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Recently developed methods in computational neuroethology have enabled increasingly

detailed and comprehensive quantification of animal movements and behavioral

kinematics. Vocal communication behavior is well poised for application of similar

large-scale quantification methods in the service of physiological and ethological studies.

This review describes emerging techniques that can be applied to acoustic and vocal

communication signals with the goal of enabling study beyond a small number of model

species. We review a range of modern computational methods for bioacoustics, signal

processing, and brain-behavior mapping. Along with a discussion of recent advances

and techniques, we include challenges and broader goals in establishing a framework

for the computational neuroethology of vocal communication.
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1. INTRODUCTION

Over the past several years emerging methods have enabled biologists to capture and quantify
ethological data in ways that yield new insights into the structure and organization of behavior.
These methods capitalize on two advances: the ability to record and annotate very-large behavioral
datasets, and the use of new computational tools to reveal structure within and between these
datasets. The ethological and neuro-ethological study of animal communication has a long history,
and its future stands to benefit greatly from these new methods. Here, we discuss this emerging set
of tools available to the animal communication researcher. We contextualize these computational
methods within the emerging field of computational ethology more broadly and discuss how these
tools can be applied in behavior and neurophysiology.

Many of the challenges that exist in the computational neuroethology of vocal behavior
are neither new nor unique and parallel those in other areas of human and animal behavior.
For example, the algorithmic discovery of vocal units and sequential organization in animal
communication parallels the zero-speech challenge in language acquisition: given limited sensory
information, can we build a system that discovers subwords, words, and sequential and syntactic
organization present in speech (Versteegh et al., 2015). In animal communication the challenge
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is similar: can we infer vocal segment boundaries, categories,
and temporal organization from the physical and temporal
characteristics of the signal. The computational neuroethology of
vocal communication also parallels the emerging field of motion
sequencing and the mapping behavioral kinematics, where new
technologies allowing researchers tomap postures and behavioral
kinematics have facilitated new understandings of behavioral
dynamics across scales (Anderson and Perona, 2014; Berman,
2018; Brown and De Bivort, 2018; Christin et al., 2019; Datta
et al., 2019; Pereira et al., 2019). It is the goal of computational
neuroethology to not only develop an understanding of
the organization of behaviors, but also the neural and
cognitive mechanisms that facilitate behavior. This review
synthesizes work from several fields including bioacoustics,
systems neuroscience, and computational neuroethology to
discuss emerging methodologies and frameworks which span
these fields and are available to vocal communication researchers.

The review begins with considerations in bioacoustics and
signal processing and then shifts to a consideration of acoustic
structure, sequential organization, and eventually to mapping
the acoustic and sequential structure of vocal communication
to neurophysiology correlates of behavior and perception.
Throughout our review of current approaches, we relay ongoing
challenges, discuss future directions, and attempt to give practical
advice on vocal analyses.

2. SIGNAL PROCESSING AND DENOISING

Recorded sounds typically contain a mixture of both relevant
and irrelevant components. Computational ethology often relies
on modeling structure in data without making assumptions
about the relevant features. Thus it is often important to remove
irrelevant features (i.e., background noise) prior to analysis. Ones
operationalization of noise can vary based upon the end goal of
the analysis. A simple example is band-pass filtering: because
vocalizations typically occur in a confined frequency range, it
is reasonable to consider signal outside of that range noise and
filter it away. When a recording contains vocalizations from
two animals, a songbird with song in a high-frequency range,
and heterospecific calls in a low-frequency range, if the subject
of interest is the songbird, a simple high-pass filter can be
applied to attenuate the non-target calls. When frequency ranges
overlap between signal and noise, however, the problem of noise
reduction becomes more difficult.

2.1. Noise Reduction
Determining what constitutes noise in recordings is non-trivial
and impacts what type of noise reduction algorithm can and
should be used. In a systematic review of noise reduction
methods in bio-acoustics, Xie et al. (2020) outline six classes of
noise reduction algorithms used for bio-acoustics: (1) Optimal
FIR filter (e.g., Kim et al., 2000), (2) spectral subtraction (e.g.,
Boll, 1979; Kiapuchinski et al., 2012; Sainburg et al., 2020b),
(3) minimum-mean square error short-time spectral amplitude
estimator (MMSE-STSA; e.g., Ephraim and Malah, 1984; Alonso
et al., 2017; Brown et al., 2017) (4) wavelet based denoising (e.g.,
Ren et al., 2008; Priyadarshani et al., 2016) (5) image processing

based noise reduction, and (6) deep learning based noised
reduction. These noise reduction algorithms can be broadly
divided into two categories: stationary and non-stationary
noise reduction (Figure 1A). Stationary noise reduction acts on
noise that is stationary in intensity and spectral shape over
time, such as the constant hum of electronics. Non-stationary
noise reduction targets background noise that is non-stationary
and can fluctuate in time, like the on-and-off presence of a
plane flying overhead (Figure 1B). Stationary noise reduction
algorithms operationalize noise as stationary signals, for example,
the constant hum from a nearby electronic device in a laboratory
setting, or insect noise in a field setting.

One approach to stationary noise reduction is spectral
gating, a spectral-subtraction algorithm (e.g., Kiapuchinski et al.,
2012; Sainburg et al., 2020b). The general notion is that for
each frequency component of the signal, any time-frequency
component below a threshold is discarded as noise. Spectral
gating computes the mean and standard deviation of each
frequency channel of a Short-Time Fourier Transform (STFT)
of a signal (e.g., a spectrogram) and optionally a noise clip. A
threshold, or gate, for each frequency component is then set at
some level above the mean (e.g., three standard deviations). This
threshold determines whether a time-frequency component in
the spectrogram is considered signal or noise. The spectrogram
is then masked based upon this threshold and inverted (with an
inverse STFT) back into the time domain.

2.2. Non-stationary Noise Reduction
While stationary noise reduction algorithms can operationalize
noise as any stationary acoustic signal, non-stationary algorithms
vary in how they determine what is signal and what is noise. Non-
stationary noise can bemore challenging to remove because it can
be difficult to algorithmically define the difference between signal
and noise. Because the hum of a computer in the background
of a lab-recording is stationary, it can be defined as noise and
can be readily removed. A bird hopping around its cage can
produce time-varying sounds in the same frequency range as
song, making it especially pernicious.

One approach for determining the boundary between signal
and non-stationary noise is to determine the timescale on which
the signal acts and treat anything outside of that timescale as
noise. For example, zebra finch motifs are generally between
0.5 and 1.5 s long repeated one to four times (Bruno and
Tchernichovski, 2019). Any acoustic event that is outside of
that time range could be considered noise. Spectral gating can
be extended to non-stationary noise reduction by computing a
variable gate based upon the current estimate of background
noise. In the Python package noisereduce (Sainburg, 2019),
this background estimate is computed using a time-smoothed
spectrogram (using a forward and backward IIR filter) on
a timescale parameterized by the expected signal length, an
approach motivated by the Per-Channel Energy Normalization
algorithm (outlined in Section 3). An example of this is given
in Figure 1, where stationary and non-stationary spectral gating
noise reduction is applied to birdsong with an airplane noise
occurring in the background of the middle of the recording.
Because the airplane noise is non-stationary, The stationary
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FIGURE 1 | Stationary and non-stationary spectral gating noise reduction. (A) An overview of each algorithm. Stationary noise reduction typically takes in an explicit

noise signal to calculate statistics and performs noise reduction over the entire signal uniformly. Non-stationary noise reduction dynamically estimates and reduces

noise concurrently. (B) Stationary and non-stationary spectral gating noise reduction using the noisereduce Python package (Sainburg, 2019) applied to a Common

chiffchaff (Phylloscopus collybita) song (Stowell et al., 2019) with an airplane noise in the background. The bottom frame depicts the difference between the two

algorithms.

approach fails in two ways relative to the non-stationary
approach: the airplane noise is not fully successfully gated at its
peak in the middle of the recording (shown as red in the bottom
panel) and weaker syllables of song are treated as noise and
reduced in the beginning and end of the clip (shown in blue in
the bottom panel). Advantages of non-stationary noise reduction
are not unique to acoustic noise: when we know the timescale
of a signal we can use the same non-stationary principles to

remove noise occurring at different timescales. For example in
the continuous recording of neural data, action potentials occur
within the range of 1 ms. Events occurring over tens or hundreds
of milliseconds can therefore be treated as noise.

2.3. Reducing Noise With Deep Learning
A promising future avenue for noise reduction is in explicitly
training machine learning algorithms to mask or remove
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noise, as is done in speech enhancement and segregation
(Wang and Chen, 2018). At present, however, deep learning
based noise reduction has not been utilized directly in bio-
acoustics (Xie et al., 2020). Xie et al. (2020) attribute this to
a lack of utility when using denoising in some applications
of deep learning-based bio-acoustics detection (Kong et al.,
2017). The utility of noise reduction exists beyond classification
tasks, however. For example, computing spectral features and
acoustic similarity between vocalizations can be susceptible
to background noise. Recent work by Stowell et al. (2019)
shows that manipulating datasets by superimposing background
environment noise on vocal datasets can reduce confounds
and improve identification across recording conditions. Similar
approaches could be used to remove noise. For example, spectral
gating could be extended with neural networks by training a
neural network to learn a mask to gate away background noise
and recover the lower-noise spectrogram, as has been done in
speech enhancement applications (Wang and Chen, 2018; Lee
and Kim, 2020).

It is also important to consider what information is being
removed by pre-processing techniques such as denoising. Pre-
processing methods throw away potentially valuable information
that will influence downstream analyses. De-noising vocal data
without careful consideration can remove lower amplitude
syllables of birdsong or infrequent vocalizations outside of the
expected frequency range.

3. SIGNAL REPRESENTATION

An important consideration in any analysis pipeline is how to
represent the data that goes in. Animal vocalizations are typically
recorded using one or more microphones at a sampling rate
that can capture the full spectral range of the vocalization.
Performing analyses directly upon recorded waveforms is not
always optimal for capturing informative structure in vocal
data, however. Waveforms are high-dimensional representations
of audio that can make it difficult for learning algorithms
to capture time-frequency structure in vocalizations. Spectro-
temporal representations can be both lower-dimensional, and
more explicitly capture complex time-frequency relationships in
vocalizations.

Spectrograms are, at present, the most common form of
vocalization representation, both for visualization and as input
to learning algorithms, both in bio-acoustics and speech. When
representing vocal data with a spectrogram, the parameters used
to compute the spectrogram can have an important influence on
the performance of the algorithm (Elie and Theunissen, 2016;
Knight et al., 2020). The most important parameterization of
spectrograms is the trade-off between temporal and frequency
resolution when computing a spectrogram, a result of the
Heisenburg Uncertainty Principle (Gardner andMagnasco, 2006;
Moca et al., 2021). For example, three spectrograms are shown
in Figures 2A–C with different windows used to compute the
Short-Time Fourier Transform. The first has an intermediate-
sized window with intermediate time and frequency resolution
(Figure 2A), the second uses a short window with high

time-resolution and low frequency-resolution (Figure 2B), and
the third uses a long window with high frequency-resolution but
low time-resolution (Figure 2C).

A number of approaches exist to improve time and frequency
resolution. Time-frequency reassigned spectrograms attempt to
improve time-frequency resolution using additional information
from the phase spectrum (Figure 2D) (Fulop and Fitz, 2006;
Gardner and Magnasco, 2006; Xiao and Flandrin, 2007).
Wavelet transforms (Figure 2E) have more recently been used
in representing animal vocalizations (Main and Thornton, 2015;
Priyadarshani et al., 2016, 2020; Hsu et al., 2018), and allows
multi-scaled emphasis on time vs. frequency, for example
emphasizing frequency resolution at lower frequencies and
time-resolution at higher frequencies, intuitively because an
uncertainty of 50 Hz is more relevant at 500 Hz than at 5,000 Hz.
Most recently, the superlet (Figure 2F) enables time-frequency
super-resolution by geometrically combining sets of wavelets
with increasing constrained bandwidths (Moca et al., 2021).

There are also several variants of spectrograms and time-
frequency representations that differentially emphasize time-
frequency information. For example, log-scaling spectrograms
in frequency emphasizes lower frequency ranges over higher
frequency ranges, which parallels both the cochlea and
perception (Eldredge et al., 1981). Mel-scaling (Figure 2G), is a
form of log-scaling fit to fit human perception (Stevens et al.,
1937), though the specific scaling range relative to human
perception are imperfect (Greenwood, 1997). Mel-Frequency
Cepstral Coefficients (MFCCs; Figure 2H) additionally compute
the Discrete Cosine Transform on the Mel-spectrogram, and
were, until recently, commonly used for speech recognition
because they are generally robust to noise and emphasize
the frequency range of speech (Figure 2H) (Muda et al.,
2010). Another model, directly relevant to physiology, is the
Cochleagram (Brown and Cooke, 1994; Feather et al., 2019;
Rahman et al., 2020). Cochleagrams mimic the cochlea by using
a filter bank associated with points on the basilar membrane to
mimic an impulse response Figure 2I).

A new approach that has shown much promise in bio-
acoustics is Per-Channel Energy Normalization (PCEN;
Figure 2J; Wang et al., 2017; Lostanlen et al., 2018). Lostanlen
et al. (2018) identify three advantages of PCEN: (1) temporal
integration, (2) adaptive gain control, and (3) dynamic gain
compression. Temporal integration estimates the background
noise at each frequency band. Adaptive gain control then
adapts the gain of the spectral representation. Finally, dynamic
range compression adaptively shifts the range of low and high
amplitude components of the signal. Adaptive gain control
is ubiquitous to mammalian auditory processing and is also
often used in cochleagrams (Rahman et al., 2020). PCEN has
been shown to aid in enhancing animal vocalizations relative
to background noise across distances from the microphone
(Lostanlen et al., 2019a) and reduce biases in bio-acoustics
background settings such as dawn vs. dusk (Lostanlen et al.,
2019b).

Descriptive basis-features features can also be used to
represent vocalizations for downstream analyses. One challenge
with using basis-features for vocal analysis is in determining
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FIGURE 2 | Examples of several different spectral representations of a five-second red deer (Cervus elaphus) vocalization. For each axis, the x-axis corresponds to

time, and the y-axis corresponds to frequency. The y-axis corresponds to frequency and is linearly spaced in (A–F,J) between 50 and 11,000 Hz and log-spaced in

the same range for (G–I). (F) Continuous Wavelet Transform using the Morlet (i.e., Gabor) wavelet.

what basis-features are relevant (Tchernichovski et al., 2000; Elie
and Theunissen, 2016). Very few species have been rigorously
examined to determine what acoustic features distinguish
vocal units (Elie and Theunissen, 2016; Kershenbaum et al.,
2016). Swamp sparrow notes, for example, are relatively simple
vocalizations and can be well-described using just the length of
the note, the peak frequency at the start of the note, and the peak
frequency at the end of the note (Clark et al., 1987). One approach
to determining what features are relevant in a vocal signal is to
train classifiers to predict behaviorally-relevant information, such
as individual identity, age, or the activity the animal is engaged
on a full set to basis features, and retain those features which are
highly informative (Elie and Theunissen, 2016, 2018).

4. IDENTIFYING, SEGMENTING, AND
LABELING VOCALIZATIONS

Vocalization data can be recorded in a number of different
settings, ranging from single individuals in well-controlled
and acoustically isolated lab settings to multi-individual and
multi-species recordings taken next to a busy highway. When
vocalizations are produced by isolated, single individuals,
segmenting out vocalizations can often be performed simply
by thresholding the vocal envelope and assuming any detected
noise events that match the statistics of the vocalizing animal
(e.g., frequency and length of vocalization) are vocalizations
(Tchernichovski et al., 2000). More complex environments and
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species with more complex vocal structure require more complex
solutions (Priyadarshani et al., 2018).

Experimental paradigms in neuroethology differ from bio-
acoustics in that environmental sounds can usually be controlled,
but are still faced with the challenge of often beingmade in colony
settings with multiple vocalizing individuals or individuals who
make non-vocal sounds such as interaction with a living space.
Regardless of context, recent advances in machine learning
algorithms for passive monitoring of acoustic environments
allow for real-time labeling of species and individuals in noisy
environments.

Automatic vocalization annotation can be broken down
into three related tasks: identification, segmentation, labeling.
Identifying refers to what animal is vocalizing and at what times
and frequency channels. Segmentation refers to the segmentation
of vocalizations into their constituent units, labeling then
refers to grouping units into discrete element categories. A
spectrogram outlining all three tasks is given in Figure 3A. Two
individuals in the target species, Australian pied butcherbird
Cracticus nigrogularis are vocalizing over top of background
noise from another, unidentified, species of songbird, as well as
an unidentified species of insect. Each bird’s song can be divided
into segmental units (notes) which can be further categorized
into discrete element categories (“A,” “B,” “C,” ...). In such a
dataset, labeling challenges occur over multiple levels: identifying
the species, identifying the individual, segmenting vocal units,
and labeling vocal units into discrete categories. Some algorithms
perform only one of these steps at a time, while others perform
all three.

4.1. Detecting Species and Individuals
To detect species in continuous bio-acoustic data, several
open-source tools and datasets have recently been made
available for passive acoustic monitoring. A summary of
many of these software and their features are given in
Priyadarshani et al. (2018, Table 4). Over the past few
years machine learning competitions challenging researchers
to produce species recognition algorithms have motivated an
increasing number of open-source approaches to bioacoustic
sound recognition (e.g., Lasseck, 2013; Murcia and Paniagua,
2013; Goëau et al., 2014; Stowell et al., 2019). The same
tools can be applied to differentiating between individuals
in the same recording environment (e.g., Adi et al., 2010;
Mielke and Zuberbühler, 2013). Most recent approaches
rely on deep neural networks to detect vocalizations in
noisy environments (e.g., Stowell et al., 2019; Cohen et al.,
2020a). Current neural networks generally rely on some
combination of convolutional filters in the temporal-frequency
space of spectrograms (Convolutional Neural Networks or
CNNs, Figure 3B) and temporal-recurrence (Recurrent Neural
Networks, or RNNs, Figure 3C). Convolutional filters in the
time-frequency space of spectrograms allow neural networks to
learn complex spectro-temporal features used to classify sounds
(Figure 3B). Temporal recurrence allows neural networks
to learn sequential and temporal relationships that unfold
over long time delays (Figure 3C). In combination, recurrent
and convolutional architectures allow complex, non-linear
spectrotemporal features that occur over arbitrary timescales to
be captured by neural network architectures.

FIGURE 3 | Levels of organization and architectural design features for identifying, segmenting, and labeling vocalizations. (A) An example clip of Australian pied

butcherbird song (Janney et al., 2016) is shown containing two male butcherbirds, alongside background noise containing insect noise and another bird’s song. A

classification task exists at several levels: identifying the target species, differentiating individuals, detecting note boundaries, and classifying notes. (B) A cartoon

diagram of a convolutional neural network architecture applied to a spectrogram. Convolutional filters are applied in time-frequency space. Deeper layers have larger

spectrotemporal receptive fields and learn more complex filters. (C) A cartoon diagram of a recurrent neural network applied to a song spectrogram. Spectral slices

are input to recurrent layers in the network (depicted as a circle) which are recurrent in time, allowing information to be integrated over time.
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4.2. Segmenting and Labeling Vocal Units
Beyond identifying individuals and species, many analyses
of vocal communication rely on the temporal segmentation
and categorization of vocalizations into discrete units. Unlike
identifying species or individuals, where an objective measure
exists of what animal produced a vocalization, the segmental
units that comprise animal vocalizations are less well-defined.
In comparison to human language, where linguistic units
are determined based on their functional role, substantially
less is known about the function each vocal unit plays in
most species’ communication, or even what should define
the beginning and ending of a vocal unit (Kershenbaum
et al., 2016; Mizuhara and Okanoya, 2020). Analyses of most
animals, therefore, rely on easily discernible physical features
of vocalizations. For example in songbirds, songs are typically
segmented at different hierarchical levels, though no strict
definition of these levels of organization are agreed upon
by all researchers. Common units of birdsong are notes,
corresponding to abrupt changes in frequency, syllables, defined
by periods of silence surrounding continuous vocalizations,
motifs, stereotyped repetitive combinations of acoustic elements,
and phrases, series of stereotyped or commonly associated
syllables. Despite the ubiquity with which these terms are used,
most vocal units have not been validated in terms of the species’
own perceptual system, and those that do, like the Bengalese
finch ’syllable’ (Mizuhara and Okanoya, 2020) call into question
the commonly assumed role they play in communication. It is
therefore ideal, but not always feasible, to validate decisions about
vocal units based upon perceptual, physiological, or functional
roles those vocal units play in the animal’s communication
(Suzuki et al., 2006; Kershenbaum et al., 2016). Still, most analyses
of animal communications rely on human perceptual decisions
at some level, whether it is to label discrete classes of birdsong
phrases, or determine the representational space upon which an
“unsupervised” learning algorithmwill discretize units (discussed
in Section 5).

When vocal units are defined and vocal classes are chosen,
machine learning algorithms can be used to systematize and
vastly speed up the classification and segmentation of vocal
units. Most commonly, supervised recognition algorithms are
used, where the algorithm explicitly learns to algorithmically
map acoustic data to the researcher’s labeling scheme. Over the
past decades, vocalization labeling algorithms have paralleled
those used in other acoustic domains, such as speech and music
recognition. At present, tools rely on deep neural networks.
The field of deep learning has changed rapidly over the past
decade, with different architectures of neural networks quickly
outperforming the previous architectures (Nassif et al., 2019).
Prior to deep learning, automated birdsong element recognition
relied on algorithms such as Hidden Markov Models (Kogan and
Margoliash, 1998), support vector machines (Tachibana et al.,
2014), template matching (Anderson et al., 1996), or k-Nearest-
Neighbors labeling (Nicholson, 2016), following alongside
contemporary speech recognition algorithms. Like sound event
detection, current approaches tend to rely on recurrent and
convolutional neural network architectures. TweetyNet (Cohen
et al., 2020a), for example, uses a recurrent and convolutional

architecture to capture complex spectro-temporal patterns over
long timescales. Future advances in neural network architectures
will likely continue to follow those in speech recognition,
for example, using transformer architectures (Karita et al.,
2019) as well as semi-supervised and unsupervised pre-training
methods such as wav2vec (Schneider et al., 2019). One important
divergence between speech recognition and animal vocalization
classification is the reliance upon data availability, however. An
ideal animal vocalization classifier works well on very small
amounts of labeled data, requiring less experimenter time,
whereas speech recognition systems tend to have an abundance
of data available (though speech recognition for low-resource
languages may be an area to watch).

A second approach to labeling vocalizations is to actively
involve the experimenter in the algorithm via human-in-the-
loop labeling (e.g., Wimmer et al., 2010; Kim and Pardo,
2018). Human-in-the-loop algorithms rely on a combination
of supervised and unsupervised learning. Supervised learning
comprises learning algorithms that are trained with labeled
data, such as classification tasks. Unsupervised learning refers
to algorithms that do not require supervised labels, such
as dimensionality reduction. Human-in-the-loop algorithms
leverage both, by proposing an initial coarse segmentation and/or
labeling of the dataset through unsupervised learning, which the
human then partially revises (e.g., merging or splitting putative
classes of vocalizations) via a graphical user interface (GUI).
The revised data is then re-processed by the algorithm and sent
back to the user to revise, until the experimenter is content with
the resulting labeled dataset. Using a combination of human
expertise and machine processing enables quicker labeling of
large bio-acoustics data with minimal human effort. A further
discussion of unsupervised algorithms is discussed below in
Section 5.

5. EXTRACTING RELATIONAL
STRUCTURE AND CLUSTERING

Classifying vocal elements into discrete categories (e.g., “A,” “B,”
“C,” ...) is for many analyses a necessary abstraction that enables
the analysis of recurring events. At the same time, this symbolic
abstraction ignores acoustic relationships both within discrete
element categories and between them. For example, in Figure 3,
are the syllables of birdsong Figure 3A more similar to the
syllables Figure 3B or the syllables Figure 3C? Determining the
relatedness (or distance) between vocalizations can enable the
quantification of how vocalizations change over time (Mets and
Brainard, 2018; Kollmorgen et al., 2020), how vocal repertoires
differ across individuals and species (Miller, 1979; Sainburg et al.,
2020b), and map and visualize broad structure present in vocal
repertoires (Sainburg et al., 2020b; Goffinet et al., 2021).

5.1. Operationalizing Relatedness
Given a dataset of vocalizations segmented into discrete
units, relatedness is a measure quantifying the similarity
of vocalizations relative to one another. The basis for
operationalizing relatedness can utilize physical properties

Frontiers in Behavioral Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 811737

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Sainburg and Gentner Computational Neuroethology of Vocal Communication

of signals, perceptual judgments, or behavioral and physiological
responses to the signal. Most commonly, the relationships
between vocal elements are computed on either spectrotemporal
representations or on the basis of descriptive features of the
vocalization, such as frequency modulation, fundamental
frequency, and vocal envelope (Miller, 1979; Sainburg et al.,
2020b; Goffinet et al., 2021).

How different aspects of the vocalization should weigh into
a measure of similarity is non-trivial. No metric for similarity
is objectively correct, even when metrics are derived purely
from objective physical features. For example, what is the
relative importance of a vocalization’s duration vs. fundamental
frequency in determining similarity? One ground truth metric
for an algorithms judgement of similarity is its relationship with
human’s perceptual judgment of similarity (Tchernichovski et al.,
2000), though there is no guarantee that these measures reflect
the animal’s own perception and physiology (Dooling and Prior,
2017). An ideal measure of similarity could be derived through
careful experimentation gleaning the animal’s own judgment of
similarity (Kershenbaum et al., 2016), but in most cases, this task
would be unfeasible and time-consuming. Even when performed
carefully, perception varies from animal to animal, based upon
experience (Lachlan et al., 2010).

In addition, when vocal features are continuous, accounting
for differences in duration and temporal alignment requires
consideration. Approaches vary from averaging over time (Elie
and Theunissen, 2016), pooling using attention mechanisms
(Morfi et al., 2021), using dynamic time warping (Kogan and
Margoliash, 1998), and zero-padding (Sainburg et al., 2020b).
Similarly, at least some animals rely on spectral shape rather than
absolute pitch when recognizing acoustic objects (Bregman et al.,
2016). A recent approach accounting for variability in frequency
is dynamic frequency warping (Somervuo, 2019). Striking
a balance between spectrotemporal tolerance and absolutely
discounting spectrotemporal alignment can have substantial
impact on the final measure of similarity.

5.2. Learning a Similarity Space
Once a metric for similarity is determined, that distance can be
used to infer a structured representation of the relationships in
a repertoire as a whole, providing a new representational space
with which to quantify vocalizations.

Perhaps themost intuitive and pervading example of a learned
embedding space for vocal similarity is multi-dimensional scaling
[MDS, e.g., (Miller, 1979; Dooling et al., 1987; Morfi et al., 2021)].
Multi-dimensional scaling takes a graph of pairwise similarity
measures between each vocalization in the dataset and attempts
to find an embedding that best preserves the similarity structure
of that graph. As the number of vocal elements in a dataset gets
larger, however, the number of pairwise distances between vocal
elements increases exponentially. This is computationally an
issue because computing 10,000 pairwise distances between 100
elements is computationally feasible, but 10,000,000,000 pairwise
distances between 100,000 elements is not.

Trying to preserve the pairwise relationships between
every element in a dataset can also over-emphasize irrelevant
relationships in vocal data. For example, if a bird’s vocal

repertoire comprises 10 motifs classes all produced with the same
frequency, the vast majority of pairwise distance relationships
computed (90%) will be between class, while only 10% of
pairwise relationships computed will be within class. In many
cases, both in animal communication and in dimensionality
reduction more broadly, there is utility in weighing relationships
between similar vocal elements more highly than relationships
between less similar vocalizations. This contrast is defined
in the dimensionality reduction literature as the emphasis of
local vs. global structure (De Silva and Tenenbaum, 2002).
Algorithms that attempt to preserve every pairwise relationship
are called global dimensionality reduction algorithms, while
algorithms that emphasize capturing relationships only to
nearby points in dataspace (more similar vocalizations) are
called local dimensionality reduction algorithms. In many
vocalization datasets, emphasizing local over global structure
better preserves categorical structure such as individual and
call identity (Sainburg et al., 2020c; Goffinet et al., 2021; Morfi
et al., 2021). A visual demonstration contrasting local and
global structure preservation is given in Figure 4A. While global
embedding algorithms like MDS attempt to preserve every pair-
wise relationship, local algorithms preserve only local (e.g.,
nearest-neighbor) relationships, capturing more within-cluster
structure. In Figures 4B–G an example is given with macaque
coo calls, in which a local structure-preserving algorithm (UMAP,
described below) more clearly pulls apart clusters corresponding
to individual identity than MDS.

At present, the two dominant local dimensionality reduction
algorithms are UMAP and t-SNE. UMAP and t-SNE differ in
several important ways beyond the scope of this paper, but their
key intuition and the steps underlying the algorithms remain
similar: first, compute a (nearest-neighbors) graph of pairwise
relationships between nearest neighbors in the original dataset
(e.g., using Euclidean distance or an arbitrary similarity metric)
then, embed that graph into an embedding space via gradient
descent (Sainburg et al., 2021). UMAP, in particular, has been
shown to capture complex structure in vocal repertoires such
as differences in vocal dialect, vocal stereotypy, vocal element
categories, inter-species similarity, and individual identity, in
contrast to classic methods like MDS and PCA (Goffinet et al.,
2021; Morfi et al., 2021; Sainburg et al., 2021).

One challenge with graph-based dimensionality reduction
algorithms like MDS, UMAP and t-SNE is that they are
non-parametric dimensionality reduction algorithms, meaning
they do not learn the relationship between input data (e.g., a
spectrogram of the vocalization) and their embeddings. Learning
a parametric relationship between vocalizations and their
embeddings allows a fast mapping between data and embedding,
i.e., for applications that necessitate real-time feedback such as
brain-machine interfacing.

The most common parametric dimensionality reduction
algorithm is PCA, where a linear transform is learned between
data and an embedding space. Similarly, neural networks such
as autoencoders can be used to learn a set of basis features
which can be complex and non-linear (Kohlsdorf et al., 2020;
Sainburg et al., 2020c; Goffinet et al., 2021; Singh Alvarado
et al., 2021). For example, an autoencoder trained on images of
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FIGURE 4 | Local and global embeddings. (A) The steps outlined in Section 5 exhibit the differences between the relationships preserved in local and global

embeddings. (B–D) Projections of a dataset of macaque coo calls (Fukushima et al., 2015) using two similarity metrics (Dynamic Time Warping over frequency, and

Euclidean distance between spectrograms) and three projection algorithms (Multidimensional Scaling, UMAP, and TriMap) (E–G). Colors represent individual identity.
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faces can learn to linearize the presence of glasses or a beard
(Radford et al., 2015; Sainburg et al., 2018b, 2021). Autoencoders
trained on animal vocalization data can similarly learn complex
non-linear relationships in vocal data. In Section 8 we discuss
how these complex learned features could be utilized in animal
vocalizations to learn acoustic features such animal age, sex, and
attractiveness, which can, in principle, be utilized for playback
experiments.

A recent extension to UMAP, Parametric UMAP weds
the advantages of UMAP with the parametric embedding of
neural networks (Sainburg et al., 2021). Parametric UMAP acts
by optimizing the UMAP loss function over arbitrary neural
networks (e.g., convolutional recurrent networks were used with
Cassin’s vireo song in Sainburg et al., 2021) which can be
balanced with additional losses such as MDS and autoencoding,
to preserve additional global structure in UMAP projections.
Parametric neural network-based approaches such as Parametric
UMAP can also embed data on a similar timescale as PCA,
enabling real-time applications, as opposed to non-parametric
methods such as UMAP, t-SNE, and MDS.

Another class of neural network based dimensionality
reduction algorithms rely on triplet-loss-based similarity
preservation. Triplet-based embeddings have been used for
birdsong for classification and embedding (Morfi et al., 2021;
Renteria et al., 2021). Triplet networks learn an embedding space
by sampling three types of vocal units: an anchor, a positive
sample that is perceptually similar to the anchor point, and a
negative sample that is perceptually distant from a vocal unit.
The loss then encourages the positive sample to be pulled to the
anchor, and the negative sample to be pushed further away. For
example, Morfi et al. (2021) describe a triplet-loss-based network
trained to produce vocal embeddings based upon a metric of
perceptual distances. Like graph-based dimensionality reduction
algorithms, triplet-loss-based embeddings rely on a pre-defined
experimenter-determined notion of distance. Morfi et al. suggest
a forthcoming animal-defined metric but in-lieu use a descriptive
feature-based metric in the software Luscinia (Lachlan, 2007)
which is correlated with human perceptual judgments of zebra
finch song (Holveck et al., 2008).

5.3. Finding Latent Units Through
Clustering
Learned embedding spaces enable the inference of broad
structure acoustic structure from the statistics of vocalizations,
enabling further downstream discovery of vocal units based upon
distributional properties in embedding spaces (Kershenbaum
et al., 2016; Sainburg et al., 2020b; Keen et al., 2021).
Unsupervised clustering of vocal elements lies in contrast
with supervised learning, where class labels are determined
by experimenters, as in Section 4. Sainburg et al. (2020b)
observe that labels obtained by clustering UMAP embeddings
of Cassin’s vireo and Bengalese finch syllables are more
similar to experimenter labels than clustering PCA projections
or spectrograms. Further, these latent projections capture
additional acoustic and syntactic structure than the ground
truth experimenter labels. In addition to acoustic structure,

vocal elements can be clustered on the basis of syntactic
organization. For example, incorporating transition information
through Partially observable Markov Models (POMMs; Jin
and Kozhevnikov, 2011) and Hidden Markov Models (HMMs;
Katahira et al., 2011; Sainburg et al., 2020b) into a labeling scheme
for birdsong better explains sequential structure than hand-
labels or clustering without reference to temporal sequencing. An
alternative approach is to perform clustering prior to embedding,
directly upon the inferred relational graph (Frasier et al., 2017).

One challenge in unsupervised vocal unit discovery through
methods such as UMAP embeddings is their reliance upon pre-
defined vocal unit temporal boundaries. Although clustering
on latent projections enables an unsupervised extraction of
vocal categories from segmental units, latent projections rely
on a pre-defined temporal segmentation of acoustic units
from the vocal stream. In some species, atomic vocal units
can be determined by clearly defined physical features of
the signal, like long pauses between syllables, however, even
in the case of clearly defined physical features, those units
are not necessarily the base units of perception (Mizuhara
and Okanoya, 2020). An open issue in vocal analysis is
the unsupervised temporal segmentation of vocalizations into
elements when clear physical boundaries are not available.
This problem parallels both unsupervised speech discovery (i.e.,
ZeroSpeech), and the challenge of discovering behavior units
in other areas of computational neuroethology (e.g., Motion
Sequencing). In speech, phonemes are not clearly defined by
physical characteristics, thus approaches for segmentation rely
upon a combination of temporal and distributional information
alongside imposed priors. Ongoing efforts in unsupervised
speech segmentation, syllabic unit discovery, and word discovery
can motivate parallel approaches in animal communication.
In addition, physiological and kinematic measures such as
articulation and breathing rate can aid in determining vocal
boundaries. In computational neuroethology, new methods
in tracking behavioral kinematics provide similar continuous
behavioral datasets to those discussed in this paper (e.g.,
Wiltschko et al., 2015, 2020; Berman et al., 2016; Mathis et al.,
2018; Pereira et al., 2019; Dunn et al., 2021; Marshall et al.,
2021). For example, MoSeq (Wiltschko et al., 2015, 2020)
discovers animal behavioral states using depth camera recordings
of animals by fitting the behavioral data to an Autoregressive
Hiden Markov Model. They find stereotyped sub-second mouse
behavioral states, dubbed syllables, that underlie a syntax of
behavior, much like birdsong. Communicative behavior is also
not produced solely in the auditory domain. Improving methods
for uncovering structure in animal behavior more broadly will
facilitate research on the interaction between multi-sensory and
multi-modal vocal behavior, like the dances that accompany
many bird songs (Williams, 2001).

5.4. Data Augmentation
Another approach that is largely underutilized in bio-acoustic
vocal recognition algorithms is data augmentation, an approach
that is currently used inmost state-of-the-art machine perception
applications. In automatic speech recognition, for example,
several current state-of-the-art approaches (e.g., Baevski et al.,
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2020; Gulati et al., 2020) use SpecAugment (Park et al.,
2019) in which the classifier learns a policy of various
augmentations such as warping and masking frequency channels
in time. Lostanlen et al. (2019b) demonstrate the utility of
augmenting bio-acoustics datasets with diverse background
acoustics to facilitate better generalization across environments
and conditions. Augmentation in settings where little labeled
data are available has also proven successful on several semi-
supervised learning benchmarks (e.g., Berthelot et al., 2019). One
difficulty with performing data augmentation with bio-acoustics
data, however, is the extent to which slight manipulations can
affect the perceptual class that vocalizations fall into (Morfi et al.,
2021).

6. INFERRING TEMPORAL AND
SEQUENTIAL STRUCTURE

Identifying sequential organization typically relies upon the
abstraction of vocalizations into discrete sequences of elements,
effectively treating vocal data as corpora from which to
perform symbolic analyses. Kershenbaum et al. (2016) identify

six classes of models and analyses for analyzing temporal
sequences: Markov chains, Hidden Markov Models, Network-
based analyses, Formal grammars analyses, and temporal models.
Analyses of temporal organization in animal communication has
traditionally been largely influenced by Chomsky’s hierarchy of
formal grammars, with a focus on trying to understand what
class of the Chomsky hierarchy animal’s behaviors belong within
(Hauser et al., 2002; Rohrmeier et al., 2015; Jiang et al., 2018;
Morita and Koda, 2019). For example, Markov models, Hidden
Markov Models, and Network models are all finite-state models
in the Chomsky hierarchy.

6.1. Short-Timescale Organization and
Graphical Analysis
Broadly, analyses over vocal organization can be broken
down into two classes: analyses over short- and long-distance
(i.e., short- and long-timescale) sequential organization. Short-
timescale analyses are concerned with relationships between
adjacent, or near adjacent elements in a sequence. Markov
models, for example, capture short-timescale dynamics of vocal
communication. A typical Markov model of birdsong is simply a

FIGURE 5 | Capturing long and short-range sequential organization with different models. (A) An example of a 2-state Markov model, capturing 22 = 4 transitional

probabilities between states. (B) An example second-order Markov model, capturing 23 = 8 transition probabilities between states. (C) A visualization of the general

principle that as sequential distances increase, the relatedness between elements (measured through mutual information or correlation functions) decays toward

chance. (D) Sequences generated by Markov models decay exponentially toward chance. (E) Context-free grammars produce sequences that decay following a

power law. (F) Certain neural network models such as LSTM RNNs and Transformer models produce sequences that also decay following a power law.
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transition matrix representing the probability of transitions from
each element to each other elements [e.g., P(B|A) Figure 5A].
As Markov models increase in order, they become increasingly
capable of capturing long-distance relationships, though high-
order Markov models are rarely used in practice because of
the number of parameters and amount of data needed to
compute them (Figure 5B). Approaches such as Hidden Markov
Models (Katahira et al., 2011) and Probabilistic Suffix Trees
(Markowitz et al., 2013; Cohen et al., 2020b) can compute
more succinct high-order Markov relationships, though the
amount of data needed to capture these deeply contextualized
relationships (e.g., P(F|A,B,C,D)) is still a limiting factor in
capturing long-range organization with Markov models. Short-
range relationships are also often captured graphically, treating
any transition probability above zero as an edge in the graph.
Graphical representations and metrics for vocal sequencing can
explain general sequencing characteristics of vocalizations such
as network motifs, communities, and clusters (Sasahara et al.,
2012; Weiss et al., 2014; Hedley, 2016; Kershenbaum et al., 2016;
Patricelli and Hebets, 2016).

6.2. Mutual Information and
Long-Timescale Organization
Relationships that extend beyond adjacencies and over longer
timescales are called long-range orlong-timescale relationships.
For example, how related are two notes within a phrase, two
phrases within a bout of song, or two bouts of song sung within a
day?

Broadly, elements that are further displaced in a vocalization
from one another tend to be less related. When two elements
in a sequence are further apart, the relatedness between those
two elements tends to be lower. For example, in birdsong, notes
within a phrase are more likely to be related than notes separated
by multiple phrases. The same is true of most sequential and
temporal data: we can better predict what a stock price will
look like tomorrow, than in 10 years. As we look further and
further out into a sequence, the relatedness between elements
will decrease alongside our ability to predict the future, until the
relatedness approaches chance (Figure 5C). We can capture this
relatedness over symbolic sequences using information theory.
For example, given a sequence of discrete elements a → b →

c → d → e → f , we can estimate the mutual information
between pairs of elements at e.g., a distance of 2 elements (a− c,
b − d, c − e, and d − f ) or 3 elements (a − d, b − e, and c − f ).
As the distance increases between pairs of elements, we expect
the relatedness (mutual information) to decay toward chance as
a function of sequential distance.

We can estimate the extent to which a signal exhibits
long-range relationships by computing how long the mutual
information between pairs of elements remains above chance.
Such approaches have been used variously across animal
vocalization datasets in birds and whales (Suzuki et al., 2006;
Sainburg et al., 2019). Similar approaches have also been used
to observe long-range structure in animal motion ethology data,
such as the long-range structure in Drosophila (Berman et al.,
2016) motility.

6.3. Inferring Structure From Sequential
Relationships
The shape of the decay in relatedness as a function of sequential
distance can not only tell us about the timescales that vocal
sequences are operating over but can also give indications about
the structure underlying sequential organization. For example,
sequences generated by Markov processes, such as finite-state
grammars decay exponentially (Li, 1990; Lin and Tegmark,
2017) (Figure 5D). Intuitively, Markov models are memoryless;
each state is dictated only by the set of transition probabilities
associated with the previous state. As a result, the relatedness
between states decays very quickly. When there are deep latent
relationships present in the structure underlying the sequence,
relatedness between sequentially disparate elements decays more
slowly. For example, Probabilistic Context-Free Grammars can
produce power-law relationships in mutual information as
a function of sequential distance (Lin and Tegmark, 2017)
(Figure 5E).

Characterizations of statistical relationships over abstracted
discrete units enables comparative analyses across species
because these measures make no assumptions about units or
temporal organization underlying the signal. Characterizing
correlations and information decay has an especially rich
history in uncovering long-range structure dating back to
Claude Shannon’s original work (Shannon, 1951; Li, 1990; Lin
and Tegmark, 2017). Language corpora such as speech and
written text decay in information following the combination
of a power-law over longer distances, and exponential decay
over shorter distances, attributed to the finite-state processes
underlying phonological organization (Sainburg et al., 2019)
and the hierarchical organization underlying language at higher
levels of organization such as syntax and discourse (Alvarez-
Lacalle et al., 2006; Altmann et al., 2012; Lin and Tegmark,
2017; Sainburg et al., 2019). At the same time, however, young
children’s speech contains the same long-range information
context before complex syntax is present in speech, indicating
possible extra-linguistic mechanisms at play dictating these long-
range statistical relationships (Sainburg et al., 2020a). Long-
range mutual information decay and correlations have also been
demonstrated that in animals such as songbirds (Sainburg et al.,
2019) and humpback whales (Suzuki et al., 2006), extending
over minute- and hour-long timescales. In particular, birdsong
exhibits similar exponential short-range and power-law long-
range mutual information decay to human speech, indicating
potential parallels in the mechanisms governing how patterns
of vocalizations are temporally sequenced. Similar observations
in non-vocal behavioral sequences (Berman et al., 2016;
Sainburg et al., 2020a) also exhibit these long-range sequential
organizations, suggesting similarities in latent dynamics that
facilitate long-range statistical relationships.

It is tempting to suggest that these parallels suggest
shared underlying structure generating mechanisms, such as
universals in the hierarchical organization of behavior (e.g.,
Lashley, 1951; Dawkins, 1976), though we should be wary of
making any extended inferences based upon the observation
of long-range information decay. For example, we can infer
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that power-law sequential relationships are produced by non-
Markovian mechanisms because the decay is not exponential.
However, the set of generative mechanisms that can produce
power-law relationships in signals is not understood well
enough to attribute the origins of these relationships to, for
example, any specific class of formal grammar. Power-lawmutual
information decay in signals can also be drawn simply from
coupling vocal or behavioral 1/f noise found in exogenous
environmental signals.

While it is well-acknowledged that many animal vocalizations
are organized hierarchically (Dawkins, 1976; Rohrmeier et al.,
2015), the implications of that hierarchy in terms of underlying
cognitive and physiological mechanisms are not well understood.
For example, on very short timescales, birdsong motor
sequencing is dictated by a hierarchical cascade of motor
programs running originating in the premotor region HVC
eventually ending in motor output (Doupe and Kuhl, 1999).
Recent physiological evidence shows that these high-level
nuclei also contain information about future states displaced
from current vocalizations as well (Cohen et al., 2020b),
though the mechanisms by which those relationships are
learned, maintained, and ultimately dictate behavior are not
yet clear.

Although we do not have access to themechanisms underlying
the observed long-distance relationships in vocal and non-
vocal behavioral sequences, we do know that many vocal and
behavioral sequences cannot be well-captured by Markovian
models, thus alternative methods for modeling, characterizing,
and forming hypotheses about the long-range organization in
behavioral sequences are crucial to furthering our understanding
of long-range structure in behavioral sequences. One promising
approach is the use of deep neural network models such as RNNs
and transformer networks (Tran et al., 2018; Morita et al., 2020).
Unlike Markov models, recent neural network models like RNNs
and transformer models do capture power-law relationships in
sequential data (Figure 5F) (Lin and Tegmark, 2017; Shen, 2019).
In language, transformer networks, in particular, have changed
the landscape of natural language processing by capturing
deeply contextual and complex implicit relationships in linguistic
sequences. In birdsong, the same approaches show promise
(Morita et al., 2020). For example, Morita et al. (2020) train a
transformer network on Bengalese finch song and find that it
captures long-range dependencies extending well beyond that of
a Markov model. Like modeling language sequences, however,
neural-network-based approaches suffer from the same issues
of being black box and providing little explanatory power over
the sequential structure they learn. In addition, the amount of
data required to train a model to capture complex sequential
dependencies is vast. Although the number of parameters does
not increase exponentially with the amount of context the model
captures (as in Markov models) state-of-the-art transformer
models have billions of parameters requiring training data
comprised of billions to trillions of characters (Brown et al.,
2020). In language, the dataset size needed to train transformer
models scales with the number of parameters in the model to
prevent overfitting (Kaplan et al., 2020). When dataset sizes

are smaller, LSTM RNNs perform better than more state-of-
the-art Transformer language models (Ezen-Can, 2020), though
transformers allow you to explicitly specify the length of temporal
context allowed in the model, making them an attractive
model for controlling context when generating vocal sequences
(Morita et al., 2020). Although non-human animal vocalization
repertoires are smaller and syntactic organization is less complex
than language, birdsong analyses relying on language models will
need to address the same challenges.

Neural network-based models also provide the ability to
capture temporal dependencies that mutual information and
correlation functions do not. Mutual-information-function-
based and correlation-based analyses compute relationships
between vocal elements as a function of sequential distance,
ignoring any temporal relationships between disparate elements.
This is both a benefit and a shortcoming of correlation methods.
Ignoring intermediary temporal relationships enables the
characterization of structure at temporal distances without
having to additionally model higher-order combinatorial
relationships [e.g., P(F|A)) vs. P(F|A,B,C,D)]. For the same
reason, mutual-information-function-based and correlation-
based analyses are coarse descriptions of temporal structure
and miss the full temporal dynamics of the signal that
neural-network-based models can capture (Morita et al.,
2020).

7. SYNTHESIZING VOCALIZATIONS

Although the methods discussed in Section 5 allow us to learn
representational spaces of animal vocalizations, providing new
ways to infer structure in vocal repertoires, analyses on vocal
signals alone lack grounding in animal behavior, perception, and
physiology. In this section, we give an overview of methods for
synthesizing animal vocalizations as a means to systematically
control vocalization stimuli and relate vocal representations to
physiology and behavior.

An ideal model for vocal synthesis exhibits several features:
(1) it can model the entire vocal repertoire of a species or
multiple species, (2) the parameters of the model can be
related to physiological properties of the vocalizing species,
and (3) the parameters of the model can be explained in
terms of understandable features (i.e., it is not a black box
algorithm). Throughout this section, we find that current
synthesis algorithms have tradeoffs in how they balance aspects
of these ideals.

One reason to systematically synthesize animal vocalizations
is to probe their perceptual and physiological representations of
vocal space, for example, determining how animals categorically
perceive the difference between two categories of vocal units
(Nelson and Marler, 1989). Traditionally, categorical perception
in animals has been studied on the basis of human speech sound
stimuli (Sinnott et al., 1976; Kuhl and Miller, 1978; Kuhl and
Padden, 1983). Even with speech, however, the features that
can be manipulated are limited. Recently methods in machine
learning have furthered our ability to manipulate complex non-
linear speech features substantially. These same approaches
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FIGURE 6 | Steps involved in synthesizing vocalization from a Variational Autoencoder (VAE) trained on spectrograms.

can often be applied to animal communication (Anikin, 2019;
Sainburg et al., 2020c).

7.1. Source-Filter Models
Source-filter models have their origins in vocoding speech
(Dudley, 1939), but have been used in numerous animal
vocalization synthesis paradigms (DiMattina and Wang, 2006;
Chakladar et al., 2008; Arneodo and Mindlin, 2009; Furuyama
et al., 2017). Source-filter models decompose vocalizations into
the source of the voice and filters (Kawahara, 2006). For example,
the STRAIGHT algorithm (Kawahara et al., 1999; Kawahara,
2006) has been used to morph between macaque monkey
vocalizations for investigations ofmonkey and human perception
and physiology related to categorization (Chakladar et al., 2008;
Furuyama et al., 2017). STRAIGHT breaks down the macaque
vocalization into the fundamental frequency (the source) and
its harmonics from higher-resonant or formant frequencies (the
filter) (Chakladar et al., 2008). It then uses landmarks based
upon these estimated parameters from the two sounds being
morphed and interpolates between them to generate the morph
stimuli. Furuyama et al. (2017), for example, used this method
to parametrically vary generated morphs based on source and
filter properties to determine the features macaques use to
distinguish between conspecifics. Soundgen (Anikin, 2019) is a
recent open-source GUI-based web app for R that is designed to
synthesize nonverbal vocalizations using a source-filter model,
including animal vocal signals such as birdsong and primate
vocalizations. Related source-filter models have been developed
to synthesize birdsong based upon underlying physiological
mechanisms (Fee et al., 1998; Sitt et al., 2008, 2010; Arneodo
and Mindlin, 2009; Arneodo et al., 2012). Recently, Arneodo
et al. (2021) demonstrated that synthetic source-filter models
can be coupled with neural recordings accurately reconstruct
vocalizations from neural data alone. One drawback of source-
filter models is the difficulty with which they can be fitted
to the diversity of non-human vocalizations that exist. For
example, the source-filter models of birdsong described above
can well describe the dynamics of zebra finch song, but not
the dual-syringeal dynamics of European starling song. Without
reference to explicit hypotheses about underlying production
mechanism, HMM based source-filter approaches provide one
potential solution to this problem birdsong (Bonada et al., 2016).

7.2. Neural Network Models
An alternative approach to synthesizing animal vocalizations
is the use of neural-network-based synthesis algorithms. These
neural-network-based algorithms can be used to sample directly
from the learned representational spaces described in Section
3. A simple example is autoencoder-based synthesis (Figure 6)
(Sainburg et al., 2018a; Zuidema et al., 2020). Autoencoders
can be trained on spectral representations of vocal data, and
systematically sampled in the learned latent space to produce
new vocalizations. Insofar as the neural network or latent
projection can learn to represent the entire vocal repertoire,
the entire vocal repertoire can be sampled from. In addition to
sampling vocalizations from a latent distribution, vocal features
can be manipulated in latent space. Well-defined latent spaces
and higher-dimensional latent projections can learn to linearize
complex non-linear reltionships in data. For example, in pictures
of faces, the presence of a glasses, hair color, and the shape
of a person’s face can all be manipulated as linear features
(Radford et al., 2015; Sainburg et al., 2018b, 2021). With more
complex features, such as the attractiveness of a call or the age
of the vocalizer, a promising avenue for future research would
be to synthesize vocalizations, varying these complex non-linear
features for playback studies.

Like most areas of deep learning, substantial progress has been
made on the task of audio synthesis in the past few years. Basic
methods comprise autoencoders (Engel et al., 2017; Kohlsdorf
et al., 2020; Sainburg et al., 2020c), Generative Adversarial
Networks (GANd) (Donahue et al., 2018; Engel et al., 2019;
Sainburg et al., 2020c; Tjandra et al., 2020; Pagliarini et al.,
2021) and autoregressive approaches (Mehri et al., 2016; Oord
et al., 2016; Kalchbrenner et al., 2018; Prenger et al., 2019).
One advantage of GAN-based models is that their loss is not
defined directly by reconstruction loss, resulting in higher-
fidelity syntheses (Larsen et al., 2016). Typically, approaches
for synthesizing vocalizations based on neural networks rely on
treating magnitude spectrogram like an image, training a neural
network architecture in the same manner as one would an image,
and finally inverting the sampled spectrogram into a waveform
(Sainburg et al., 2020b; Zuidema et al., 2020; Pagliarini et al.,
2021). When synthesizing vocalizations from neural networks
trained on the magnitude spectrogram, the estimation of phase
is necessary to invert the spectrogram into a waveform signal
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for playback. The de-facto algorithm for spectral inversion has
been Griffin and Lim (Griffin and Lim, 1984), though several
recent approaches have been shown to improve over the Griffen-
Lim algorithm recently (Prša and Rajmic, 2017; Masuyama et al.,
2019). An alternative to Griffen-Lim inversion is to train neural
networks to invert spectrograms either directly in the neural
network architecture (Kumar et al., 2019), or perform inversion
in a second network (Masuyama et al., 2019). Spectrogram-based
audio synthesis can also be sidestepped entirely, training the
network directly on waveform (Mehri et al., 2016; Oord et al.,
2016; Engel et al., 2017).

7.3. Sound Texture Synthesis
Another approach to sound synthesis is the synthesis of
sound texture (Saint-Arnaud and Popat, 1995; McDermott
et al., 2009). For example, McDermott et al., (McDermott
et al., 2009) propose an approach that relies on computing
a set of statistics over stationary elements of sounds, and
synthesizing new sounds based upon the computed statistics.
By manipulating or interpolating between sound statistics, they
synthesize new sound textures. One application, for example, is to
manipulate components of sound textures for stimulus playback
to determine what sound texture statistics listeners rely upon for
recognition (McDermott and Simoncelli, 2011).

7.4. Generating Sequences
A parallel approach to synthesizing vocalizations is to generate
vocal sequences from symbolically labeled vocal elements.
Synthetic song sequences can be used to understand how animals
process and represent temporal and sequential organization.
For example, can a songbird differentiate between sounds
generated using different underlying models of song syntax?
Traditional approaches to song sequence generation rely upon
the explicit, hand-crafted, generation of artificial grammars for
playback studies. By crafting artificial grammars that differ
in underlying structure, such as belonging to different classes
of the Chomsky hierarchy (Gentner et al., 2006; Fitch and
Friederici, 2012; Kershenbaum et al., 2014), playback studies
can be used to determine whether animals can learn these
grammars. A number of challenges exist with artificial grammar
learning studies, however. One such challenge is the difficulty in
crafting sequences that can exclusively be learned by inferring
the structure that generated them, for example, making it
impossible for the animal to learn by brute-force memorizing
every sequence (Fitch and Friederici, 2012). When using artificial
grammars, computational and modeling considerations aid in
forming hypotheses about how generated grammars can be used.
In the context of the neuroethology of vocal communication,
these cognitive models can be related to physiological measures
(Zuidema et al., 2020). An additional challenge with artificial
grammar learning is constructing sequences that are structured
in a similar way to natural and behaviorally relevant signals
to the animal. For example, artificial grammar studies usually
rely on short sequences modeled after human language syntax,
rather than the animal’s own communication systems. Because
the task of generating vocal sequences is performed over symbolic
representations of syllables, generating vocal sequences can

be performed using the same methods as in text or musical
note generation. These approaches can range from generating
sequences using Markov models of various orders, to explicitly
modeling hierarchical organization in the signal generation
algorithm (Roberts et al., 2018).

8. MAPPING VOCAL COMMUNICATION TO
PERCEPTION, BEHAVIOR, AND
PHYSIOLOGY

The methods discussed here provide a framework to develop
a set of constrained spaces from which to understand and
model vocal behavior in relation to perception, production, and
physiology. Perceptual or relational vocal spaces, such as UMAP
projections of spectrograms, provide a low-dimensional space
that can be used to infer structure in vocal repertoires. Likewise,
symbolic abstractions of vocal behavior to large corpora provides
a categorical representation in which vocal behavior is seen as
sequential actions on those category sets. In both cases, the
methods provide a constrained behavioral representation for
physiological analyses.

8.1. Brain-Computer Interfacing
One of the primary challenges facing the field of brain-computer
interfacing is scaling up from simple behavioral spaces like
moving a cursor on a screen to complex behaviors (Gao and
Ganguli, 2015). A clear advantage to the approaches discussed in
Section 5 is that we can learn to bring complex vocal behavioral
spaces into a compressive low-dimensional behavior spaces, even
without a prior model of the structure in that space. For example,
Arneodo et al. (2021) find that directly predicting the acoustic
structure of zebra finch song from neural data does not perform
as well as predicting the parameters of a low-dimensional
biophysical model of song production. In the many species in
which we do not have access to a biophysical model of vocal
production, learned acoustic spacesmay be a viable alternative. In
contrast, the current state-of-the-art vocal prostheses for speech
bypass biophysical models, directly predicting sentences (i.e.,
symbolic sequences) with the aid of language models (i.e., a
sequence model) (Moses et al., 2021). Such methods do not
capture important extra-linguistic information such as emotional
tone and stress. In future work, a clear pathway forward is to
develop BCI models that can both capture symbolic organization
aided by sequential models, as well as within-symbol variability
in the acoustic signal.

8.2. Vocal Production
Songbirds as a model for systems neuroscience are perhaps
best known for the role they play in our understanding
of vocal learning (Doupe and Kuhl, 1999). In addition to
songbirds, rodent and non-human primate vocal behavior are
becoming increasingly prominant models in the neuroscience
of vocal production. In non-human primates, recent evidence
has suggested some degree of constrained vocal learning in
some species (Fischer and Hammerschmidt, 2020). In rodents,
recent focus has been placed upon variability and structure
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mouse in ultrasonic vocalizations (USVs) (Holy and Guo, 2005;
Arriaga et al., 2012; Petkov and Jarvis, 2012), singing mice
have emerged as a physiological model of turn-taking (Okobi
et al., 2019), and the cultural transmission of vocal dialect has
been observed in the naked mole rat (Barker et al., 2021). In
each of these cases, quantification of how vocalizations vary
as well as relationships between vocalizations (either within
individual, between conspecifics, or from tutor to pupil) is
integral to understanding how we learn to navigate vocal space.
For example, Kollmorgen et al. (2020) use nearest-neighbor
graphs and t-SNE projections to quantify and visualize the
developmental trajectory of zebra finch song during vocal
learning. For each syllable, they compute a nearest-neighbors
graph based metric termed the “neighborhood production time,”
which quantifies the developmental time point at which similar
(neighboring) syllables were sung. For example, a syllable song
on day 45 might have 10 neighbors, sung on days between
day 40 and 50, comprising its neighborhood production times.
Syllable renditions that are neighbors with predominantly future
syllables are deemed anticipations, while syllable repetitions that
are neighbors with predominantly past syllables are deemed
regressions. They observe that day-by-day, zebra finch songs
gradually moves along a constant vocal learning trajectory, but
anticipations and regressions differ in how they are consolidated
overnight.

The number of neurons we can simultaneously record
from physiologically has increased the dimensionality of neural
datasets substantially over the past decade, making methods for
dimensionality reduction on neural signals such as spike trains
increasingly necessary for neural data analysis and opening the
door to computational methods that directly link the latent
representations of behavioral and neural datasets. Population
modeling approaches such as LFADS (Latent Factor Analysis

via Dynamical Systems; Pandarinath et al., 2018) reduce large
population spiking datasets into low-dimensional trajectories,
similar to the approaches discussed here with vocal signals. In
the case of LFADS, these embeddings are performed over single
trials using a recurrent autoencoder. One promising direction
for computational neuroethology is learning the relationship
between latent behavioral states and latent physiological states.
By developing tools that allow us to learn the relationship
between physiological and behavioral representations, we hope
to untangle how, for example, movements in behavioral space
reflect changes in physiology, and vice-versa. Singh Alvarado
et al. (2021) developed a joint encoding model in which they used
variational autoencoders to learn a joint latent representation of
spectrograms of zebra finch song, and corresponding ensemble
neural activity of spiny neurons in songbird basal ganglia
(average calcium fluorescence of around 60 ROIs, or putative
neurons, per bird). In a series of experiments leading up to this
joint mapping, Singh Alvarado et al. demonstrated that Area X
spiny neurons are involved in the regulation of vocal variability;
exhibiting suppressed activity during female-directed song and
enhanced activity during practice. Using the joint vocal-neural
latent mapping, they were able to uncover the mapping between
specific features of song and variants present in neural ensemble
activity. In Figure 7 we outline several similar maps between
behavior, perception, and neural dynamics. Singh Alvarado et al.’s
work exhibit that one such latent map, a vocal-motor mapping
between motor physiology and vocal behavior, can uncover
complex and detailed relationships that traditional methodology
cannot. Similar mappings between the physiology, perception,
and behavior of sender-receiver dynamics (e.g., Figure 7) are also
well poised to benefit from emerging latent approaches.

The physiology of vocal syntax is another area poised to
benefit from computational ethology. One example is the role of

FIGURE 7 | An outline of mappings between perceptual, acoustic, and physiological signals. One focus in sensory and motor neuroscience is to learn the

relationships between signals, perception, and physiology.
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the songbird premotor nucleus, HVC, in encoding song syntax.
Birdsong has a long history of being described sequentially
in terms of low-order Markovian transitions between song
elements. HVC’s role in song syntax, until recently has been
described exclusively in terms of these low-order transition
statistics (Fujimoto et al., 2011). In a recent example, however,
(Cohen et al., 2020b) made use of an automated birdsong labeling
paradigm and high-order sequence model to observe ’hidden
neural states’ encoding sequentially displaced (i.e., high-order)
transitions in the premotor nucleus HVC of canaries. To identify
non-adjacent dependencies in the song, they used a Prediction
Suffix Tree (Markowitz et al., 2013), which can capture high-
order Markovian relationships in the song syntax. Prediction
Suffix Trees have previously been used to observe long-range
dependencies up to the 7th order in canaries (Markowitz et al.,
2013). While birds were singing, Cohen et al., used a miniature
microscope to image neurons fromHVC, a region involved in the
songbird vocal motor circuit. They observed that HVCROIs were
locked to individual song-phrases and transitions, and that this
phrase locking is modified by non-adjacent context, displaced
by several phrases and seconds. As more recent approaches
give access to larger datasets enabling the identification of
longer-range dependencies in birdsong, it is currently not clear
whether we have yet found an upper bound on the sequential
displacement of long-range representations of vocal syntax in
physiology.

Outside of songbirds and mammals, male Drosophila song,
although not strictly vocal, is temporally patterned and driven by
both environment and internal states (Coen et al., 2014; Calhoun
et al., 2019). Calhoun et al. (2019) jointly model and uncover
relationships between temporal song structure and interactions
with a potential mate. Using a sequential model (an HMM-GLM
hybrid) they demonstrate that song patterning is underlined
by three hidden sensorimotor states, under which male’s song
productions differ in their relationship to female behavior. Using
optogenetic activation, they were then able to identify neurons
involved in switching between these sensorimotor states.

8.3. Vocal Perception
Similar to vocal production, latent and sequential models
are promising avenues for better understanding cognitive and
physiological underpinnings of vocal perception. In songbirds,
primates, and rodents, many foundational studies of auditory
categorical perception, perceptual decision making, and their
underlying physiology rely upon either relatively simple stimuli
such as tones or complex stimuli like human speech (Kuhl and
Miller, 1978; Kuhl and Padden, 1983; Russ et al., 2007; ten Cate,
2014; Xin et al., 2019). Categorization in these stimulus spaces are
attractive because they are well-characterized and understood.
Across species, however, neural responses are often tied to
complex and more behaviorally-relevant acoustic phenomena
such as recognizing and discriminating between conspecific
vocalizations (Bailey et al., 2002; Liu et al., 2019). When
the acoustic features underlying vocal repertoires are simple
and known, categorical stimuli can be selected directly based
upon those features. For example, Lachlan and Nowicki (2015)
manipulate a single dimension, the duration of swamp sparrow

notes, to determine how notes are categorically perceived in
different sequential contexts. In speech, voice onset time (VOT)
is a similar single-dimension commonly used for categorical
perception paradigms (Liberman et al., 1957). However, it
is rarely the case that categorical perception is driven by a
single dimension. Thus, building stimuli in more complex
feature spaces will be necessary to untangle the relationship
between vocal features, perception, and physiology. When
biophysical models of vocal structure exist, species relevant
stimuli can be generated using biophysical parameters (Arneodo
and Mindlin, 2009). When the underlying acoustical structure
of a vocal repertoire is more complex and biophysical models of
vocalizations have not been defined, neural-network synthesized
vocalizations are an attractive alternative. For example, as
discussed above, birdsong can be synthesized with neural
networks for physiological and perceptual playback studies
to determine perceptual similarity between syllables or learn
categorical boundaries between song-morphs (Sainburg et al.,
2018a; Thielk et al., 2018; Zuidema et al., 2020). By systematically
controlling the signal space of a vocal repertoire, we can
systematically explore how changes in that space relate to changes
in physiology.

Algorithmic approaches are similarly well poised to aid in
our understanding of how vocal sequences are maintained and
represented. Sequence learning research in human and non-
human primates is largely dominated by artificial grammar
learning (AGL) research, an umbrella category that comprises
several different forms of sequence learning ranging from
hierarchically nested tree structures to transitional probabilities
(Dehaene et al., 2015). Artificial grammar learning studies
aim to determine what structures animals (and humans)
are capable of learning, what cognitive mechanisms underlie
grammar induction, and what physiological systems underlie
those cognitive mechanisms. In the domain of primate sequence
learning, neural pathways are generally conserved between
humans and non-human primates and involve the ventral
regions of cortex (Wilson et al., 2017). Determining an
appropriate stimuli set is requisite for developing an AGL
paradigm. Latent representations of vocalizations can aid in
choosing stimuli from a well-defined stimulus space. For
example, when choosing a stimulus set for an AnBn grammar,
it is desirable depending on the goal of the task to ensure that
the constituent vocalizations comprising A and B belong to
equidistant or separate clusters in acoustic or perceptual spaces
(Zuidema et al., 2020).

While artificial grammar learning has also played a prominent
role in birdsong sequence learning (ten Cate andOkanoya, 2012),
the structure underlying an animal’s own vocal syntax provides
an opportunity to study the neural and cognitive underpinnings
of a more ethologically-relevant complex sequential structure.
Despite the important role vocal syntax production has played
in establishing birdsong as a model in systems neuroscience,
a surprising gap exists in our knowledge of the physiological
circuits underlying how syntactic information is recognized and
sequentially integrated when listening to song. Songbird vocal
communication contains often very complex syntax that can
be structured over long timescales comprising often tens to
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hundreds of unique, stereotyped vocal units (Cody et al., 2016).
Conspecifics pay attention to the structure of that song. Abe
and Watanabe (2011) developed a habituation/dishabituation
paradigm with Bengalese finches alongside immediate early gene
(IEG) expression and lesioning experiments to explore the role
of song nuclei on the recognition of grammatical sequences.
They found that IEG expression increased when presented with
non-conforming/nonpredictive strings in the nuclei LMAN, a
basal ganglia output nuclei characterized by recurrent loops that
is also involved in vocal learning (Bottjer and Altenau, 2010).
Abe and Wantenable then lesioned LMAN and measured song
discrimination with their habituation paradigm. They found that
discrimination was disturbed in birds where LMANwas lesioned,
implicating LMAN in the ability to discriminate syntactic song.
How syntactic information is learned, integrated, andmaintained
in LMAN and associated striatal regions of songbird brain are still
open questions.

In contrast to the auditory domain where little is known
about syntactic integration, a neural correlate for complex
and abstract information integration, NCL, has been well
established and characterized in songbird vision with pigeons and
corvids (Kröner and Güntürkün, 1999; Güntürkün, 2005). Strong
parallels exist between NCL and the primate prefrontal cortex,
which is involved in sequence learning. NCL has variously been
associated with rule learning (Veit and Nieder, 2013), numerosity
(Ditz and Nieder, 2015; Wagener et al., 2018), directed forgetting
(Rose and Colombo, 2005; Milmine et al., 2008; Helduser
et al., 2013), choice behavior (Kalenscher et al., 2003), working
memory (Diekamp et al., 2002; Rinnert et al., 2019), sequence
learning (Helduser and Güntürkün, 2012), and reward learning.
Anatomically and neurochemically NCL also exhibits strong
parallels to the primate prefrontal cortex. NCL is characterized
by similar circuitry from auditory and dopaminergic afferents,
as well as multi-sensory projections (Kröner and Güntürkün,
1999; von Eugen et al., 2020). Surprisingly, however, an auditory
equivalent to the visual working-memory region in NCL has not
been found, though they have been observed in the multi-sensory
audio-visual integration and association (Moll and Nieder, 2015,
2017). Birdsong is well poised as a signal to be a model of vocal
syntax perception, To establish this model, however, it will be
imperative to uncover the systems in songbird brain related to
working memory and temporal context integration in song. NCL
appears to be a likely candidate for processing syntactic vocal
signals, though, as yet, this has not been found to be the case.

Although mouse USVs do not appear to contain temporal
structure to the same extent as songbirds, mouse USVs are
temporally organized (Castellucci et al., 2018) and female mice
also show preference for more complex syllables and sequences
(Holy and Guo, 2005), making mouse USVs another potential
target for the study of syntactic and sequential integration in
vocal perception.

9. DISCUSSION

This review covers emerging approaches in the computational
neuroethology of vocal communication enabling researchers to

engage with large and diverse datasets of vocal signals and to
represent them in computationally tractable frameworks.

We started by discussing techniques to process and represent
acoustic signals. We then discussed how to parse complex vocal
datasets into species, individuals, and discrete vocal elements.
Next, we discussed how relational structure can be extracted from
vocal signals, how these signals can be clustered in learned latent
spaces, and how these latent spaces capture different aspects of
the information contained within the underlying signals. We
then discussed how temporal structure can be inferred from vocal
units, including emerging work on the non-Markovian dynamics
underlying vocal behavior. In the next section, we discussed how
vocalizations can be synthesized for use in playback experiments
that allow an unprecedented degree of control over non-linear
and complex vocal feature spaces. Finally, we discussed how these
approaches are being applied to the field of neuroethology and
emerging frameworks for understanding vocal signals and their
underlying physiology.

The methods discussed here provide a promising avenue for
a broader, more diverse, and larger-scale neuroethology of vocal
communication, than the research practices that have dominated
the past several decades, and hold the promise of expanding
both the breadth and depth of our understanding. Instead of
focusing on a small number of model species, new computational
techniques provide a framework for studying vocal behavior
across a wide range of animals. While much of vocal
neuroethology has recently focused on songbirds and mammals
the techniques discussed here are equally applicable to the
abundance of other species studied in bioacoustics and behavioral
ecology including fish, amphibians, and insects. Even within
songbirds, research on vocal learning in songbirds has ignored
the majority of species, female birdsong, and most call types
(Loo and Cain, 2021). Likewise, because these new computational
methodologies can often deal with unstructured data, they enable
us to expand beyond simplified, isolated behaviors in controlled
environments to more natural or naturalistic behavioral contexts
where dynamics involving multi-modal integration and multi-
animal social interactions arise. As we capture increasing levels
of detail in behavior, our understanding of its sophistication
naturally follows. Already, these new computational framework
have revealed deep structure in the sequential organization of
communication, where large-scale datasets of both symbolic
sequences, and latent projections that capture rendition-to-
rendition variability, have enabled quantitative analyses of rare
(but perhaps meaningful) events, such as long-range syntactic
organization. Together, all of these approaches point toward a
new framework, in which complex and non-linear behavioral
and physiological signals can be represented in compressive
and tractable spaces that can capture the complex dynamics
and relationships in the increasingly rich datasets available to
researchers.

As with any powerful tool, these techniques require careful
consideration when put into practice. Broadly, automation and
machine learning in data analysis can be fraught with unexpected
complications and confounds that may be hard to spot. For
example, automating the labeling of large datasets of birdsong
syllables can speed up the task of labeling by days, weeks, or
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months, but can also leave the experimenter with less intuitive
knowledge of the animal’s vocal repertoire, resulting in a loss
of domain knowledge. As we have noted elsewhere (Sainburg
et al., 2020b), when domain knowledge is available it should be
integrated with one computational approach. Another potential
pitfall (and a source of much needed research effort) is in
understanding the structure of the latent manifolds that are
yielded in many of the described methods. In particular, non-
linear latent modeling techniques like UMAP or neural networks
can capture complex relationships in vocal data, but interpreting
these projections requires an understanding of how data are
represented within the geometry of the latent space. For example,
UMAP captures primarily local structure in datasets that are
present in nearest neighbor graphs, meaning that the relative
distances of vocal elements have no explicit relation to the data,
as is the case in PCA for example.

Attending to the cautions of computational abstraction,
the approaches discussed in this manuscript provide a
framework from which to quantify vocal signals that promises
to yield important new insights into vocal behavior and
neurobiology. These approaches enable neuroethologists to
project vocalizations onto low dimensionaland latent manifolds,

visualize and quantify the transitional structure and information
decay of vocal syntax, and map vocal and neural repertoires into
shared neural spaces for functional representation action. As the
richness of datasets grow to capture more of the complexities of
behavior and physiology, methods and frameworks for modeling
and inferring structure in ethological data are increasingly
necessary for hypothesis formulation and testing. The methods
and frameworks discussed in this review parallel and supplement
those in the broader field of computational neuroethology.
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