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Abstract

Environmental exposures have been linked to COVID-19 severity. Previous studies examined very few environmental factors, and of-
ten only separately without considering the totality of the environment, or the exposome. In addition, existing risk prediction models
of severe COVID-19 predominantly rely on demographic and clinical factors. To address these gaps, we conducted a spatial and con-
textual exposome-wide association study (ExWAS) and developed polyexposomic scores (PES) of COVID-19 hospitalization leveraging
rich information from individuals’ spatial and contextual exposome. Individual-level electronic health records of 50 368 patients
aged 18 years and older with a positive SARS-CoV-2 PCR/Antigen lab test or a COVID-19 diagnosis between March 2020 and October
2021 were obtained from the OneFloridaþ Clinical Research Network. A total of 194 spatial and contextual exposome factors from 10
data sources were spatiotemporally linked to each patient based on geocoded residential histories. We used a standard two-phase
procedure in the ExWAS and developed and validated PES using gradient boosting decision trees models. Four exposome measures
significantly associated with COVID-19 hospitalization were identified, including 2-chloroacetophenone, low food access, neighbor-
hood deprivation, and reduced access to fitness centers. The initial prediction model in all patients without considering exposome
factors had a testing-area under the curve (AUC) of 0.778. Incorporation of exposome data increased the testing-AUC to 0.787. Similar
findings were observed in subgroup analyses focusing on populations without comorbidities and aged 18–24 years old. This spatial
and contextual exposome study of COVID-19 hospitalization confirmed previously reported risk factor but also generated novel pre-
dictors that warrant more focused evaluation.
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Introduction
The 2019 novel coronavirus disease (COVID-19) is a global pandemic
causing significant health, social, and economic impacts. There are
over 97 million cases and 1 million deaths in the United States as of
October 2022.1 A number of risk factors of severe COVID-19 have
been identified, including older age, male gender, and underlying
comorbidities such as hypertension, diabetes mellitus (DM), obesity,
chronic lung diseases, cardiovascular diseases (CVDs), liver and kid-
ney diseases, cancer, clinically apparent immunodeficiencies, local
immunodeficiencies, and pregnancy.2 Recent studies suggested
that spatial and contextual factors may be important determinants
of severe COVID-19.3 Long-term exposures to a number of spatial
and contextual factors (eg, air pollution and chemical exposures,
climate, and the built environment) have been linked to COVID-19
severity through several major underlying mechanisms including
impairing of immune system, regulating viral survival and

transport, and increasing comorbidities associated with severe

COVID-19.2

However, there are several gaps in existing studies. First, de-

spite the potential important role of spatial and contextual fac-

tors, existing risk prediction models of severe COVID-19

predominantly rely on demographic and clinical factors, and lit-

tle effort has been made to consider the spatial and contextual

exposome. Second, most COVID-19 studies that examined spatial

and contextual factors have focused on individual exposures or

exposures from a single class (eg, air pollutants),3 and very few

have considered the totality of the environment or the expo-

some.4,5 Individuals are exposed to multiple spatial and contex-

tual factors simultaneously with complex interplays among

these factors, and the exposome is the ideal framework to rigor-

ously estimate the health effects associated with multiple expo-

sures. Third, to date, most of these COVID-19 studies on spatial
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and contextual factors were ecological and based on aggregated
COVID-19 outcomes. While informative for hypothesis genera-
tion, ecological studies are limited by the lack of individual-level
characteristics and substantial exposure misclassification.

To address these gaps, in this study, we obtained individual-
level electronic health records (EHRs) data of COVID-19 patients
from a large clinical research network, the OneFloridaþ network,
and linked data from multiple sources to characterize patients’
long-term exposures to the spatial and contextual exposome
based on their geocoded residential histories. Using the agnostic
and hypothesis-free exposome framework, we conducted a spa-
tial and contextual exposome-wide association study (ExWAS)
and developed polyexposomic scores (PES) of COVID-19 hospitali-
zation.

Methods
Study population
We obtained EHR data from the OneFloridaþ Clinical Research
Network, a large clinical data research network that is part of the
National Patient Centered Clinical Research Network
(PCORnet).6,7 OneFloridaþ encompasses collaborations with 14
academic institutions and health systems and comprises longitu-
dinal and linked individual-level health care information for ap-
proximately 20 million patients. The data included in
OneFloridaþ are a HIPAA-limited data set (ie, patients’ geocoded
residential histories are available and dates are unaltered) and
follow the PCORnet Common Data Model.8

We obtained data from 58 482 patients with (1) a positive
SARS-CoV-2 PCR/Antigen lab test or a COVID-19 diagnosis be-
tween March 2020 and October 2021, (2) at least one inpatient en-
counter or two outpatient encounters (at least 3 months apart)
within 5 years before COVID-19 onset, and (3) geocoded residen-
tial history. We further excluded those under the age of 18 years
(n¼ 8114). A total of 50 368 patients were included in the analy-
ses. This study was approved by the institutional review boards
at the Mass General Brigham HealthCare System (2021P002830)
and University of Florida (IRB202001831).

COVID-19 hospitalization
Consistent with other studies,9 we defined COVID-19 hospitaliza-
tion as the first hospital admission within 7 days prior to and/or
15 days after patients’ first COVID-19 positive date.

The spatial and contextual exposome
To assess patients’ long-term exposures to the spatial and con-
textual exposome, 10 well-validated sources were used to obtain
data on various measures related to the natural, built, and social
environment. Patients’ geocoded residential history data were
obtained from the EHR, and spatiotemporally linked to exposome
measures using a 250-m circular buffer around each address.
Area- and time-weighted averages were generated to account for
the heterogeneous spatiotemporal scale of exposome data.
Table 1 shows a summary of the spatial and contextual expo-
some data sources. A total of 268 spatial and contextual expo-
some factors covering 10 categories were obtained.

Natural environment
We obtained data on ambient ozone (O3) and fine particulate
matter (PM2.5) from the US Environmental Protection Agency
(USEPA)’s Fused Air Quality Surface Using downscaling (FAQSD)
Files,10 which used a Bayesian space-time downscaler model to
fuse 12 km gridded output from the Models-3/Community

Multiscale Air Quality model with daily O3 and PM2.5 stationary
monitored data from the National Air Monitoring Stations/State
and Local Air Monitoring Stations (NAMS/SLAMS).11 Daily esti-
mates were obtained at the Census tract level for 2015–2018. In
addition, we obtained data on monthly PM2.5 composition (ie, sul-
fate [SO2�

4 ], ammonium [NHþ4 ], nitrate [NO�3 ], organic matter
[OM], black carbon [BC], mineral dust [DUST], and sea-salt [SS])
at a spatial resolution of 0.01� in longitude and latitude in 2015–
2017 from the University of Washington at St. Louis Atmospheric
Composition Analysis Group.12 Extensively cross-validated geo-
graphically weighted models were used to statistically fuse satel-
lite observations of aerosol optical depth with data from a
chemical transport model (GEOS-Chem).12 Air toxicant measures
were obtained from the National Air Toxics Assessment, which
was developed based on a national emissions inventory of out-
door air toxics sources.13 Exposure estimates of 175 air toxicants
are available at the Census tract level in 2014.

Built environment
Green space was assessed using the normalized difference vege-
tation index from NASA’s MODIS/Terra, which has been widely
used in epidemiological studies.14 We obtained data in 2015–2019
with a 16-day temporal resolution and a 250-m spatial resolution.
Walkability was assessed using the National Walkability Index
developed by the USEPA,15 which measures walkability on a scale
from 1 to 20 (ie, higher score indicates higher walkability) for
each Census block group. Data on food access were obtained
from the US Department of Agriculture (USDA) Food Access
Research Atlas.16 We obtained Census-tract level measures in
2015 and 2019, and linear interpolation was performed to con-
struct measures in 2016–2018. Vacant land measures at the
Census-tract level in 2015–2019 were obtained from the US
Department of Housing and Urban Development (USHUD) aggre-
gated US Postal Service (USPS) administrative data.17

Social environment
Neighborhood deprivation index (NDI), a validated metric of
neighborhood socioeconomic status (SES),18 was generated based
on 20 Census block group-level factors (covering seven domains
including poverty, occupation, housing, employment, education,
racial composition, and residential stability) using data from the
2015–2019 American Community Survey. Higher NDI scores rep-
resent worse neighborhood SES. In addition, 10 contextual-level
social capital measures were constructed using the 2015–2019
Census Business Pattern data at the 5-digit ZIP Code Tabulation
Area (ZCTA5) level based on the North American Industry
Classification System codes.19 Furthermore, we also obtained
eight county-level annual crime measures from the Uniform
Crime Reporting Program in 2015–2019.20

Covariates
Patients’ age was categorized into seven groups, with 10-year
increments for those aged 25–74 years old and two additional
groups for those aged between 18–24 and �75 years old. Patients’
gender and race/ethnicity (ie, non-Hispanic White, non-Hispanic
Black, Hispanic, or other) were also included. In addition, we
obtained patients’ health insurance status (ie, Medicare,
Medicaid, other government programs, private insurance, no in-
surance, or other) and history of comorbidities (ie, atherosclerotic
CVD, myocardial infarction, hypertension, peripheral vascular
disease, cerebrovascular disease, DM, chronic obstructive pulmo-
nary disease, asthma, cancer, chronic kidney disease, renal dis-
ease, and organ transplant). We also obtained time-series data
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on several county-level COVID-19-related factors and linked
them to each patient based on their county of residence and

COVID-19 positive date, including number of days since first
COVID-19 case derived using data from Johns Hopkins University,
Center for Systems Science and Engineering Coronavirus

Resource Center,21 county-level COVID-19 vaccination rates (ie,
at least one dose, fully vaccinated) obtained from the US Centers
for Disease Control and Prevention,1 and county-level hospital

bed capacity.22

Statistical analysis
Descriptive analyses by patients’ sociodemographic status,

comorbidities, county-level COVID-19-related factors, and COVID-
19 hospitalization were performed. A total of 57 spatial and con-
textual exposome measures with unique values <0.1% of the

sample size were removed (Table S1). All continuous exposures
were standardized (ie, mean¼ 0 and standard deviation¼ 1).
Figure 1 shows the flow chart summarizing the analysis pipeline.

The standard two-phase environment-wide association study

followed by a multiple generalized linear regression (EWAS-MLR)
approach was used to perform the ExWAS, with environment-
wide association study followed by a multivariable regression

step including the identified hits.23,24 Pairwise Pearson correla-
tions were computed, and we further excluded 17 spatial and
contextual measures with absolute correlations >0.99 with an-

other measure (Table S2). We imputed missing data for all expo-
sures and potential confounders for the ExWAS using the
chained equations method with the mice package in R.25 We con-

sidered variables as predictors in the imputation model if their
proportion of nonmissing values among patients with missing
values in the variable to be imputed was larger than 40% and

they were correlated (ie, an absolute correlation value> 0.4) with
the variable to be imputed or the probability of the variable being
missing. A single dataset was imputed given the minimal impacts

of the imputation procedure because of the large sample size and
small fractions of missing data. In Phase 1, data were randomly
split into a 50% discovery set and a 50% replication set. We indi-
vidually examined the associations between each of the 194 spa-
tial and contextual exposome factors included and COVID-19
hospitalization, after accounting for multiple comparisons.
Mixed-effect logistic regression models were fitted for each expo-
sure after adjusting for all the potential confounders and with a
random intercept by county. To account for the multiple testing,
the Benjamin–Hochberg procedure was used to control the false
discovery rate (FDR) at 5%.26 A variable with FDR-adjusted P-val-
ues (or q-values)< 0.05 in both the discovery and replication sets
is determined as statistically significant. A correlation heatmap
was also generated to visualize pairwise Pearson correlations of
the variables retained from Phase 1. In Phase 2, we used a multi-
variable mixed-effect logistic regression model to estimate the ef-
fect sizes, which simultaneously included all significant
exposures from Phase 1 along with all the potential confounders.
Variables remained significant in Phase 2 are retained. Odds ra-
tios (ORs) and 95% confidence intervals (CIs) were reported.

To develop and validate the PES of COVID-19 hospitalization,
data were randomly split into a training set (80%) and a testing
set (20%). We trained prediction models using CatBoost, a high-
performance open-source library for gradient boosting on
decision trees. Hyperparameters were tuned using the grid search
approach based on 4-fold cross-validations over the training set,
and validation was performed using the testing set. Six models
were trained and validated with and without spatial and contex-
tual exposome measures in (1) all COVID-19 patients, (2) COVID-
19 patients without any comorbidity, and (3) COVID-19 patients
without any comorbidity and aged 18–24 years old. Feature im-
portance measures were assessed using Shapley additive explan-
ations (SHAP) values.27 All analyses were performed using the R
statistical software (version 4.1.3; R Development Core Team).

Table 1. Summary of spatial and contextual exposome measures

Category Data source Time period Spatial scale Temporal scale Number of
measures

Number of
variablesa

PM2.5 and O3 Fused Air Quality Surface
Using Downscaling Files,
USEPA

2015–2018 Census tract 1-day 2 2

PM2.5 composi-
tions

Atmospheric Composition
Analysis Group, WUSTL

2015–2017 0.01� in lon./lat. 1-month 7 7

Air toxicants National Air Toxic
Assessment, USEPA

2014 Census tract 1-year 175 103

Green space MODIS/Terra Normalized
Difference Vegetation
Index, NASA

2015–2019 250 m 16-day 1 1

Walkability Walkability Index, USEPA 2019 Census block group Cross-sectional 1 1
Food access Food Access Research Atlas,

USDA
2015, 2019 Census tract 1-year 44 43

Vacant land Aggregated USPS
Administrative Data on
Address Vacancies, USHUD

2015–2019 Census tract 3-month 19 18

Neighborhood
deprivation

American Community
Survey, US Census Bureau

2015–2019 Census block group 5-year 1 1

Social capital Census Business Pattern, US
Census Bureau

2015–2019 ZCTA5 1-year 10 10

Crime and safety Uniform Crime Reporting
Program, FBI

2015–2019 County 1-year 8 8

a Number of variables after removing 57 measures with the number of unique values <0.1% of the total sample size and 17 measures with absolute correlations
>0.99 with another measure.
Abbreviations: FBI, Federal Bureau of Investigation; MODIS, The Moderate Resolution Imaging Spectroradiometer; NASA, The National Aeronautics and Space
Administration; USDA, United States Department of Agriculture; USEPA, United States Environmental Protection Agency; USHUD, United States Department of
Housing and Urban Development; WUSTL, Washington University at St. Louis; ZCTA5, 5-digit ZIP Code Tabulation Areas.
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Results
Of the 50 368 COVID-19 patients included in this study, a total of

12 911 (25.6%) were hospitalized. Table 2 shows the distribution

of patients’ characteristics by COVID-19 hospitalization.

Compared with those without hospitalization, hospitalized

patients were more likely to be older, male, non-Hispanic Black

or Hispanic, Medicare recipient, and have comorbidities. In addi-

tion, hospitalized patients were less likely to live in counties with

higher vaccination rates or hospital bed capacity. Table S3 shows

the distribution of spatial and contextual exposome measures in-

cluded in this study.
The volcano plot presented in Figure 2 summarizes results

from Phase 1 of the ExWAS. A total of 12 and 24 exposome meas-

ures were statistically significantly associated with COVID-19

hospitalization after accounting for multiple comparisons in the

discovery and replication sets, respectively. Among them, seven

exposome measures were significant in both the discovery and

replication sets. The effect estimates for each of the 194 expo-

some measures from Phase 1 were shown in Table S4.
Figure S1 shows the pairwise correlations of the seven expo-

some measures that were significant in both the discovery and

replication sets in Phase 1. All correlation coefficients had abso-

lute values below 0.7. In Phase 2 of the ExWAS, the seven expo-

some measures were simultaneously included in a multivariable

mixed-effect logistic regression model after adjusting for the

covariates. Table 3 shows the adjusted ORs for each standard de-

viation increase in these measures, along with their 95% CIs. A

total of four exposome measures significantly associated with

COVID-19 hospitalization were identified, including 2-chloroace-

tophenone (OR, 1.13, 95% CI, 1.08–1.18), percentage of low food

access population with housing units without vehicle access at

1 mile (OR, 1.04, 95% CI, 1.00–1.07), NDI (OR, 1.10, 95% CI, 1.07–

1.13), and density of fitness and recreational sports centers (OR,

0.95, 95% CI, 0.92–0.97).

Figure 3 shows the receiver operating characteristic (ROC)
curves from the validations using the testing sets for the prediction
models trained in the three target populations, with and without
spatial and contextual exposome measures as predictors. In the
first set of models focusing on all COVID-19 patients, we observed
testing-AUCs (areas under the curve) of 0.787 (95% CI, 0.777–0.797)
and 0.778 (95% CI, 0.768–0.788) with and without spatial and con-
textual exposome measures included as predictors, respectively.
Similar patterns of AUCs were observed between models with and
without exposome measures in the other two target populations,
with testing-AUCs of 0.767 (95% CI, 0.751–0.785) and 0.756 (95% CI,
0.739–0.773) observed in models focusing on those without comor-
bidities, respectively, and testing-AUCs of 0.705 (95% CI, 0.651–
0.756) and 0.669 (95% CI, 0.602–0.732) in models focusing on those
without comorbidities and between 18 and 24 years old. Table S5
shows the optimal hyperparameters for each model tuned by grid
searches based on cross-validations.

Figure 4 shows the beeswarm plot and mean absolute SHAP
values for the top 10 predictive features from each of the models
with spatial and contextual exposome measures included. In the
model with all COVID-19 patients, 3 of the top 10 features were
exposome measures, including dimethyl phthalate, NO�3 , and
NDI. In the model of patients without any comorbidity, 4 of the
top 10 features were exposome measures, including DUST, NO�3 ,
NDI, and O3. Similarly, 5 of the top 10 features were exposome
measures in the model focusing on those without comorbidities
and aged 18–24 years old, including burglary rate, density of fit-
ness and recreational sports centers, DUST, murder rate, and
hexamethylene diisocyanate.

Discussion
This is the first spatial and contextual exposome study of COVID-
19 hospitalization using individual-level data. Using the ExWAS,
we assessed the associations between 194 spatial and contextual

Figure 1. Flowchart of the analysis pipeline. Abbreviations: ExWAS, exposome-wide association study; PES, polyexposomic score.
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exposome measures and COVID-19 hospitalization in Florida,
USA. After accounting for multiple testing and high correlations
among the exposures, four exposome measures characterizing
the natural (ie, 2-chloroacetophenone), built (ie, food access), and
social environment (ie, neighborhood deprivation and density of
fitness and recreational sports centers) were identified to be sig-
nificantly associated with COVID-19 hospitalization. In addition,
we also developed and validated PES models of COVID-19 hospi-
talization. While not statistically significant, prediction models
with spatial and contextual measures as predictors had better
performance compared with models without exposome meas-
ures.

Long-term exposures to air pollution have been widely
reported to be associated with COVID-19 severity. Ecological
studies conducted in the early stage of the pandemic suggested

that long-term exposures to US EPA-regulated criteria air pollu-
tants such as PM2.5 and O3 are associated with higher COVID-19
mortality.28-38 More recently, studies using individual-level data
also found positive associations between long-term exposures to
PM2.5 and COVID-19 hospitalization.9,39 In our study, neither
PM2.5 or O3 was significantly associated with COVID-19 hospitali-
zation. The inconsistent findings may be partially due to different
study populations (eg, Bowe et al.9 focused on veterans), potential
exposure misclassifications (eg, Mendy et al.39 estimated expo-
sures at residential zip code level), and heterogeneous source and
chemical composition of air pollution across different regions.40

Interestingly, we found that while NO�3 (ie, a major PM2.5 constit-
uent) was only significantly associated with COVID-19 hospitali-
zation in the discovery set in Phase 1 of the ExWAS (and
therefore was not retained in Phase 2 of the ExWAS), it was one

Table 2. COVID-19 patients’ characteristics by COVID-19 hospitalization between March 2020 and October 2021 in OneFloridaþ [mean 6

SD/n(%)]

COVID-19 hospitalization Total
50 368 (100.0)

Characteristics Yes
12 911 (25.6)

No
37 457 (74.4)

Age (year)
Continuous 59.5 6 18.2 44.0 6 17.6 48.0 6 19.0
Categorical

18–24 446 (3.5) 6292 (16.8) 6738 (13.4)
25–34 1064 (8.2) 7639 (20.4) 8703 (17.3)
35–44 1413 (10.9) 7001 (18.7) 8414 (16.7)
45–54 2004 (15.5) 6133 (16.4) 8137 (16.2)
55–64 2782 (21.5) 5320 (14.2) 8102 (16.1)
65–74 2428 (18.8) 3040 (8.1) 5468 (10.9)
�75 2774 (21.5) 2032 (5.4) 4806 (9.5)

Gender
Male 5805 (45.0) 13 110 (35.0) 18 915 (37.6)
Female 7104 (55.0) 24 343 (65.0) 31 447 (62.4)
Missing 2 (0.0) 4 (0.0) 6 (0.0)

Race/ethnicity
Non-Hispanic White 5079 (39.3) 15 430 (41.2) 20 509 (40.7)
Non-Hispanic Black 3547 (27.5) 9735 (26.0) 13 282 (26.4)
Hispanic 3345 (25.9) 8456 (22.6) 11 801 (23.4)
Other 729 (5.6) 2790 (7.4) 3519 (7.0)
Missing 211 (1.6) 1046 (2.8) 1257 (2.5)

Health insurance
Medicare 2791 (21.6) 3250 (8.7) 6041 (12.0)
Medicaid 567 (4.4) 2370 (6.3) 2937 (5.8)
Other government programs 865 (6.7) 1531 (4.1) 2396 (4.8)
Private insurance 6450 (50.0) 18 995 (50.7) 25 445 (50.5)
No insurance 628 (4.9) 1893 (5.1) 2521 (5.0)
Other 1427 (11.1) 9248 (24.7) 10 675 (21.2)
Missing 183 (1.4) 170 (0.5) 353 (0.7)

Comorbidities
Atherosclerotic CVD 2462 (19.1) 2685 (7.2) 5147 (10.2)
Myocardial infarction 533 (4.1) 548 (1.5) 1081 (2.1)
Hypertension 7507 (58.1) 12 507 (33.4) 20 014 (39.7)
Peripheral vascular disease 1453 (11.3) 1900 (5.1) 3353 (6.7)
Cerebrovascular disease 459 (3.6) 646 (1.7) 1105 (2.2)
DM 4682 (36.3) 6324 (16.9) 11 006 (21.9)
Chronic obstructive pulmonary disease 2484 (19.2) 4333 (11.6) 6817 (13.5)
Asthma 157 (1.2) 173 (0.5) 330 (0.7)
Cancer 889 (6.9) 1199 (3.2) 2088 (4.1)
Chronic kidney disease 4416 (34.2) 5483 (14.6) 9899 (19.7)
Renal disease 2407 (18.6) 2231 (6.0) 4638 (9.2)
Organ transplant 354 (2.7) 358 (1.0) 712 (1.4)
Any of the comorbidities above 8629 (66.8) 16 094 (43.0) 24 723 (49.1)

County-level COVID-19-related factors
Number of days since first case 308.0 6 157.1 307.1 6 161.6 307.3 6 160.5
At least one vaccination dose (%) 21.8 6 25.6 22.5 6 25.9 22.3 6 25.8
Fully vaccinated (%) 17.5 6 21.9 18.2 6 22.3 18.0 6 22.2
Hospital bed capacity (per 100 000 population) 69.4 6 65.2 78.9 6 66.7 76.5 6 66.4

Exposome, 2023, Vol 0 No. 0 | 5



of the top 10 most predictive features of COVID-19 hospitaliza-
tion in the PES model focusing on all patients. Feature interaction
strength measures from the CatBoost models showed that the
top feature interacted with NO�3 is age, which was also reflected
in the stratified analyses focusing on those without any comor-
bidity and aged 18–24 years old, among whom NO�3 was not iden-
tified as a top 10 predictive feature. These findings along with the
well-known inflammatory impacts of NO�3 suggest that long-
term exposures to NO�3 may contribute to COVID-19 severity,41

especially among older patients. On the other hand, few studies
have been conducted to examine air toxicants beyond the criteria
air pollutants. In this study, we found that long-term exposures
to 2-chloroacetophenone were also associated with increased
odds of COVID-19 hospitalization. 2-Chloroacetophenone is pri-
marily used in tear gas and chemical mace, and previous animal
studies suggested that chronic exposures to 2-chloroacetophe-
none have adverse respiratory effects.42 In addition, dimethyl
phthalate (used in plastics and insect repellants and has been
linked to irritation of the eyes, nose, and throat)43 and hexam-
ethylene diisocyanate (used in polyurethane paints and coatings,
and has been linked to chronic lung problems)44 were also identi-
fied among the top 10 predictive features in PES models in
all patients and in patients without any comorbidity and aged
18–24 years old, respectively. Future studies are warranted to bet-
ter identify and understand source and chemical composition of
air pollutants that are associated with COVID-19 outcomes.

The association between neighborhood deprivation and
COVID-19 hospitalization has been widely documented,45,46

which was also observed in this study. However, few studies have
been conducted to examine the potential impacts of other built
and social environmental factors on COVID-19 hospitalization in-
dependent of neighborhood deprivation. In this study, we found

that independent of neighborhood deprivation, lower food access
is also associated with higher odds of COVID-19 hospitalization.
This finding along with consistent results observed in previous
studies suggest that long-term food insecurity may impact
COVID-19 outcomes.5,47,48 In addition, we also found that higher
long-term access to fitness and recreational sports centers is as-
sociated with lower odds of COVID-19 hospitalization. While no
previous study has examined access to fitness centers and
COVID-19 outcomes, the results observed in this study are con-
sistent with the well-established protective associations between
physical activity and COVID-19 outcomes.49,50

In addition to the ExWAS, we also developed and validated pre-
diction models of COVID-19 hospitalization. Leveraging the rich
spatial and contextual exposome data, we developed PES models
in three different target populations. While not statistically signifi-
cant, we did observe better prediction performance comparing the
PES with exposome factors versus prediction models without spa-
tial and contextual exposome factors, especially in individuals
without any traditional risk factors (ie, no comorbidity and aged
18–24 years old). These results suggest that spatial and contextual
exposome data can provide complementary information to non-
spatial factors in disease prediction. Compared with other omics
data, the cost to append spatial and contextual exposome meas-
ures is relatively low. However, there are several methodologically
challenges to better leverage spatial and contextual exposome
data for disease prediction.51 For example, the nonsignificant pre-
diction improvements may be partially due to the use of traditional
machine learning models which rely on manually spatiotempo-
rally aggregated features. More efforts are needed to develop novel
deep learning model architectures to better preserve the rich and
heterogeneous spatiotemporal structures in spatial and contextual
exposome data.51

Figure 2. Volcano plot showing the results from Phase 1 of the ExWAS of COVID-19 hospitalization between March 2020 and October 2021 in
OneFloridaþ (n¼ 50 368).
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Table 3. Results from the ExWAS of COVID-19 hospitalization between March 2020 and October 2021 in OneFloridaþ (n¼ 50 368)

Exposure Standard
deviation

Phase 1 Phase 2

Discovery set Replication set

Variable Category OR (95% CI) P-value q-value OR (95% CI) P-value q-value OR (95% CI) P-value

2-chloroacetophenone
(lg/m3)

Air toxicant 3.42� 10�6 1.16 (1.10–1.23) 1.48� 10�8 9.58� 10�7 1.12 (1.07–1.19) 1.48� 10�5 6.63� 10�4 1.13 (1.08–1.18) 8.5� 10�8

Selenium compounds (lg/m3) Air toxicant 1.74� 10�4 1.07 (1.03–1.11) 3.05� 10�4 6.56� 10�3 1.06 (1.03–1.10) 8.53� 10�4 1.10� 10�2 1.00 (0.97–1.03) 8.5� 10�1

% low food access population
with housing units without
vehicle access at 1 mile

Food access 1.37 1.06 (1.02–1.09) 1.72� 10�3 2.78� 10�2 1.07 (1.03–1.10) 7.32� 10�5 1.78� 10�3 1.04 (1.00–1.07) 2.95� 10�2

% low food access population
with housing units without
vehicle access at 1/2 mile

Food access 2.37 1.09 (1.05–1.13) 1.67� 10�6 5.40� 10�5 1.09 (1.05–1.13) 1.05� 10�6 1.02� 10�4 0.99 (0.96–1.03) 7.46� 10�1

% low food access population
that are low income at
1/2 mile

Food access 6.96 1.12 (1.08–1.15) 7.51� 10�10 7.28� 10�8 1.08 (1.04–1.11) 3.7� 10�5 1.20� 10�3 1.02 (0.98–1.06) 2.66� 10�1

Neighborhood deprivation
index

Neighborhood
deprivation

2.10 1.16 (1.12–1.21) 5.51� 10�16 1.07� 10�13 1.11 (1.07–1.15) 2.36� 10�8 4.58� 10�6 1.10 (1.07–1.13) 3.49� 10�9

Number of establishments in
fitness and recreational
sports centers per 10 000
population

Social capital 9.92� 10�1 0.92 (0.89–0.95) 2.69� 10�7 1.30� 10�5 0.93 (0.90–0.96) 1.07� 10�5 6.63� 10�4 0.95 (0.92–0.97) 1.87� 10�5

Odds ratio (OR) and 95% confidence interval (CI) for each standard deviation increase.
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Our study has several strengths. Leveraging individual-level
EHR data from OneFloridaþ with detailed information on known
risk factors of severe COVID-19 and potential confounders, we
conducted an ExWAS to examine the associations between
COVID-19 hospitalization and long-term exposures to a variety of
spatial and contextual exposome factors. In addition, we also de-
veloped and validated prediction models of COVID-19 hospitali-
zation. Furthermore, to account for residential mobility and the
spatiotemporal dynamic nature of spatial and contextual expo-
some factors, we spatiotemporally linked exposome data based
on residential histories in OneFloridaþ.

Several limitations also need to be acknowledged. First, potential
exposure misclassifications may exist. While residential histories
were considered in exposome data linkage, we do not have informa-
tion on individuals’ time-activity patterns. Second, the EWAS-MLR
approach used in the ExWAS did not consider potential interactions
or nonlinear associations, which are methodologically challenging
for exposome studies focusing on inference given the high-
dimensional nature of the data.51 However, we observed consistent
findings from the feature importance measures in prediction mod-
els, which was developed using gradient boosting on decision trees
that can account for nonlinear associations and high-order interac-
tions. Third, vaccination data were only available at the county-
level and SHAP analysis showed that county-level vaccination rates
were positively associated with higher likelihoods of COVID-19 hos-
pitalization. Future studies with individual-level vaccination data
are warranted to account for the potential ecological fallacy.
Fourth, similar to other EHR- or real-world data-based studies,9

COVID-19 cases who were not tested or tested outside of
OneFloridaþ Clinical Research Network were not included. Fifth,
while many spatial and contextual factors have been included in
this study, our list is not exhaustive, and future efforts are war-
ranted in the field to continuously improve data standards and
ontologies of the spatial and contextual exposome.51

Conclusions
This spatial and contextual exposome study provides new
insights into the role of long-term environmental exposures in

COVID-19 hospitalization. In the ExWAS, we confirmed previ-
ously reported associations (ie, food access and neighborhood
deprivation) and identified novel environmental factors (ie, 2-
chloroacetophenone and access to fitness and recreational sports
centers) associated with COVID-19 hospitalization. We also de-
veloped and validated prediction models of COVID-19 hospitali-
zation and showed that the spatial and contextual exposome
provides complementary predictive information to identify high-
risk individuals for COVID-19 hospitalization.
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50. Ezzatvar Y, Ram�ırez-Vélez R, Izquierdo M, Garcia-Hermoso A.

Physical activity and risk of infection, severity and mortality of

COVID-19: a systematic review and non-linear dose–response

meta-analysis of data from 1 853 610 adults. Br J Sports Med.

2022;56(20):1188–1193.

51. Hu H, Liu X, Zheng Y, et al. Methodological challenges in spatial

and contextual exposome-health studies. Crit Rev Environ Sci

Technol. 2023;53(7):827–846.

Exposome, 2023, Vol 0 No. 0 | 11

https://10.1126/sciadv.abd4049

	tblfn1
	tblfn2
	tblfn3

