value, the G value, 
and the B value. The RGB values of the sharpened pork floss image 
(Fig. 3a) were extracted using machine vision, and the information ob-
tained about the intensity of the pixels was plotted using a histogram 
(Fig. 3d). The pixel values of the image range from 0 to 255, the hori-
zontal axis represents the change in dimension or hue and the vertical 
axis represents the total number of pixels in the image. 

Converting multi-channel RGB color images containing luminance 
and color to a single-channel grayscale image is important to improve 
contrast between target and background information, increase effi-
ciency, and make the computation. The grayscale image obtained by 
processing grayscale images is also called a monochrome image. The 
effect of converting a multi-channel RGB color image into a single- 
channel gray image is shown in Fig. 3b. After detection by machine 
vision, the histogram of the grayscale image has only one color because 
the R value of the processed grayscale image is equal to the G and B 
values, i.e., R =G = B (Fig. 3e). The histogram of the grayed-out image is 
mainly concentrated in the range of 30–200. Since pork floss is fila-
mentous, the images captured by the industrial camera are affected by 
non-uniform illumination and non-uniform reflections on the product 
surface. The images of pork floss are also difficult to be processed by the 
image processing software due to the uneven illumination, which results 
in the contrast of the local or global information in the processed gray 
scale images not being clear enough. 

Differentiation of the imputed background image is performed using 
real-time shading correction to eliminate shadows in the variable 
background and retain only those areas with abrupt contrast changes. 
The specific operations were: Reducing the original image and then 
filtering the reduced image; Restoring the filtered image to its original 
size; and differentiating the original image and the filtered reduced 
image. The real-time shading correction algorithm was applied to 
remove the background shadows while preserving the defects. This 
solved the problems of uneven illumination and inconsistent reflections 
on the product surface during photo capture caused by the filamentous 
structure of pork floss. Real-time shading correction can remove back-
ground shadows by preserving areas with abrupt contrast changes, as 
shown in Fig. 3c. The gray levels of the histogram of the image with pork 
floss after shading correction achieve an “approximately” balanced 
distribution in the range of 0–255 (Fig. 3f). This achieved the purpose of 
increasing the contrast between the foreground and background and 
highlighting the texture of the pork floss. This is because the process of 
real-time shading correction increases the overall contrast of the image 
and makes it possible to preserve the local details of the image. 

The basic principle of converting a grayscale image into a binarized 
image is to take only two values of the grayscale values of the image 
pixel points to achieve the effect of a black and white image. Inter-mode 
as a global binarization method is based on the assumption that the 
histogram is a bimodal pattern histogram. The histogram is smoothed 
and filtered several times until only the two largest peaks J and K 
remain, then the threshold value is T = (J + K)/2. According to the 
practical needs, the system uses the inter-modes method of the global 

binarization method to binarize the shadow corrected image and sepa-
rate the pores from the background. White is used as the background and 
black is the pore area. The clarity of the image with the distribution of 
pork floss features depends on the effect of image binarization. There-
fore, the image subjected to real-time shading correction should be 
subsequently processed using binarization to obtain the feature distri-
bution of pork floss. As shown in Fig. 3g, the binarized image extracted 
the pork floss region from the background area, eliminated shadows and 
background noise, better preserved the pork floss structure, and iden-
tified the pork floss pores. 

2.2.3. Image labeling 
The knots of pork floss are an important component of quality 

characteristics assessment. Since the pork floss image dataset in this 
work does not have corresponding segmentation labels for the knots, the 
images without labels cannot be trained for the network. Therefore, a 
small segmentation dataset must be created for training by first manu-
ally masking the images for labeling. Knots are the unloosened part of 
muscle fibers that tend to form clumps, resulting in the computer vision 
systems not being able to easily identify the parts with and without 
knots. This requires a manually defined description of the knots. Knots 
should be defined as the unloosened, clumped portion of muscle fibers 
and tendon fragments. Knots of pork floss are irregular objects that were 
finely labeled using polygon frames to generate a JSON file containing 
the image labeling information, including the position coordinates of the 
target knot (the position of the pixel of the target object), the category 
label of the target object, and the image size information. The labeled 
pork floss of each mark contained 400 images each with a pixel size of 
900 × 900. The whole image set was divided into training and testing 
sets: 80% for training and 20% for testing. The training set consisted of 
2560 randomly selected images and the test set consisted of 640 
randomly selected images. 

2.2.4. CRE-MRCNN framework construction 
Mask Region-based Convolutional Neural Network (Mask R–CNN) is 

a Deep Learning-based model for target recognition and semantic seg-
mentation, which is an extended version of the Faster Region-based 
Convolution Neural Networks (Faster R–CNN) model proposed by Ren 
et al. (2017). Compared to Faster R–CNN, Mask R–CNN not only detects 
objects in an image, but also generates a binary segmentation map for 
each object, which is used to represent the exact position of the object. 
The Mask R–CNN model consists of three main components: a feature 
extraction network, a region proposal network (RPN), and a target 
detection branch. The feature extraction network typically uses a 
pre-trained convolutional neural network such as ResNet to extract 
features from the image, and the RPN is used to generate candidate 
regions and perform classification and regression on these candidate 
regions to determine the final recognition results. The target recognition 
branch then classifies and regresses each candidate region and generates 
a binary segmentation map for each region. The model produces a 
segmentation of the target pork floss image that matches the size and 
shape of the target node. The final detection and results are combined to 
obtain 1 segmented image that contains the target node class and 
matches the size and shape of the target node. 

Meanwhile, in this study, a new semantic segmentation algorithm, 
Coupling Residual Enhancement-Mask Region CNN (CRE-MRCNN) is 
proposed. To address the unique challenges posed by burnt regions and 
knot regions in pork floss images, this model combines multiple strate-
gies, including contextual matching, data augmentation, and specialized 
region analysis, with the aim of better adapting to the distinctive char-
acteristics of pork floss images. We simulated real industrial production 
conditions to obtain more representative training data. By incorporating 
data augmentation techniques, we successfully enhanced image quality, 
enabling the model to handle color, texture, and other variability factors 
more effectively. In terms of details, as shown in Fig. 4, the CRE-MRCNN 
model consists of four major components: encoding, binarization 
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intervention, decoding, and feature fusion.  

1). The Encoding component comprises five convolutional layers, 
starting from input data of size 512 × 512 × 3. Each layer in-
volves a 3 × 3 convolutional kernel, with several convolutional 
filters equal to 64 multiplied by the current layer index, followed 
by 2 × 2 Max Pooling. This process continues until the Encoding 
component outputs a feature map of size 16 × 16 × 1024.  

2). The Binarization Intervention process includes a convolutional 
layer and a concatenation layer. The convolutional layer pro-
cesses the binarized image using an 8 × 8 convolutional kernel, 
stride of 8, and 1024 convolutional filters. After a subsequent 4 ×
4 Max Pooling, the resulting feature map matches the size of the 
output from the Encoding component. It is then concatenated 
along the channel axis to yield a 16 × 16 × 2048 feature map. 

3). The Decoding component consists of two sets of four-layer con-
volutional neural networks, with the same number of convolu-
tional filters as in the encoder. However, these networks utilize 
dilated convolutions with a dilation rate of 2.  

4). The Feature Fusion part involves two pathways. One pathway 
converts the 16 × 16 × 1024 feature map into a one-dimensional 
feature vector, which is then passed through a fully connected 
neural network with the same number of neurons, followed by 
logistic regression. The reshaped result forms a 512 × 512 × 1 
mask feature map. The second pathway stretches the 32 × 32 ×
1024 feature map into a one-dimensional feature vector, which 
then undergoes residual computation through four 1D CNNs 
before being processed by an Attention mechanism. This pathway 
also results in a reshaped 512 × 512 × 1 mask feature map. Ul-
timately, the two feature maps are element-wise summed to 
obtain the final segmentation result. 

CRE-MRCNN combines the strengths of Mask R–CNN and Faster 
R–CNN, autonomously identifying regions of interest and generating 
pixel-level precise segmentation results. This has enabled us to achieve 
higher accuracy and reliability in the detection and segmentation tasks 
for fibers structure of pork floss. 

A comparative study was conducted to examine the performance of 
CRE-MRCNN compared to other methods in pork floss of structure 
identification and extracted feature. As Faster R–CNN (Ren et al., 2017), 
U-Net++ (Zhou et al., 2018), UNet 3+ (Huang et al., 2020), Mask 
R–CNN (He et al., 2017), and Cascade Mask R–CNN (Cai and Vascon-
celos, 2021), are commonly chosen in the study of segmenting images, 
they are selected for this experiment. 

2.2.5. Implementation details 
In this study, we used image patch size of 512 × 512 × 3 and 

binarized image size of 512 × 512 × 1. Following AutoML-based 
hyperparameter tuning, the optimal configuration is as follows: batch 
size of 32, Mask confidence threshold of 0.74, learning rate of 1e-4, 
activation function of LeakyReLU with a leakage coefficient of 0.2, the 
loss function of Dice with equal weights for all losses, the optimization 
function of Adam with β coefficients (0.479, 0.999). All models were 
trained for 200 epochs and tested on Ubuntu 20.04, using a NVIDIA 
Tesla V100. 

2.2.6. Image segmentation evaluation 
To quantitatively analyze the effect of intersection segmentation, the 

commonly used metric for evaluating image segmentation, Intersection 
over Union (IoU), is used to evaluate intersection. IoU is a metric that 
visualizes the area of overlap between predicted image A and calibration 
image B. It is used to evaluate the overlap between two rectangular 
images (Song et al., 2021). The output of each image and its true edge 
IoU are given by using CRE-MRCNN for the segmentation of 640 samples 
of each brand pork floss for knot segmentation, and further the obtained 
IoU values of each image are re-averaged as the overall segmentation 
accuracy of the model, the IoU coefficients are calculated as shown in 
equation (1): 

IoU =
Spred ∗ Sgt(

Spred + Sgt
)
− Spred ∗ Sgt

(1)  

where Spred is the region of the segmentation result and Sgt is the 
manually labeled region. 

The IoU coefficient is used to quantify the degree of identity between 
finite sample sets. The higher the coefficient, the more similar the seg-
mentation result and the corresponding marked true result are. 

2.2.7. Pork floss feature extraction 
Knot and pore characteristics are a relatively common method for 

evaluating the microstructure of pork floss. The pork floss image was 
segmented using the CRE-MRCNN model to produce a series of 
branches, all of which were binary images of the pork floss knots 
detected in the original image. Thus, if there is an H × W × 3 image of 
knots in which n knots are detected, the CRE-MRCNN segmentation 
generates a branch that produces an H × W × n image. Each pixel point 
in this image takes the value 0 or 1. If the value is 1, it means that the 
point is in the region of pork floss knots; otherwise, it means that the 
point is a pixel point that forms the background. To realize the con-
version between pixels and standard-length units, 19.4 pixels = 1 mm 

Fig. 4. CRE-MRCNN model framework.  
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was calculated. The perimeter, area, average area and number were 
calculated for the segmented image of the segmented knots. 

The pore features of pork floss, including porosity, number of pores, 
average pore area, and pore size distribution, were extracted using the 
CRE-MRCNN model for binarized image segmentation. The size of the 
feature values was calculated in mm2, and 19.4 pixels = 1 mm. The 
coefficient of variation is a measure of the degree of representativeness 
of the mean and a measure of the dispersion of the distribution of 
response variables and the balance of the evolution of things. The ho-
mogeneity of the pore distribution on the same image was evaluated by 
performing a coefficient of variation analysis for five randomly inter-
cepted pore data with the same area size on the same image (Shenoy 
et al., 2015). Repeatability of pore data was also evaluated by per-
forming an analysis of the coefficient of variation for pore data from ten 
image sets of the same brand of pork floss. 

2.3. Sensory testing 

Sensory analyzes were performed according to the procedures 
described by Shen et al. (2023) and Cai et al. (2021). A total of 30 
sensory assessors underwent an initial screening process (including 
matching and ranking tests) and nine training sessions on descriptors 
and methods specific to pork floss, followed by selection of a final group 
of 19 consumers who consume pork floss at least once per week as as-
sessors (9 men and 10 women). After discussion with the group mem-
bers, the following descriptors of the quality characteristics of the pork 
floss were established: (1) knot size is defined as the size of the unloose 
part of the muscle fiber and tendon fragments of the pork floss; (2) 
fluffiness: the degree to which the finished pork floss is soft and fluffy 
like cotton in its natural state; (3) thickness: the thickness of the muscle 
fiber in the finished pork floss; (4) uniformity: the uniform distribution 
of tissues of the finished pork floss; (5) coarseness: the unevenness of the 
muscle fiber surface of the pork floss; (6) hardness: the degree of hard-
ness of the muscle fiber of the finished pork floss; (7) color consistency: 
the finished pork floss is golden yellow, and there is no color difference 
in the distribution of the pork floss that can be seen by the naked eye; (8) 
intactness: the pork floss is fluffy, complete into a lump, and has no 
powder; (9) liking: the comprehensive liking of pork floss. The strength 
of each attribute was rated on a linear (unstructured) scale of 10 cm, 
with “none” on the left and “strong” on the right. Samples of pork floss of 
each brand were provided to the trained panelists in five sessions, and 
the sessions consisted of eight rounds of observations. 10 g of pork floss 
from different brands were shaken in 200 mL sensory cups, and each 
sensory cup was randomly labeled with three numbers. Five sensory 
evaluations were conducted for each brand of pork floss, three replicates 
of pork floss in each brand were provided for each session, and the re-
sults were statistically analyzed. 

2.4. Comprehensive evaluation model 

Weight is a numerical value used to measure the extent of the role of 
each marker value in the total and is indicative of the importance of an 
indicator item in the indicator item system. Similarly, it indicates how a 
change in that indicator term affects the results when the associated 
baseline indicator term does not change. It is necessary to establish a 
comprehensive quality characteristics evaluation system based on the 
pore and knot index system of pork floss and the sensory evaluation of 
pork floss, respectively, to provide an objective, accurate and scientific 
evaluation of the fluffy performance presented by pork floss. 

In this study, gradient descent was used to calculate the weights for 
each column of data. The optimal weights were determined by first 
defining the loss function and then minimizing the loss function by 
continuously adjusting the weights. In this problem, mean square error 
(MSE) was used as the loss function, as shown in Eq. (2): 

loss=
1
2

m ∗ sum((w1 ∗ x1 +w2 ∗ x2 + ...+wn ∗ xn − S) ∗ 2) (2)  

where m is the number of samples, w1, w2, …, wn are the weights of each 
column of data, x1, x2, …, xn are the values of each column of data, and S 
is the score value of each data. The optimal weights are obtained by 
continuously adjusting the weights to minimize the loss function. 

The core idea of gradient descent is to adjust the weights by 
continuous iteration in the direction of the decreasing loss function. This 
is done in the following steps: i. Initialize the weights w1, w2, …, wn with 
a standard normal distribution; ii. Calculate the gradient (i.e., partial 
derivative) of the loss function loss for each weight wi, as shown in Eq. 
(3): 

dLoss
dwi

=
1
m
∗ sum((w1 ∗ x1 +w2 ∗ x2 + ...+wn ∗ xn − S) ∗ xi) (3)    

iii adjust the value of each weight according to the gradient descent 
update rule, as shown in Eq. (4): 

wi =wi − learning rate ∗
dloss
dwi

(4)  

where the learning rate is the increment of the update at each iteration 
in this paper it is 0.001. 

Repeat steps ii and iii up to 1000 rounds of training. Finally, the 
weights of each attribute are generated. 

2.5. Statistical analysis 

All statistical data were analyzed by IBM SPSS Statistics 26 software 
(SPSS Inc., Chicago, IL, USA). 500 original images of pork floss from 
each brand were captured, and after capturing ROI, each brand had pork 
floss 1000 images. Differences among samples were compared by using 
least significant difference (LSD) test (P < 0.05) and Tukey’s HSD test 
(Honestly significant difference) (P < 0.05). Results are reported as 
mean the means ± standard error (S.E.). 

3. Results 

3.1. Segmentation results 

Pores and knots are important features of pork floss structure and 
influence the quality evaluation of pork floss structure. However, when 
processing pork floss image pairs, the pores are easy to identify, and 
evaluation of pork floss pore segmentation results is not required. Only 
the labeled knots need to be evaluated. As shown in Fig. 5a, the nodal 
heads of the pork floss were in the manually labeled image. The model 
CRE-MRCNN learned the features of the knot and non-knots in pork floss 
to segment the pork floss image. As shown in Fig. 5b, the white part is 
the pore part, while the red part is the knot feature, and the black part is 
the non-knot part in the pork floss. As you can see, the model CRE- 
MRCNN can identify the knots of pork floss and thus evaluate the 
quality characteristics of each brand of pork floss. 

The IoU results for the output borders and the real edges of all test 
images are shown in Fig. 5c. It can be seen that the IoU value of contour 
segmentation in the knots after image segmentation shows a fluctuating 
trend, with the minimum at 84.23% and the maximum at 97.23%. 
However, the average accuracy of the whole model was 92.97%, 
showing that the model CRE-MRCNN was able to segment and represent 
the nodal heads of pork floss more accurately. 

3.2. Comparative study 

Model evaluation was conducted by comparing this study’s proposed 
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Fig. 5. (a) Pork floss image after labeling knot-head; (b) segmented image according to the already labeled knots; (c) IoU segmentation accuracy graph.  

Fig. 6. Information on the characteristics of pork floss knots, (a) total knots area; (b) total circumference of knots; (c) number of knots. Data are expressed as mean ±
standard error. Statistical differences between sample groups were shown with different letters (a–h) (P < 0.05) according to LSD test. 
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CRE-MRCNN model with the other methods. The same data were used to 
experiment with Mask R–CNN, Faster R–CNN, U-net++, Unet 3+, and 
Cascade Mask R–CNN. 

As shown in Table 2, CRE-MRCNN model has the best performance 
compared to other models on the task of detecting and segmenting the 
structure feature in pork floss. It can be observed that the CRE-MRCNN 
model excels in terms of RMSE, accuracy, and ROI compared to the other 
models. It demonstrates a lower RMSE value, better accuracy, and a 
larger ROI. These results suggest that the CRE-MRCNN model provides 
more accurate localization of structure feature in pork floss images, 
delivering finer segmentation results and thus exhibiting higher reli-
ability and precision in this task. 

3.3. Knots feature information 

The CRE-MRCNN model for segmenting pork floss images was used 
to obtain information about the knots of pork floss, including the total 
area of knots, the total circumference of knots, and the number of knots. 
In general, the smaller the total area of the knots, the total circumference 
of the knots and the number of knots, the better the quality character-
istics of the pork floss structure. 

As can be seen in Fig. 6, the top three pork floss brands in terms of 
total knot area, total circumference of knot, and number of knots from 
high to low are WSM, LYW, and HQ, and are significantly above the 
other pork flosses, including SS, MZX, DD, YJJ, and TC. The ranking of 
the number of knots from high to low was HQ, WSM, and LYW. It can be 
seen that WSM, LYW, and HQ had the largest number of knots, indi-
cating that the quality characteristics of these three brands of pork floss 
was lower. Meanwhile, TC, YJJ, and DD occupied the first three places 
from bottom to top in terms of total knots area, total circumference of 
knot, and number of knots. As a result, the proportion of knots in TC, 
YJJ, and DD is relatively small compared with pork floss of other brands. 

3.4. Porosity results 

The pore index of pork floss includes porosity, pore number, average 
pore area, and pore size distribution. By using the CRE-MRCNN model to 
recognize images of pork floss, the quality characteristics of pork floss 
structure was evaluated by the pore indices. 

As an important indicator to evaluate the microstructure of porous 
media, porosity is defined as the ratio of void space to total volume of 
the solid in porous solid media (Rahimi and Ngadi, 2014; Rahimi and 
Ngadi, 2016). The ratio between the pore area in porous media and the 
total area of the image region under study is defined as the pore area 
fraction, and this area is referred to as porosity in 2D planar images 
(Rovira et al., 2011; Rahimi et al., 2017, 2020). As shown in Fig. 7, the 
porosities of TC, YJJ, HQ, DD, MZX, SS, LYW, and WSM were 11.74%, 
11.98%, 10.45%, 10.61%, 11.12%, 11.65%, 11.96%, and 11.23%, 
respectively, with no significant differences (P > 0.05). 

3.5. Pores number results 

The coefficient of variation (CV) is an indicator of the degree of 
dispersion of the variables. The reproducibility of the data is considered 
good if the CV is <10%, good if 10%–20%, moderate if 20%–30%, and 
poor if ≥ 30% (Rosner, 2015; Araújo et al., 2020). From Fig. 8a, the 
mean pore numbers of TC, YJJ, HQ, DD, MZX, SS, LYW, and WSM were 
2068, 1491, 1355, 1246, 1179, 1094, 862, and 771, respectively, with 
significant differences (P < 0.05). As shown in Fig. 8b, the within-group 
CVs (n = 5) for TC, YJJ, HQ, DD, MZX, SS, LYW, and WSM were 4.34%, 
2.24%, 3.15%, 3.72%, 3.44%, 7.09%, 4.26%, 3.93%, and the CVs be-
tween groups (n = 50) were 6.68%, 4.31%, 4.63%, 5.84%, 4.95%, 
8.04%, 6.58%, and 7.70%, respectively. The results showed that the CVs 
within all groups of pork floss were less than 10%, indicating that the 
pores number of the eight selected brands of commercially available 
pork floss were evenly distributed. In addition, the intra-group CV of the 

pore number of the eight brands of commercially available pork floss 
was generally lower than the inter-group CV, indicating that the pore 
number of pork floss in the different groups had some variation in the 
data, but the variation in the pore number was in a small range. 

3.6. Average pore area results 

As shown in Fig. 9a, the average pore area of TC, YJJ, HQ, DD, MZX, 
SS, LYW, and WSM was 0.1127, 0.1246, 0.1458, 0.1852, 0.1860, 
0.2358, 0.2416, and 0.2663 mm2, respectively. From Fig. 9b, it can be 
seen that the average pore area of pork floss intra-group and inter-group 
CV was less than 10%. The intra-group CV was generally less than 5%, 
indicating that the average pore area of the different parts of the same 
image had low variability and uniform pore size distribution. Inter- 
group CV values were all below 10%, suggesting that the pore area 
between multiple groups of images taken with the same brand of pork 
floss had some differences within a reproducible range. 

3.7. Pore size distribution results 

Pore size distribution (PSD) is another important property commonly 
used in microstructural studies of foods. It indicates how frequently 
pores of different sizes occur in the food structure. Eight brands of pork 
floss differed in the distribution of the number of pore areas. As can be 
seen in Fig. 10, the pores are distributed over 0.01–5 mm2 and there are 
two distinct peaks in the distribution. The main peak is mainly formed 
by small pores with pore areas of 0.02, 0.03, 0.04, 0.05, 0.06, 0.07 and 
0.08 mm2 and has the highest value of 0.03 mm2. It can be seen that the 
pile of pork floss fibers of each brand has the highest number of pores of 
0.03 mm2. In the distribution of different pore areas, the number of 
small pores (0.01–0.1 mm2) distributed in the order TC, YJJ, HQ, DD, 
MZX, SS, LYW and MZX. There were no significant differences in the 
distribution of mean pores (0.1–1 mm2) among the eight brands of pork 
floss. The second main peak of the distribution was for the large pores 
with a pore size of 1–5 mm2. The frequency distribution of the large pore 
size (1–5 mm2) was in the order of MZX, LYW, SS, MZX, DD, HQ, YJJ, 
and TC, in contrast to the order of the small pore size. 

3.8. Sensory test results 

Due to the peculiarity of the structure of pork floss, the intensity 

Fig. 7. Porosity of eight commercially available brands of pork floss. Data are 
expressed as mean ± standard error. Statistical differences between sample 
groups were shown with different letters (a–c) (P < 0.05) according to LSD test. 
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ratings of each sensory attribute would vary. The lower the intensity of 
sensory attributes, including knot size, thickness, coarseness, and 
hardness, the higher the quality characteristics of pork floss. The higher 
the intensity of sensory attributes, including fluffiness, uniformity, color 
consistency and intactness, the higher the quality characteristics of pork 

floss. The results of the sensory test are shown in Table 1. TC had the 
lowest scores for the attributes knot-head size, coarseness, and hardness 
attributes (2.95, 3.89, 2.26, respectively) and the second lowest score for 
thickness (3.25). Similarly, YJJ has the second lowest intensity ratings 
for the attributes knot size, coarseness, and hardness attributes and the 

Fig. 8. Pore number of eight brands of pork floss, (a) distribution of pore number of pork floss; (b) coefficient of variation of pore number of eight brands of pork 
floss, CV1 represents intra-group coefficient of variation, CV2 represents inter-group coefficient of variation. Data are expressed as mean ± standard error. Statistical 
differences between sample groups were shown with different letters (a–h) (P < 0.05) according to LSD test. 

Fig. 9. Average pore area data for eight commercially available brands of meat floss. (a) average pore area of eight brands of meat floss; (b) coefficient of variation of 
average pore area in eight brands of meat floss, CV1 represents the intra-group coefficient of variation and CV2 represents the inter-group coefficient of variation. 
Data are expressed as mean ± standard error. Statistical differences between sample groups were shown with different letters (a–f) (P < 0.05) according to LSD test. 
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lowest intensity for thickness. While TC had the highest intensity ratings 
for the attributes of uniformity, color consistency, and intactness (8.24, 
8.87, and 7.99, respectively), YJJ had the highest intensity rating for 
fluffiness (8.47). LYW, WSM, and SS had the highest intensity ratings for 
knot size, coarseness, hardness, and thickness, and the lowest intensity 
ratings for fluffiness, uniformity, color consistency, and intactness; 
intactness was the lowest. Observation indicates that this may be due to 
the overall unopened fibers of the pork floss with long knots. In terms of 
liking, TC was the highest, followed by YJJ (7.94), DD (7.43), HQ (6.79), 
MZX (5.32), SS (4.16), WSM (3.32), and LYW (2.26). 

3.9. Comprehensive evaluation model for pork floss 

3.9.1. Sensory test-orientated model 
The weights of the main indicators were determined by normalizing 

all data using a gradient descent algorithm. The weights of knot size, 
thickness, coarseness, hardness, fluffiness, uniformity, color consis-
tency, intactness, and liking were 0.1038, 0.0966, 0.1154, 0.092, 
0.1325, 0.1187, 0.1091, 0.1002, and 0.1293, respectively. The positive 
and negative coefficients of the main factors depended on their effects 
on the sensory quality of the different brands of pork floss. In this study, 
higher values for fluffiness, uniformity, color consistency, intactness, 
and likeability generally had a positive effect on the sensory quality of 
pork floss, while higher values for knot size, thickness, coarseness, and 
hardness had a negative effect on the sensory quality of pork floss. 
Therefore, the overall quality evaluation score of pork floss was calcu-
lated as follows: 

Y= − 0.1038 × knot size − 0.0966 × thickness − 0.1154 × coarseness

− 0.0924 × hardness + 0.1325 × fluffiness + 0.1187 × uniformity

+ 0.1091 × color consistency + 0.1002 × integrity + 0.1293 × liking.

The corresponding evaluation scores for the different brands of pork 
floss are shown in Table 3. TC had the highest score (0.9227), followed 
by YJJ (0.9126), DD (0.8061), HQ (0.7009), SS (0.53875), MZX 
(0.4437), WSM (0.2902), and LYW (0.2116). 

3.9.2. Machine vision-oriented model 
For the machine vision-oriented model, the magnitude of the co-

efficients of the main factors depends on their influence on the quality 
characteristics of pork floss structure. The weights of total knots area, 
total circumference of knot, number of knots, porosity, number of pores, 
average pore area, and pore size distribution were 0.1371, 0.1254, 
0.1400, 0.1209, 0.1422, 0.1519, and 0.1818, respectively. The values of 
porosity, pore number, average pore area, and pore size distribution 
were within the range of those obtained in this study and generally 
contributed to a positive effect on the quality characteristics of pork floss 
structure. In contrast, higher values for total knots area, total circum-
ference of knot, and number of knots tended to have a negative effect on 
pork floss quality characteristics. Therefore, the overall evaluation of 
pork floss quality was calculated as follows: 

Fig. 10. Pore size distribution of eight commercially available brands of 
pork floss. 

Table 1 
Sensory testing of the fluffy quality in eight commercially available brands of pork floss.  

Sensory attributes Brand 

TC YJJ HQ DD MZX SS LYW WSM 

Knot-head size 2.95 ± 0.78e 5.04 ± 0.81 d 7.56 ± 0.57c 6.55 ± 0.68 b 7.11 ± 0.81a 8.42 ± 0.54a 7.89 ± 0.88a 8.26 ± 0.77a 
Thickness 3.25 ± 0.83 b 1.84 ± 0.69a 7.05 ± 0.74 b 6.49 ± 0.74e 4.26 ± 0.66c 7.84 ± 0.77f 7.68 ± 0.75f 8.16 ± 0.86a 
Coarseness 3.89 ± 0.94a 4.69 ± 0.85 b 6.11 ± 0.74 b 5.72 ± 0.88 d 7.74 ± 0.73e 6.16 ± 0.83 4.84 ± 0.69 b 7.11 ± 0.82 d 
Hardness 2.26 ± 0.87a 3.79 ± 0.86 b 5.95 ± 0.71c 6.79 ± 1.03 d 7.16 ± 0.83 d 7.89 ± 0.88f 8.21 ± 0.59f 8.16 ± 0.56f 
Fluffiness 7.95 ± 0.85f 8.47 ± 0.51f 5.16 ± 0.69e 7.44 ± 0.83 b 2.47 ± 0.70 b 3.84 ± 0.77c 1.63 ± 0.50a 2.32 ± 0.96 b 
Uniformity 8.24 ± 0.77f 7.74 ± 0.73f 7.26 ± 0.65 g 6.68 ± 1.00e 4.11 ± 0.94c 4.84 ± 0.57 d 2.89 ± 0.74 b 1.89 ± 0.60a 
Color consistency 8.87 ± 0.51c 8.47 ± 0.80c 5.11 ± 0.74 b 6.74 ± 0.87 b 4.68 ± 0.67a 4.05 ± 0.78a 4.42 ± 0.61a 4.21 ± 1.18a 
Intactness 7.99 ± 0.86 d 7.84 ± 0.90 d 6.32 ± 0.75 d 6.93 ± 0.73c 5.98 ± 0.91c 6.05 ± 0.91c 4.91 ± 0.78 b 3.79 ± 0.99a 
Likeness 8.37 ± 0.60f 7.94 ± 0.94f 6.79 ± 0.79 d 7.43 ± 0.60f 5.32 ± 0.95c 4.16 ± 0.90 b 2.26 ± 0.81a 3.32 ± 1.33 b 

Note: Means ± standard errors with different superscripts within a column are significantly different (P ≤ 0.05) according to Turkey’s HSD test (Honestly significant 
difference). 

Table 2 
Evaluation of each model.  

Model RMSE ACC ROI 

Cascade Mask R–CNN 0.042 0.935 0.756 
Faster R–CNN 0.055 0.902 0.643 
Mask R–CNN 0.049 0.918 0.721 
U-Net++ 0.056 0.896 N/A 
UNet 3+ 0.048 0.915 N/A 
CRE-MRCNN 0.036 0.952 0.81  

Table 3 
Comprehensive evaluation scores of the computer vision-oriented model and 
sensory test-oriented model.  

Brands Computer vision-oriented scoring Sensory test-oriented scoring 

TC 0.816891 0.885646146 
YJJ 0.784995 0.789718355 
HQ 0.632673 0.653584512 
DD 0.646438 0.766037723 
MZX 0.606374 0.378186459 
SS 0.619669 0.386670692 
LYW 0.469013 0.137468943 
WSM 0.576314 0.235458244  
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Y= − 0.1371 × total knots area − 0.1254 × total circumference of knots

− 0.1400 × number of knots + 0.1209 × pores number + 0.1422

× average pore area + 0.1519 × porosity + 0.1818 × pore size distribution 

Table 3 shows the overall evaluation scores of pork floss based on 
machine vision. TC had the highest score (0.8113), followed by YJJ 
(0.7797), DD (0.6421), and HQ (0.6284), and the rest were SS (0.6155), 
MZX (0.6023), WSM (0.5724), and LYW (0.4658). 

4. Discussion 

The CRE-MRCNN proposed in this study showed better performance. 
Compared with the results of Hao et al. (2021) and He et al. (2022), the 
segmentation accuracy of CRE-MRCNN in this study is higher. This is not 
only the result of the improvement of the Mask R–CNN model, but also 
may be due to the preprocessing of the images of pork floss. Meanwhile, 
the parts of the knot and non-knot of pork floss were described manu-
ally, which greatly improved the learning ability of the CRE-MRCNN 
model. The edge contour of the knots in the region of interest was 
improved by preprocessing, resulting in high segmentation accuracy of 
the CRE-MRCNN model. CRE-MRCNN also exhibits similarly higher 
accuracy, lower RMSE, and greater ROI than other deep learning 
models. 

Since pores and knots are important features of the pork floss 
structure, this requires an evaluation as well as a ranking of the selected 
commercially available pork floss quality based on the pore and knots 
features identified by the CRE-MRCNN model. The texture of pork floss 
may vary due to different production processes. According to Vaskoska 
et al. (2021), there is an interaction between cooking temperature and 
lateral shrinkage of fiber fragments. The volumetric shrinkage of fiber 
fragments increases steadily with increasing temperature. And as 
cooking time and temperature increase, the number, size, and shape of 
meat particles are affected (Promeyrat et al., 2010). Therefore, too high 
processing temperature as well as too long cooking time will lead to 
more nodules and burnt heads, which will affect the formation of fluffy 
quality of pork floss. In addition to processing factors, differences in the 
diameter of pork floss fibers are attributed to the choice of raw mate-
rials, including the time of maturation of raw meat after slaughter. In 
addition, a study by Ao et al. (2015) indicated that the pore number of 
porous media formed by a large number of fibers is proportional to the 
fiber diameter. The smaller the fiber diameter, the more pores are 
formed, the larger the fiber diameter, the smaller the number of pores. It 
can be seen that the difference in pore diameter is related to the degree 
of dispersion of the protein fibers of each brand of pork floss. All these 
factors influence the change of muscle from myofascial to myofibrils and 
myogenic fibers, resulting in differences in the degree of fiber loosening. 
The greater the degree of sarcomere fiber opening, the smaller the fiber 
diameter (with the basic structure of the muscle, the myofibril, being in 
the range of 10–100 μm) (Sorapukdee et al., 2013). On the contrary, the 
lower the degree of pork floss fibers opening, the larger the diameter of 
the pork floss fibers, and the more likely the formation of burnt knots 
and knots during frying. According to Xia et al. (2020), the quality 
characteristics of pork floss should not only be velvety and fluffy, but 
also fine and soft like cotton. Therefore, the size of the fiber diameter not 
only affects the quality of pork flosses but also the number of pores 
formed between the fibers. With similar porosity, the smaller the fiber 
radius, the smaller the average pore radius of porous media formed by 
the accumulation of many fibers (Zheng et al., 2018). Differences in the 
number of burnt knots and knots and presentation status affected the 
pore size when the fibers were stacked (Xia et al., 2020). This is the 
reason for evaluating different brands of pork floss based on knots and 
burnt heads and the pore size of pork floss. 

TC, YJJ, and DD have better quality and can have fluffy conditions 
because the proportion of knots is relatively small compared with pork 
floss of other brands. Meanwhile, the smaller the pore area and the 

larger the number of pores of pork floss, the better the quality charac-
teristics. TC and YJJ, may present a better fluffiness and are therefore of 
higher quality. And from the pore sizes distribution, the distribution of 
pork floss is not uniform, but has a specific aggregation. The pores are 
unevenly distributed due to the random distribution and arrangement of 
the fibers during the stacking process (Jha et al., 2020). As the surface 
density increases, the number of fiber layers on the sample increases 
accordingly, and some of the large pores are continuously partially 
covered by the newly added fiber layers, and the number of large pores 
decreases, so that the pore size is more concentrated in the area with 
smaller values (Jha et al., 2020). The smaller the pore area and the 
larger the number of pores of pork floss, the better the quality charac-
teristics. Therefore, the pork floss of TC is more advantageous than other 
brands of pork floss. 

In addition, the machine vision-oriented model provided ranking 
results for several brands of pork floss that were consistent with the 
results of the sensory-oriented model. The highest rankings were for the 
brand TC, followed by YJJ, DD, and HQ. This ranking was consistent 
with the strength of the sensory test preference. This indicates that the 
machine vision-oriented model was able to recognize the characteristics 
of the presented pork floss, including knots and pores. Based on this, the 
machine vision-oriented model was able to distinguish and identify 
different brands of pork floss and was able to rank them and select the 
best pork floss. It is enough to show that the application of machine 
vision is important to evaluate the quality characteristics of commer-
cially available pork floss structure. 

5. Conclusion 

In this study, a machine vision-based pork floss feature detection 
method is proposed, namely CRE-MRCNN, and the model achieves 
better pork floss image segmentation results. Based on the knot features 
(total knot area, total circumference of knot, number of knots) and pore 
features (porosity, number of pores, average pore area and pore size 
distribution) identified from the pork floss, a comprehensive scoring 
model was applied to rank the eight brands of pork floss. The highest 
score was obtained for the TC brand of pork floss, followed by YJJ, DD, 
and HQ. This result was consistent with the ranking of the sensory test 
model. The results demonstrate the potential of machine vision tech-
niques for identifying the quality characteristics of pork floss structure. 
Due to the disordered muscle fibers of pork floss and the varying extent 
of knots and pores that can occur in different processes. The method 
provides effective guidance and ideas for identifying different brands of 
pork floss and solves the problem of difficult identification of pork floss 
due to its complex and convoluted features. It makes it possible for 
machine vision technology to be a tool for identification. 
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