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Abstract: Maternal high-fat diet (HFD) affects metabolic and immune development. We aimed to
characterize the effects of maternal HFD, and the subsequent diet-normalization of the mothers
and Thymus Metabolic Axis in the . . N i . . . o

during a second pregnancy, on the liver and thymus metabolism in their offspring, in minipigs.
Offspring born to high-fat (HFD) and normal diet (ND) fed mothers were studied at week 1 and

months 1, 6, 12 of life. Liver and thymus glucose uptake (GU) was measured with positron emission

Offspring and Some Effects Are
Attenuated by Maternal Diet
Normalization in a Minipig Model.
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1. Introduction

Obesity, commonly due to the intake of high-fat, energy-rich foods, is a common cause
distributed under the terms and  Of chronic diseases and metabolic dysregulation [1]. In the last decades, its impact has in-
conditions of the Creative Commons  creased worldwide, involving a large number of women of childbearing age, with negative
Attribution (CC BY) license (https://  health consequences for mothers and offspring [2,3]. The intrauterine metabolic environ-
creativecommons.org/licenses /by / ment can permanently program the development and physiology of the offspring with
40/). short- and long-term health implications [4,5]. We previously reported that high-fat diet
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(HFD) consumption during pregnancy affects the brain glucose metabolism and myocardial
function in the offspring [2,3], but the metabolic impact on liver and immune organs, from
birth to late adulthood, has not been elucidated. During fetal and early post-natal life [6,7],
the liver generates blood and immune cells in specialized areas called niches, providing
a supportive microenvironment for highly proliferative hematopoietic stem cells [8], and
cooperates with the thymus in T lymphocyte production and maturation [9-13]. Maternal
HFD was shown to compromise the hematopoietic compartment in the fetal liver [14]. The
liver is the main center for glucometabolic control, and glucose is the primary substrate
used by thymocytes and T lymphocytes, whose metabolic alterations can associate with im-
mune intolerance and metabolic syndrome, since fetal life [15-18]. Liver insulin resistance
(IR) and glucose dysmetabolism in response to nutritional stress are reported in the fetus of
HFD mothers, increasing the risk of fatty liver disease [19], which may affect the develop-
ment of hepatic lymphocytes [13,20]. However, the occurrence of fatty and inflammatory
liver disease in the offspring of HFD mothers remains controversial [21,22]. The current
study was undertaken to examine the hypothesis that maternal HFD has a life-lasting
impact on hepatic glucose uptake (GU), insulin sensitivity, and steatosis/steatohepatitis in
the offspring. Moreover, the scope of our study was to examine the potential benefits of
dietary intervention on mothers before conception, namely whether weight loss in HFD
mothers before a second pregnancy would reduce abnormalities in insulin sensitivity and
organ metabolism, as expected in offspring of HFD mothers. We also hypothesized that the
liver and thymus metabolism, and their hematopoietic cellularity, would show associations,
providing mechanistic insight underlying their cross-talk. The study was conducted in
minipigs, as a suitable model to address the human metabolism and obesity [23]. We
used positron emission tomography (PET) and 2-[18F]-fluoro-2-deoxyglucose ([18F]-FDG)
during hyperinsulinemic-isoglycemia to measure the liver and thymus glucose metabolism
in vivo, and ex vivo histology to assess hepatic fatty and hematopoietic infiltration and
inflammation, and tested correlations between tissue metabolism and cellularity.

2. Results

The study was carried out in adult female primiparous minipigs, undergoing two
consecutive pregnancies, and their offspring. Mothers in the first pregnancy received a
normal diet (ND) or high fat diet (HFD) and were studied before and during the gestations.
After weaning of the pups, HFD mothers were exposed to diet normalization (NdD) and
then restudied in a second pregnancy, in parallel to control mothers (still on ND). Groups of
offspring born to mothers undergoing high-fat diet (HFD,), normal diet (ND,g), and diet
normalization (NdD,¢) were studied at 1 week, and 1, 6, and 12 months, by [18F]-FDG PET
imaging during hyperinsulinemic-isoglyaemia, and liver and thymus histology, according
to the flowchart given in Figure 1.

2.1. Maternal Body Weight and Glucose Metabolism

Duration of gestation was similar in all groups. By design, HFD mothers were heavier,
and had a larger waist circumference than ND mothers before and during pregnancy
(Table 1) in the first, but not in the second, pregnancy. ND mothers experienced weight
gain between the end of the first pregnancy and the beginning of the next, consistent with
previous observations in rodent studies addressing multiparity [24]. In contrast, in HFD
mothers, diet normalization resulted in a weight loss of 7.0 & 2.7 kg, corresponding to
~1 kg per month (=12% reduction in seven months). No significant difference in fasting
glycemia and whole-body insulin sensitivity was observed, though an expected tendency
towards IR in HFD mothers was present (p = 0.1). Liver GU was similar in mothers before
and during the first pregnancy and before the second gestation, whereas a downward
tendency was observed during the second pregnancy (p = 0.06). ND mothers underwent
a significant increase in liver GU during the first pregnancy compared to pre-gestational
values (p = 0.048), whereas NdD was the only maternal group showing a decline in liver
GU from pre-pregnancy to pregnancy values (p = 0.03).
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Figure 1. Study design. The study was carried out in the offspring of adult female minipigs fed a normal (ND) or high-fat
diet (HFD) at one week and at 1, 6, and 12 months of age; then, HFD mothers were returned to normal diet (NdD), and
the offspring from a second pregnancy were studied. [18F]-FDG-PET was used to quantify liver and thymus metabolism

under hyperinsulinemic-isoglycemia. Offspring were euthanized, and liver and thymus gland samples collected for ex vivo
histological analyses to support the understanding of metabolic results.

2.2. Body Weight and Systemic Metabolism in the Offspring

The offspring studied at one week were weighted and sacrificed on the same day
of the PET study. The offspring studied at 1, 6, and 12 months of life were weighed on
the day after delivery and on the day of the PET study to compute weight gain, which
was expressed as a %. HFD, ¢ showed a low birth weight in the first (0.421 £ 0.029 vs.
0.551 £ 0.012 kg, p < 0.0001, HFD¢ vs. ND,g) and in the second pregnancy, after ma-
ternal diet normalization (0.468 £ 0.025 vs. 0.621 £ 0.013 kg, p < 0.0001, NdDg vs.
ND,¢), and body weight increased in ND, in the second compared to the first pregnancy
(0.621 £ 0.013 vs. 0.551 £ 0.012 kg, p < 0.0001). No significant body weight difference was
observed between offspring groups within each pregnancy at the time of PET imaging, but
offspring born to the second pregnancy were heavier than those born to the first pregnancy
(NdD,g at 1 week and 1 month, and ND, at 6 and 12 months, leading to higher adulthood
weight in ND, than NdD,g) (Figure 2a). Weight gain was greater in HFD (from birth to
1 and 6 months) and NdD,¢ (from birth to 1 month) compared to ND,¢, whereas it was
lower in 6-month-old NdD,¢ than HFD ¢ (Figure 2b). Waist circumference was larger in
the second than the first pregnancy in both groups (Table 2), but the increase was transient
in NdD,¢ whereas it lasted until late adulthood in ND,; consequently, NdD,¢ had lower
values than respective ND,g. Glycemia (Table 2) tended to be higher in HFD ¢ at 1 week
(significant only before sex-adjustment), and was significantly higher in NdD at 1 month
than respective ND,g. Insulin levels tended to be higher in HFD ¢, and were lower at
1 month (p < 0.01) in NdD,¢, compared to respective controls (Table 2). Whole-body insulin
sensitivity (M-value) showed remarkable IR at 1 week in HFD ¢ compared to ND,g, and in
1-month-old ND,¢ born to the second pregnancy compared to NdD,, with no difference
thereafter (Figure 3).
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Table 1. Maternal profile during the first and second pregnancy.

FIRST PREGNANCY
n ND n HFD p n ND n HFD p
Before Gestation During Gestation (Two Weeks before Delivery)
Body weight (kg) 5 248421 5 33.0+£28 0.05 5 41.6 £2.0 5 55.6 £4.0 0.01

Waist circumference (cm) 5 822+ 09 5 90.6 + 4.6 ns 5 1034 £ 2.1 5 113.4 £3.3 0.03
Fasting glycemia (mmol/L) 5 2.87 £0.27 5 3204+£032 ns 5 2.63 +0.48 5 2.79 £0.28 ns

Whole body insulin
sensitivity (mg/(kg-min))

5 8.03=£061 5 629+084 nmns 5 7.54 £0.79 5 5.86 £ 0.86 ns

Liver glucose uptake (GU)

. 5 0.13+£0.02 5 016 £0.01 ns 5  01940.03% 5 0.15+0.01 ns
(umol/(mL-min))

Duration of first gestation

(days) - - - - - 5 112 +1 4 111 +£2 ns
SECOND PREGNANCY
n ND n NdD p n ND n NdD P
Before Gestation During Gestation (Two Weeks before Delivery)
Body weight (kg) 4 48.8 £ 4.8 4 475432 ns 3 60.00 £ 2.89 4 591'7053:|: ns
Weight gainbetweentwo o535 4 70427 o002 - - - - -
pregnancies (kg)
Waist circumference (cm) 4 1053435 4 102.3 £ 3.9 ns 3 118.33 + 4 1775+ ns
3.67 2.75
Fasting glycemia (mmol/L) 4  3.60 £ 0.47 4 2.60 £+ 0.31 ns 3 2.60 + 0.21 4 2.85 4+ 0.21 ns
Whole body insulin 4 5124105 4 3774061 ns 3  623+068 4 OO0
sensitivity (mg/(kg-min))
Lwe(rugr;‘fl(ﬁ;‘gﬁﬁ)(GU) 4 0164003 3 018+£001 ns 3 0204003 4 125002 40
Duration of second
gestation (days) - - - - - 3 109 £2 4 111+0 ns
Values are means & SEM. # p < 0.05 vs. respective group before gestation.
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Figure 2. Body weight and weight gain. (a) Body weight at one week, 1 month, 6 months, and 12 months of age in the
offspring of HFD and ND mothers, after the first and second pregnancy, and (b) weight gain in the first month, 6 months,
and 12 months of life. Black squares: offspring of HFD mothers in first pregnancy and NdD mothers in second pregnancy
after diet normalization; white diamonds: offspring of ND mothers. Values are means £+ SEM. * p < 0.05, ** p < 0.01 vs.
age-matched control within each pregnancy; # p < 0.05, ## p < 0.01 ND,g in second pregnancy vs. respective ND in the
first; " p < 0.05, *" p < 0.01 NdD,¢ in second pregnancy vs. respective HFD g in the first.
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Table 2. Metabolic profile in the offspring.

FIRST PREGNANCY

Waist Circumference (cm)

Basal Glycemia (mmol/L)

Basal Insulinemia (mU/L)

One-week (At birth)
NDf
HFD

229+ 13 (n=11)
243+ 0.8 (n=8)

6.6+ 0.6 (n=11)
83+07 (n=8)

114+29(1n=9)
226+78 (n=3)

1-month (Infancy)

11.14+26Mn=7)

ND 371+ 11 (n=17) 53+0.2(n=16)
HFD 37.0 £ 0.7 (n=20) 58+ 0.4 (n=20) 10.6 £32(n=>5)
6-months (Early adulthood)
ND ¢ 622+ 1.2 (n=13) 37+04(n=13) 46+11(n=10)
HFD ¢ 642+ 1.6 (n=12) 32+02(n=12) 9.6+38(n=9)
12-months (Late adulthood)
ND¢ 753 £29(n=4) 34£02(n=4) 28£09(n=4)
HFD ¢ 758 +£4.0(n=4) 26+09 (n=4) 31+20n=3)
SECOND PREGNANCY
One-week (At birth)
ND 249+05(n=9) 77+04(n=9) 13.7£27(n=9)
NdD,¢ 270+ 04 (n=4) 83+£05(n=4) 75+ 61 (n=2)
1-month (Infancy)
ND 39.5+0.75 (n=15) 51+02(n=15) 171+ 42(n=4)
NdD 39.6 £ 0.8% (n=11) 6.3+05*(n=11) 50£09*(n=06)
6-months (Early adulthood)
ND g 715 + 1.7 %% (n = 8) 3.6+03Mn=8) 62+13Mm=7)
NdD 628 £1.6* (n=9) 38+04(n=9) 34+08(n=8)
12-months (Late adulthood)
ND 915+ 05% (n=2) 21+025n=2) 30£18(n=2)
NdD 740 £2.3%(n=3) 35407 (n=3) 23+17Mn=3)

Values are means & SEM. * p < 0.05, ** p < 0.01, " p < 0.06, p < 0.1 vs. age-matched control within each pregnancy; # p < 0.05,
### p < 0.001, 8 p < 0.8 vs. respective group in the first pregnancy.

First Pregnancy Second Preghancy

N N
I / N
124
<10
£
28 *
=
g e *
5. i
@
>| 2_
=

Twk 1mo 6mo 12mo 1wk 1mo 6mo 12mo

Figure 3. Whole body insulin sensitivity. M-value at one week, 1 month, 6 months, and 12 months of
age in the offspring of HFD and ND mothers, after the first and second pregnancy. Black squares:
offspring of HFD mothers in first pregnancy and NdD mothers in second pregnancy after diet
normalization; white diamonds: offspring of ND mothers. Values are means + SEM. * p < 0.05 vs.
age-matched control within each pregnancy; # p < 0.05 ND, in second pregnancy vs. respective
ND, in the first.
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First Pregnancy

A

2.3. Liver and Thymus Glucose Uptake in the Offspring

At 1 week, liver GU was 100% greater in HFD ¢ than ND ¢ (p < 0.001) (Figure 4a), and
this difference was not observed in the second pregnancy due to a significant reduction in
NdD, and a significant increase in ND, in the second compared to the first pregnancy. At
1 and 6 months, HFD, in the first pregnancy showed reduced insulin-mediated hepatic GU,
i.e, liver IR, persisting in NdD,¢ only at 1 month in the second gestation, corresponding
to end lactation (Figure 4a). Thymus GU was higher at 1 week and lower at 1 month in
HEFD,¢ than ND, in the first pregnancy, and this difference was attenuated in offspring
born to the second gestation (p = 0.06) (Figure 4b).

Second Pregnancy First Pregnancy Second Pregnancy
A A A

e
w
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Liver glucose uptake
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Figure 4. Liver and thymus glucose uptake in the offspring. (a) Glucose uptake in liver at one week and 1 month, 6 months,
and 12 months of age in the offspring of HFD and ND mothers, after the first and second pregnancy. (b) Thymus glucose
uptake was measured at one week and 1 month of age, i.e., before gland involution. Black squares: offspring of HFD

mothers in first pregnancy and NdD mothers in second pregnancy after diet normalization; white diamonds: offspring of
ND mothers. Values are means + SEM. * p < 0.05, ** p < 0.01 vs. age-matched control within each pregnancy; # p < 0.05
ND, in second pregnancy vs. respective ND, in the first; " p < 0.05, " p < 0.01 NdD, in second pregnancy vs. respective

HFD, in the first.

2.4. Liver Histology, Transaminases, Triglycerides

HFD,¢ showed significant liver steatosis at 1 week and 6 months of age (Figure 5a),
with 100% HFDgg vs. 17% ND,g having a diagnosis of fatty liver disease (p = 0.045)
(Table 3), and high triglyceride (TG) levels (25 & 6 vs. 11 £ 2 mg/dL, p = 0.017). Liver
steatosis was normalized in NdD¢ (p = 0.005 and p = 0.016, compared to HFD at 1 week
and 6 months), together with TG levels (28 £ 4 vs. 21 + 5 mg/dL, ns vs. ND,g). No
significant difference was observed between groups at 12 months (Figure 5a), or in other
features of liver injury including lobular or portal inflammation, hepatocyte ballooning
degeneration, and fibrosis between groups (Table 3). Extramedullary hematopoiesis niche
numbers showed a slight reduction in 1-week-old HFDg, and a significant increase in
NdD,¢ compared to NDg (p = 0.01) and HFD (p = 0.03) (Figure 5b).

Table 3. Liver histological parameters in the offspring.

First Pregnancy

At One-Week At 6-Months At 12-Months
Score NDosr  HFDoe p ND o HFDo¢ p  NDgs HFDog p
Microcirculation
PV dilatation Yes/No 100/0 100/0  ns 100/0 100/0 ns 100/0  100/0  ns
CV dilatation Yes/No 100/0 100/0 ns 100/0 100/0 ns 100/0 100/0 ns
Sinusoid dilatation Yes/No 36/64 43/57  ns 100/0 100/0 ns 75/25 100/0 ns

Fibrosis




Metabolites 2021, 11, 800

7 of 15

Table 3. Cont.

First Pregnancy

At One-Week At 6-Months At 12-Months
Score NDost  HFDogs p ND HFDy¢ p  NDos HFDog p
Portal Yes/No 9/91 0/100 ns 50/50 67/33 ns 100/0 75/25 ns
Perisinusoidal Yes/No 0/100 0/100  ns 0/100 0/100 ns 0/100 0/100 ns
Perivenous Yes/No 0/100 0/100 ns 0/100 0/100 ns 25/75 0/100 ns
Portal inflammation Yes/No 27/73 29/71 ns 17/83 33/67 ns 75/25 75/25 ns
Lobular damage
Lobular inflammation Yes/No 9/91 29/71 ns 17/83 0/100 ns 25/75 25/75 ns
Ballooning degeneration Yes/No 36/64 71/29 ns 0/100 0/100 ns 0/100 0/100 ns
stea touﬁl‘;f;‘izttlovr‘; scoreS NAFLD/Healthy 82/18  86/14 ns  17/83 100/0  * 0/100 50/50 ns
Second pregnancy
NDost  NdDygt ND o NdD NDyst  NdDog
Microcirculation
PV dilatation Yes/No 100/0 100/0  ns 100/0 100/0 ns 100/0 100/0 ns
CV dilatation Yes/No 89/11 100/0  ns 100/0 100/0 ns 50/50 100/0 ns
Sinusoid dilatation Yes/No 11/89 0/100 ns 80/20 60/40 ns 50/50 100/0 ns
Fibrosis
Portal Yes/No 0/100 0/100  ns 0/100 40/60 ns 50/50 33/67 ns
Perisinusoidal Yes/No 0/100 0/100 ns 0/100 0/100 ns 0/100 0/100 ns
Perivenous Yes/No 0/100 0/100  ns 0/100 0/100 ns 0/100 0/100 ns
Portal inflammation Yes/No 56/44 33/67 ns 20/80 80/20 ns 50/50 33/67  ns
Lobular damage
Lobular inflammation Yes/No 0/100 33/67 # 0/100 0/100 ns 0/100 0/100 ns
Ballooning degeneration Yes/No 0/100 0/100  ns 0/100 0/100 ns 0/100 0/100 ns
Cumulative NAFLD/Healthy 0/100  0/100 ns  40/60  40/60 ns 50/50  100/0 ns

steato-inflammatory score §

Categorical scores indicate the number percentage (%) of animals in each group presenting with (=Yes) or without (=No) the abnormality,
and healthy or unhealthy (NAFLD) condition; § = Cumulative steato-inflammatory score was determined by the sum of steatosis grades
(1-3), lobular inflammation (1-3), and ballooning grades (1-2), reflecting progressive disease severity stages. * p = 0.045, # p = 0.07 vs.
age-matched control within each pregnancy.

2.5. Correlations

Both univariate and sex-adjusted associations (Figure 6) were examined, showing
consistent levels of significance. An inverse relationship was observed between liver GU
and waist circumference (Figure 6a) or body weight (Figure 6b), indicating that higher
weight and abdominal obesity resulted in lower liver GU and greater hepatic IR in the
whole population. Thymus histology showed that thymocyte volume was inversely related
to cell density (Figure 6¢) and tissue GU (Figure 6d), indicating that higher GU in the
thymus reflected numerous small thymocytes, whereas thymus IR reflected fewer larger
thymocytes. Liver and thymus GU rates were correlated (Figure 6e). Liver GU was
also predictive of lower thymocyte volume (Figure 6f), resulting in greater density. In
addition, low hematopoietic niche numbers in the liver were associated with thymus
hypermetabolism (Figure 6g).
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Figure 5. Liver histology in the offspring. (a) Liver steatosis at one week, 6 months, and 12 months in the offspring of HFD
and ND, after the first and second pregnancy. (b) Hepatic extramedullary hematopoiesis (niches number) at one week.
Black squares: offspring of HFD mothers in first pregnancy and NdD mothers in second pregnancy after diet normalization;
white diamond: offspring of ND mothers. Values are means + SEM. * p < 0.05, *** p < 0.001 vs. age-matched control within
each pregnancy; ## p < 0.01 ND,¢ in second pregnancy vs. respective ND, in the first; " p < 0.05, " p < 0.01, ™ p < 0.001
NdD,¢ in second pregnancy vs. respective HFD g in the first pregnancy. (c) Representative liver histological sections
of offspring at one week, 6, and 12 months of HFD and ND mothers after the first (top) and second (bottom) pregnancy
(40x magnification) are presented. Representative examples of histological sections of hepatic extramedullary hematopoiesis
niches (small image, 20 x magnification) of the liver in the offspring at one week of HFD and ND mothers, after the first and
second pregnancy are shown.
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Figure 6. Correlations. Inverse relationship between liver glucose uptake and waist circumference (a) or body weight
(b). The volume of thymocytes was expectedly correlated with their number per unit area (c), and with thymus glucose
uptake (d). Liver and thymus glucose uptake rates were correlated (e), liver glucose uptake was also predictive of lower
thymocyte volume (f). A greater number of hematopoietic niches in the liver was associated with thymus insulin resistance
(g); (a—g) involve normally distributed variables, and therefore a trend line is shown and sex adjustment performed (partial
correlation analysis), different from (g) (Spearman’s regression coefficient).
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3. Discussion

The offspring of obese mothers have an increased risk of developing IR, metabolic
disorders, and immune dysfunction [14,25-27]. This study is part of a large project focused
on cardiometabolic consequences of maternal obesity [2,3,28] and here we report our
advancement of knowledge concerning the liver and thymus. The original design did not
address the thymus. In the course of image analyses, we observed an elevated GU in the
thymus, and started collecting thymus tissue samples. Thus, the main study limitation is
that thymus histology was available in 19 cases, and could only be used in correlations,
lacking sufficient power for group comparisons. Notably, however, PET images were
available in all animals and provide the first evidence of compromised thymus metabolism
in the offspring born to obese mothers, as determined by in vivo imaging within the first
month of life, before age-dependent thymic involution [29].

HFD mothers displayed the expected increase in body weight and waist circumfer-
ence [30], accompanied by a tendency towards systemic IR. The first gestation was accom-
panied by a significant increase in liver GU in ND mothers compared to pre-pregnancy
values, in line with the notion that in the normal situation, glucose requirements of the
gravid uterus are increased [31], together with post-prandial hepatic glycogen stores for
an adequate glucose supply to maternal and fetal tissues [32]. HFD and NdD mothers
lacked this upregulation, showing no change or downregulation in liver GU. The response
was also blunted in the second gestation in ND mothers, likely due to the weight gain
associated with multiparity. We suggest that the maternal liver responds to the sensing
of glucose levels in the developing offspring, modulating the need for hepatic GU and
storage.

Maternal HFD resulted in normal body weight in the offspring at one week of life,
and lower body weight at birth, but higher weight gain through adulthood compared to
ND,g. Our data are in agreement with, e.g., Jungheim et al. [33], showing that exposure to
diet-induced maternal obesity results in smaller offspring at birth, undergoing later catch-
up growth. However, the birth weight outcome of maternal HFD is controversial [34], and
the HFD used in mice is more standardized than that observed in humans. In the second
pregnancy, after diet normalization in HFD mothers, birth weight was still low, and weight
gain was still elevated between birth and 1 month (but not 6 months) in HFD¢. Catch-up
growth is recognized as an unfavorable condition [35], associated with later metabolic
conditions in humans. Our data suggest that maternal dietary restriction did not correct the
initial excess in weight gain at 1-month (end-lactation), but resolved the subsequent weight
gain through adulthood. Results align with the observation of lower obesity risk in children
and young adults born after maternal weight loss [36]. Of further note, body weight was
elevated at birth and in adult ND¢ born to the second pregnancy, supporting the concept
that maternal pre-pregnancy weight gain reflects on the adult offspring, independent of
diet composition. Interestingly, Rebholz et al. showed that body weight was increased in
offspring of multiparous dams, leading to metabolic dysfunction, compared to offspring of
primiparous mothers [24]. They comment that weight gain retention between consecutive
pregnancies is common in women, with a risk of multiparity-induced obesity.

Glycemia was high at 1 week in HFD ¢, in agreement with prior evidence in several
animal models [18,37]. Similar to weight gain, glucose levels were elevated at end-lactation
in NdD, born to diet-restricted mothers. These observations implicate that hyperglycemia
at birth (as seen in HFD ) results from intrauterine overfeeding, whereas hyperglycemia
in later life-stages may depend more directly on post-natal weight gain, with a possible
influence of lactation. Baseline insulin levels tended to be elevated in 1-week HFDg,
consistent with their pronounced systemic IR, in agreement with human evidence showing
IR at birth in offspring of obese women [38]. In the second pregnancy, hyperinsulinemia
and systemic IR were evident at 1 month in ND, again suggesting that maternal weight
gain between subsequent pregnancies results in similar offspring outcomes compared
to maternal HFD, consistent with the observation of metabolic dysfunction caused by
maternal multiparity in mice [24].
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Our results show that HFD, are born with hepatic glucose hypermetabolism, likely
depending on their hyperglycemic state. From previous studies, we know that GU in the
liver promotes lipid accumulation [39]. In fact, liver lipid accumulation was observed from
birth to adult age in our HFD g, in which the frequency of intra-hepatocyte triglyceride
vesicles was 4-5 folds higher than in ND,y. Results are consistent with evidence in adult
mice presenting an increase in hepatic lipid content and molecular IR [19], or hepatic
mitochondrial dysmetabolism and lipogenesis [22], followed by significant liver IR [40]. In
line with those studies, we observed severe hepatic IR ensuing at 1 and 6 months. Several
studies indicate that maternal HFD per se is an insufficient determinant of hepatic steatosis
or steatohepatitis unless associated with HFD in the offspring [21,22,41,42]. In support of
this, we could not identify significant inflammatory or fibrotic damage in this group, which
might require post-natal HFD, and our HFD,¢ underwent faster weight gain (compared
to ND,¢) which may contribute to the increase in liver lipids observed in adult life. The
negative association linking liver GU and body weight or waist circumference in this study
further supports an involvement of visceral adiposity to reinforce hepatic lipid accumu-
lation and IR. Notably, NdD,¢ born after maternal diet normalization showed transient
hepatic IR at 1 month, followed by a normal liver metabolism and a significant reduction in
liver lipids compared to HFD,g, resulting in a normal content. This is consistent with the
attenuation of fetal hepatic steatosis following a healthy maternal diet [43], and documents
that in HFD mothers, a few months of dietary normalization in advance of a second preg-
nancy can lead to a metabolically healthy liver in the adult offspring. It is also important to
note that most persisting metabolic abnormalities (weight gain, hyperglycemia, liver IR) in
NdD,¢s were seen only at the age of 1 month, i.e., end of lactation, suggesting that early
post-natal nutrition might still be suboptimal after weight normalization.

Our data showed a slight non-significant reduction in the number of hepatic ex-
tramedullary hematopoiesis niches (HHN) in HFD¢ and a significant increase in niche
numbers in NdD,, together suggesting an impact of maternal diet on hepatic hematopoiesis.
HHN influence the exposure to the multitude of new antigenic encounters in early life,
when different immune cells arise from distinct waves of hematopoietic stem cells within
HHN in the critical transition from a relatively sterile fetal to a new microbial environment,
educating the developing immune system. Thus, an altered and reduced HHN number
might hamper the imprinting of the immune system and increase disease-risks throughout
life, including hepatic steatosis and inflammation triggered by e.g., microbial products
reaching the liver. Future studies of the thymus “hepato-enteric” immune axis in these
animal models might provide new insights into the pathogenesis of many inflammatory
diseases affecting both anatomical sites [44]. An interesting study in mice showed that
chronic HFD compromises fetal liver hematopoiesis and cellularity, with a defective content
of hematopoietic stem and progenitor cells and an increase in differentiated blood cells in
the liver, which were prematurely released from the fetal liver to bone marrow [14], and
the thymus gland for maturation and differentiation of T lymphocytes [14,20]. In line with
this, our results showed that HFD ¢ were born with high thymic-insulin-mediated GU,
correlating with smaller and more numerous thymocytes. These features were related to
greater liver GU and fewer HHN, consistent with the above concept of a premature cellular
overload to the thymus. Our results also reinforce in vitro evidence, showing that glucose
levels in the incubating medium stimulate thymocyte glucose uptake in a dose-response
fashion [16], and that HFD leads to increased thymocyte numbers [45]. Though insulin and
hyperglycemia are important regulators of the peripheral lymphocyte metabolism [46-48],
unfortunately peripheral lymphocytes were not collected. Overall, the previous literature
and our hepatic and thymic findings lead us to speculate that a hypermetabolic liver in
HFD, accelerates progenitor maturation and dislocation to the thymus at newborn age.
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4. Materials and Methods
4.1. Animal Model and Study Design

The study (Figure 1) was carried out in offspring of female minipigs, undergoing two
consecutive pregnancies, after mating with the same male minipig.

First pregnancy. Adult female minipigs received a HFD (+740 kcal from fat daily for
10 weeks, +370 kcal from fat daily thereafter) (n = 5) or a normal diet (ND, ~1850 kcal daily)
(n = 5) throughout gestation and lactation. Fresh water was provided ad libitum. After
100 £ 20 days, mothers were mated and allowed to deliver spontaneously. After weaning,
offspring were fed a ND, and groups were studied (by PET) within 1 week of birth (n =19,
11/8 females/males) and at 1 month (n = 37, 14/23 f/m, end of lactating period), 6 months
(n=25,7/18 f/m), and 12 months (n = 8, 1/7 f/m), the latter representing early and late
adulthood, respectively. All animals were studied at 1 week, and parts of the following
groups were euthanized by anesthesia overdose after imaging for tissue collection.

Second pregnancy. After lactation, HFD mothers were exposed to diet normalization
(NdD, n = 4) for 213 & 25 days before a second pregnancy. The control group (ND, n = 4)
was maintained under the same standard diet. Offspring were studied at 1 week (n = 13,
5/8 f/m), 1 month (n =26,10/16 f/m), 6 months (n =17. 6/11 f/m), and 12 months (n =5,
1/4 £/m) of age undergoing the same measurements described for the first pregnancy.

[18F]-FDG-PET imaging was used to measure liver and thymus gland GU during
isoglycemic-hyperinsulinemia. Liver biopsies were collected in most animals, whereas
thymus biopsies were taken in a subset of minipigs at 1 week of age to measure thymo-
cyte size and density. The experimental protocol was conducted in accordance with the
D.L.116/92 implementation of European Economic Community directive 609/86 regarding
the protection of animals used for experimental and other scientific purposes.

4.2. [18F]-FDG PET

After an overnight fast, anesthesia was induced with tiletamine-zolazepam (10 mg/kg
Zoletil; Virbac Laboratories, Carros, France) and chlorpromazine (1 mg/kg, Largactil;
Sanofi Aventis, Gentilly-Cedex, France), and maintained by an infusion of zolazepam
(2 mg-kg~1-h~! Zoletil). After body weight and basal glycemia determination, catheters
were placed into one ear vein for glucose, insulin, and tracer administration, and in the
contralateral ear vein for anesthesia. We carefully catheterized only superficial veins, and
the amount of blood available was limited. We privileged glucose measurements during
the clamp, whereas insulin was determined by enzymatic assay (Architect i1000sg, Ab-
bott Laboratories, Chicago, IL, USA) wherever possible before or after the study, once
insulin levels had returned to proxy-fasting values (n = 23 offspring at 1 week, n = 22 at
1 month, n = 34 at 6 months, and n = 12 at 12 months of age). Animals were positioned
in the gantry of an ECAT HR+ tomograph (Siemens CTI, Knoxville, TN, USA), and a
continuous infusion of insulin (1 mU-min~!-kg~!) was started. Isoglycemia was adopted
during the clamp to reflect daily-life glycemic conditions, and maintained by infusing a
20% glucose solution, adjusted according to frequent blood glucose monitoring by glucome-
ter (OneTouch, Johnson & Johnson Services, Medical SpA, Pomezia, Italy). A transmission
scan was performed to correct subsequent emission data for photon attenuation. At
t = 45 min, [18F]-FDG was injected, and a 30 min dynamic acquisition of the thoracic
and upper abdominal region was carried out. Sinograms were corrected for dead time,
decay, and photon attenuation and reconstructed by standard algorithms. Images were
analyzed with VINCI software (Vinci64 v4.03, Koln, Germany). Regions of interest were
drawn on images corresponding to the left ventricular chamber of the heart (blood input
function), and the liver and thymus gland, to obtain respective [18F]-FDG time-activity
curves (kBq/mL). Tissue activity in the late frames was divided by the integrated blood
activity to quantify the fractional uptake rate of [18F]-FDG (min~!) in the liver and thymus,
which was multiplied by steady-state glycemia (umol/mL) to obtain respective GU rates
(umol-mL~1-min—1) [49]. Whole body insulin sensitivity (M-value) was measured during
the clamp, as described [50].
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4.3. Histological Analysis

Histological Analysis of Liver. Liver samples were dissected, fixed in 10% neutral
buffered formalin for 24 h, and dehydrated in ethanol. Liver biopsies were processed and
included in paraffin using the Donatello Diapath automatic tissue processor (Martinengo,
Bergamo, Italy), sliced (HistoCore Autocut, Leica BioSystems microtome) with a thickness
of 2 um, and stained with hematoxylin and eosin using the automated Dako CoverStainer
(Santa Clara, CA, USA). Each section was documented at 20 x and 40 x magnification by us-
ing the Nikon Eclipse E600 microscope and connected with a Nikon Y-TV55 digital camera
and NIS-ElementsD Ver5.20.00 Imaging Software (Nikon Corporation, Shinagawa Intercity
Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290, Japan). The analyses were adapted
from the method of Kleiner et al. [51], addressing microcirculation (portal, central vein,
sinusoidal dilatation), fibrosis (portal, perisinusoidal, perivenular), portal inflammation,
and lobular damage (micro- and macrovesicular steatosis, lobular inflammation, i.e., foci
number at 20x; ballooning degeneration; glycogenated nuclei). In addition, the presence
of extramedullary hepatic hematopoiesis and the number of niches were examined at
20 x magnification in 1-week-old minipigs. All parameters were quantified on a categorical
yes/no basis; steatosis was also expressed as the % of cells affected (0 < 5% affected cells,
1 = 6-33% affected cells, 2 = 34-66% affected cells, 3 > 67% affected cells), and lobular
inflammation was stratified according to severity grades, based on the foci number at
20 x magnification (1 = one focus, 2 = two-four foci, 3 > four foci) and ballooning degener-
ation (few cells = 1, many cells = 2).

Histological Analysis of Thymus. Thymocyte number and size were assessed in
19 available samples. These were fixed in 10% neutral buffered formalin and then dehy-
drated, included in paraffin (Bio-Optica, Milano, Italy), sliced (Microm HM 330) with a
thickness of 3 um, and stained with hematoxylin and eosin. Each section was documented
at 100x magnification using an Axioskop optical microscope connected with an AxioCam
MRGc5 color-camera and AxioVision analysis software (Carl Zeiss, Oberkochen, Germany).
Three histological images for each animal were selected and analyzed with the Image]
software (Image] 1.49v—Wayne Rasband, National Institutes of Health, Bethesda, MD, USA)
by measuring thymocyte numbers in a given area and cell diameters in 54 thymocytes per
animal. Cell volumes were estimated by assuming a spherical shape, since diameters were
similar.

4.4. Statistical Analyses

Data are presented as means &+ SEM. Statistical analyses were performed using the
IBM SPSS Statistics 22.0 software package (SPSS, Chicago, IL, USA). The Shapiro-Wilk test,
with a 95% confidence range, was used to evaluate the normality of the data distribution.
The Mann-Whitney test was used to analyze weight gain (%) and hematopoiesis niche
numbers. ANOVA and ANCOVA (adjusting for sex dimorphism [38,52,53]) with post
hoc Fisher LSD (in offspring) or t-tests (in mothers) were applied to analyze the other
variables, comparing age-matched groups (within and between pregnancies). Sex-adjusted
(ANCOVA) statistical results are given in Results, Figures, and Tables, which did not abolish
significance (vs. ANOVA), with the exception of 1-week glycemia, as reported (Results).
The Chi-square test was applied to compare the distribution of categorical variables among
groups. Pearson or Spearman’s regression coefficients were used according to variable
distributions, and a partial correlation analysis was performed to adjust for sex. Statistical
significance was set at a p value < 0.05.

5. Conclusions

Our data document that maternal obesity leads to time-changing liver and thymus
metabolic dysfunction in minipigs. Lipid accumulation and glucose dysmetabolism in the
liver seemed due to the combined action of in-utero HFD exposure and post-natal weight
gain. Our results support the concept of a cross-talk between the liver and thymus in the
first life-days. Dietary normalization in HFD mothers improved systemic IR, steatosis, and
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tissue metabolism in newborns and adults. Hyperglycemia, weight gain excess, and liver
IR were still observed, limited to the first life-month of lactation. A more prolonged or
restrictive diet between subsequent pregnancies might be more fully effective. Overall,
this study underscores the effectiveness of maternal preconception dietary control, even
for a short period. Considering that dietary restriction is a challenging target, another
potential outcome is that post-natal prevention of weight gain and hyperglycemia may
confer sufficient protection from life-long consequences of an adverse in-utero nutritional
environment. Furthermore, future studies of the “thymus-hepato-enteric” immune-axis
might provide new insights into the pathogenesis of diseases affecting these anatomical
sites.
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