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Abstract

Purpose

Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin

(IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect

via β1 and αvβ3 integrin signaling. SpA is associated with an increased risk of osteoporosis,

and we investigated the effect of VnP-16 in mice with SpA.

Methods

SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle,

celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis

score, and proinflammatory cytokine expression of the spine were evaluated by immunohis-

tochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation

in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Spleno-

cyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3

was evaluated by in vitro Western blotting.

Results

The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and

spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than

the vehicle group. In the spine, the levels of IL-1β, IL-6, tumor necrosis factor-α, and IL-17
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expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and

VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of

Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3.

Conclusions

VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the

Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.

Introduction

Spondyloarthritis (SpA) is an inflammatory arthritis, which affects about 0.20 to 1.61% of the

population [1]. SpA has two subtypes: axial SpA (axSpA) and peripheral SpA [2]. AxSpA

induces axial joint inflammation and eventually new bone formation at the vertebral corner,

also termed syndesmophyte formation [3]. The treatment of axSpA aims to reduce the inflam-

matory response and suppress abnormal bony bridging of axial joints [3]. The treatment

guidelines for axSpA recommend non-steroidal anti-inflammatory drugs (NSAIDs) as the

first-line therapy for patients with axSpA and active arthritis symptoms [4]. Interleukin (IL)-

17 mediates inflammation and abnormal hyperosteosis in axSpA [5]. Various immune cells of

patients with axSpA express IL-17 [6], and type 17 helper T (Th17) cells are one of the main

cells expressing IL-17 in axSpA. Th17 cells are upregulated in the peripheral blood of patients

with axSpA [7]. Furthermore, the circulating Th17 level and regulatory T cell (Treg) abun-

dance are positively and negatively, respectively, correlated with axSpA disease activity [8].

Therefore, targeting the Th17/Treg imbalance may have therapeutic potential for axSpA. We

reported that modulation of the Th17/Treg imbalance and suppression of pro-inflammatory

cytokines by signal transducer and activator of transcription (STAT) 3 inhibitors, rebamipide

and protein inhibitor of activated STAT3, prevented axSpA in mice [9, 10].

Osteoporosis is more common in patients with axSpA than in the general population [11,

12], and low mineral bone density can occur in the early stages of axSpA [13]. Patients with

ankylosing spondylitis (AS) have a 7.1-fold increased risk of vertebral fracture than the general

population, and that risk is elevated further in the presence of other inflammatory arthritis or

autoimmune diseases [14]. The increased risk of osteoporosis and related fracture in axSpA is

related not only to known risk factors for osteoporosis but also systemic inflammation [15].

Bisphosphonate is the most commonly used anti-osteoporotic agent and inhibits osteoclasts

and monocyte/macrophage lineage cells [16]. The anti-inflammatory effect of bisphosphonate

on monocyte lineage cells has been investigated [17]. An open-label pilot study of pamidronate

pulse therapy showed modest efficacy for AS [18, 19]. Therefore, anti-osteoporotic agents

could also exert an anti-inflammatory effect. Vitronectin-derived bioactive peptide (VnP-16)

is a recently developed anti-osteoporotic agent [20]. VnP-16 enhances osteoblast differentia-

tion via β1 integrin-FAK signaling and suppresses osteoclast differentiation and resorptive

activity via JNK-c-Fos-NFATc1 and αvβ3 integrin-c-Src-PYK2 signaling, respectively [20]. In

a mouse model of experimental autoimmune encephalitis, αv integrin expressed by dendritic

cells was required for Th17 differentiation [21]. Also, integrin expressed by T cells is important

for cell differentiation, migration, and costimulatory signaling [22]. However, the anti-inflam-

matory effect of VnP-16 has not been evaluated in an animal model of SpA.

Several SpA animal models have been introduced, including the curdlan-induced SKG

mouse model [23]. SKG mice have the ZAP-70W163C mutation, and curdlan immunization
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induces several SpA features, including ankylosis of the spine, gut inflammation, uveitis, and

psoriasis-like skin lesions [23]. The ZAP-70W163C mutation plays a crucial role in thymic T cell

selection; therefore, this SpA mouse model is useful for assessing not only structural damage of

axial joints, but also T cell differentiation in the pathogenesis of SpA. The incidence of arthritis

was higher in female SKG mice than in male SKG mice when immunized by curdlan [23];

accordingly, a recent study using the SKG mouse model preferred female over male SKG mice

[24].

We evaluated the anti-arthritic effect of VnP-16 in mice with SpA. The clinical arthritis

score, histologic severity grade, and proinflammatory cytokine expression in the spine were

determined, and helper T-cell polarization to Th17 cells or Tregs was evaluated.

Materials and methods

Mice

Female SKG mice on a BALB/c background with ZAP-70W163C mutation and 8 to 10 weeks

old were purchased from Saeronbio (Uiwang, South Korea). Mice were bred under specific-

pathogen-free conditions and fed standard mouse chow (Ralston Purina, St. Louis, MO) and

water ad libitum. The experiments were assessed and approved by the Institutional Animal

Care and Use Committee of the School of Medicine and the Animal Research Ethics Commit-

tee of the Catholic University of Korea and were conducted in accordance with the Laboratory

Animals Welfare Act and the Guide for the Care and Use of Laboratory Animals (no. CUMC-

2019-0298-02).

Induction of SpA and drug administration

Curdlan (3 mg/kg) was injected intraperitoneally (IP) into SKG mice aged 8–10 weeks. VnP-

16 was synthesized as described [20], and the NSAID, celecoxib, was obtained from Hanlim

Pharmaceutical. The mice were divided into four groups (n = 10 per group): 1) vehicle (phos-

phate-buffered saline) administration, 2) oral celecoxib 10 mg/day, 3) subcutaneous VnP-16

600 μg/week, and 4) oral celecoxib 10 mg/day with subcutaneous VnP-16 600 μg/week. The

treatment started 1 week after curdlan injection and continued for 11 weeks. Following a pre-

vious study [23], clinical scores were measured weekly for 12 weeks by three independent

experimenters; the mean (and standard error of the mean) scores were used in the analysis.

The scores of the affected joints were summed for each mouse. The clinical score was assessed

under isoflurane inhalation anesthesia in every mouse, and every effort was made to minimize

suffering. After the mice had been euthanized with 100% carbon dioxide within 5 min, in

accordance with the use and care of animal guidelines of the Catholic University of Korea, the

joint, spleen, and spinal tissues were collected.

Histopathological analysis

Tissue samples from the peripheral joints and spine were fixed in 10% neutral-buffered forma-

lin, embedded in paraffin, and sectioned at a thickness of 7 μm. The sections were dewaxed

using xylene, dehydrated in an alcohol gradient, stained with hematoxylin and eosin (H&E)

and Safranin O, and were scored for inflammation. The histologic scores of the peripheral

joints and spine were calculated as described previously [23]. Histopathological analysis was

performed by three experimenters in a blinded fashion. Stained tissues were examined by

photomicroscopy (Olympus, Tokyo, Japan, magnification 40×, 200×).
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Immunohistochemistry

Immunohistochemical analyses were performed using the Dako REAL™ Envision™ Detection

System Kit (DAKO, Glostrup, Denmark, #5007). Tissues were first incubated with primary

antibodies (Abs) against IL-1β IL-6, IL-17A, and tumor necrosis factor (TNF)-α (all from

Abcam, Cambridge, UK) overnight at 4˚C followed by incubation with Dako REAL™ Envi-

sion™/HRP for 30 min. The final colored product was developed using a chromogen diamino-

benzidine. Three independent, blinded observers assessed all of the histologic scores. Images

were taken using a DP71 digital camera (Olympus, Center Valley, PA, USA) attached to a

BX41 microscope (Olympus). Positive cells were counted (magnification 400×) with the aid of

Adobe Photoshop software and were averaged in three randomly selected fields per tissue

section.

Confocal microscopy

Spines were removed from mice at 12 weeks after curdlan injection. To assess the differentia-

tion of Th17 cells and Tregs, the spine tissues were reacted with Abs against CD4–fluorescein

isothiocyanate (FITC), IL-17–phycoerythrin (PE), CD25–allophycocyanin, and forkhead

box P3 (Foxp3)–PE (all from eBioscience, San Diego, CA, USA). The stained tissue sections

were visualized using a confocal microscope (LSM 700 Meta; Carl Zeiss, Oberkochen, Ger-

many). Double or triple positive cells were counted in three high-power fields (magnification

400×) per section.

Flow cytometric analyses

Cell pellets were prepared from spleen tissues. The regulatory T cell populations were exam-

ined using anti-mouse CD4–peridin chlorophyll protein (perCP) and anti-mouse CD25-allo-

phycocyanin (APC) (eBioscience); then, the cells were fixed and permeabilized using a Foxp3/

Transcription Factor Staining Buffer set (Thermo Fisher Scientific, Waltham, MA, USA)

according to the manufacturer’s instructions. For Th17 cell analysis, before FACs staining, the

cells were stimulated with 25 ng/mL phosphomolybdic acid (Sigma-Aldrich, St. Louis, MO,

USA), 250 ng/mL ionomycin (Sigma-Aldrich), and Golgi Stop (BD Biosciences, San Diego,

CA, USA) in 5% CO2 at 37˚C for 4 hours. The cells were stained with anti-mouse CD4 PerCP,

and then with an anti-mouse IL-17 FITC (eBioscience), followed by fixation and permeabiliza-

tion using a Cytofix/Cytoperm Plus Kit (BD Biosciences) according to the manufacturer’s

instructions. The samples were analyzed using a FACSCalibur instrument (BD Pharmingen;

BD Biosciences).

Western blotting

The protein levels of p-STAT3(s727) (cat: #9134, 100kDa, Cell Signaling Technology, Beverly,

MA, USA), total STAT3 (cat: #9189, 100 kDa, Cell Signaling Technology) and GAPDH

(#ab181602; Abcam) were measured using a Western blot system (SNAP i.d. Protein Detection

System; Merck Millipore, Danvers, MD, USA). Splenocytes were harvested from BALB/c mice

and then stimulated with VnP-16 (100 μg/mL) or vehicle for 2 hours, and then with IL-6 (10

ng/mL) for 1 hour. Then, whole-cell lysates were prepared. The protein concentration was

measured using the BCA assay method (#23235, Thermo), and samples were separated on a

4–12% sodium dodecyl sulfate polyacrylamide gel and transferred to a nitrocellulose mem-

brane (Amersham Pharmacia, Uppsala, Sweden). The primary antibodies p-STAT3 s727 (cat:

#9134, 100kDa; Cell Signaling Technology), total STAT3 (cat: #9189, 100 kDa; Cell Signaling

Technology), and GAPDH (cat: ab181602, 36kDa; Abcam) were diluted in 0.1% skim milk in
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Tris-buffered saline Tween-20 and incubated for 20 min at room temperature. The membrane

was washed and incubated with horseradish peroxidase-conjugated secondary antibody for 20

min at room temperature. Band density was estimated by image capture densitometry.

Statistical analyses

Continuous variables are presented as the mean ± standard error of the mean. Differences

between groups were analyzed using the Kruskal–Wallis test. P< 0.05 was considered signifi-

cant. The statistical analyses were performed using SPSS 20.0 for Windows (IBM Corp.,

Armonk, NY, USA).

Results

VnP-16 prevents SpA progression

The clinical scores were evaluated weekly (n = 10 per group) after curdlan injection. The clini-

cal score was significantly attenuated in the VnP-16+celecoxib group from 4 weeks after cur-

dlan injection to the time of euthanasia (Fig 1A). The arthritis scores of the VnP-16 alone and

VnP-16+celecoxib groups were significantly lower than those of the vehicle group (Fig 1B).

The arthritis score was also lower in the VnP-16+celecoxib than celecoxib-alone group (Fig

1B). The VnP-16 alone and VnP-16+celecoxib groups had lower spondylitis scores than the

vehicle group (Fig 2). The difference in spondylitis score between the celecoxib alone and

VnP-16+celecoxib groups was not significant. Immune cell infiltration and cartilage destruc-

tion in the spine were less severe in the VnP-16 alone and VnP-16+celecoxib groups than the

vehicle group.

VnP-16 suppressed inflammatory cytokine expression

The expression levels of IL-1β, IL-6, TNF-α, and IL-17, were assessed by IHC in the nucleus

pulposus (NP) and cartilaginous end plate (CEP) of the vertebral corner. In the NP, IL-1β and

TNF-α expression was significantly suppressed in the VnP-16+celecoxib group compared to

the vehicle group, whereas IL-6 and IL-17A expression was significantly suppressed in the

VnP-16 alone and VnP-16+celecoxib groups (Fig 3). Suppression of IL-17 was more marked

in the VnP-16+celecoxib than celecoxib-alone group (Fig 3). In the CEP, the expression of the

four inflammatory cytokines was suppressed in the VnP-16 alone and VnP-16+celecoxib

groups (Fig 4). Furthermore, IL-1β and IL-6 expression were decreased in the VnP-16+-

celecoxib group compared to the celecoxib-alone group (Fig 4). Interestingly, celecoxib alone

did not prevent disease progression, whereas VnP-16 alone significantly reduced the histology

score of the peripheral joints/spine and proinflammatory cytokine expression in the spine. In

addition, the combination of VnP-16+celecoxib suppressed inflammatory cytokine expression

to a greater degree in the spine than celecoxib alone.

Immunomodulatory role of VnP-16 in helper T-cell differentiation

In the annulus fibrosus area, CD4+ IL-17+ and CD4+ IL-22+ IL-17+ cells were downregu-

lated, and CD4+ CD25+ Foxp3+ cells were upregulated, in the VnP-16 alone and VnP-16+-

celecoxib groups compared to the vehicle group (Fig 5A–5C). The decrease in CD4+ IL17

+ cells and increase in CD4+ CD25+ Foxp3+ cells were significantly greater in the VnP-16+-

celecoxib group compared to the celecoxib-alone group (Fig 5A and 5C). Flow cytometry

showed that CD4+ CD25+ Foxp3+ T cells were upregulated in the VnP-16+celecoxib group

compared to the vehicle group (Fig 6). The raw flow cytometry data are provided as S1 Fig.

The Th17 population (CD4+ IL-17+ T cells) tended to decrease in the VnP-16+celecoxib
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compared to vehicle group. Furthermore, pSTAT3 s727 expression was significantly sup-

pressed by VnP-16 100 μg/mL (Fig 7; raw data S2 Fig), which demonstrates the Th17/Treg reg-

ulation mechanism of VnP-16.

Discussion

We evaluated the anti-arthritic effect of VnP-16 in mice with SpA. The clinical score, arthritis

and spondylitis scores, and expression of proinflammatory cytokines in the spine were sup-

pressed by VnP-16 plus celecoxib. VnP-16 alone reduced the arthritis and spondylitis scores

and suppressed proinflammatory cytokine expression in the spine. Furthermore, VnP-16

alone and VnP-16+celecoxib regulated the Th17/Treg population in spine tissue, and VnP-16

+celecoxib augmented Treg differentiation in the spleen. The anti-arthritic effects of anti-oste-

oporotic agents could be useful in patients with inflammatory arthritis, including SpA, which

are linked to increased osteoclast activity and an increased risk of osteoporosis [12]. The latter

could be explained by increased systemic inflammation [15]; moreover, IL-1β, IL-6, IL-17, and

Fig 1. Anti-arthritic effects of vitronectin-derived bioactive peptide (VnP-16) in spondyloarthritis (SpA) mice. Curdlan (3 mg/kg) was injected

intraperitoneally into SKG mice with the ZAP-70W163C mutation to induce SpA. The treatment groups were as follows: 1) vehicle (phosphate-buffered saline)

administration; 2) oral celecoxib 10 mg/day; 3) subcutaneous VnP-16 600 μg/week; and 4) oral celecoxib 10 mg/day with subcutaneous VnP-16 600 μg/week.

The in vivo experiments were repeated twice and pooled data are presented (n = 10 per group). (A) Weekly mean clinical score for 12 weeks. Black dot,

vehicle group; green dot, celecoxib-alone group; blue dot, VnP-16 alone group; red dot, VnP-16+celecoxib group. (B) Hematoxylin and eosin (H&E)/

Safranin O-stained images of ankle joints isolated from SpA mice 12 weeks after curdlan injection; bar graphs show the arthritis score. Data are

means ± standard error of the mean (SEM) of assessments by three independent experimenters. ns, non-significant; �P< 0.05, �� P< 0.01, ���� P< 0.0001.

https://doi.org/10.1371/journal.pone.0262183.g001
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TNF-α promote osteoclastogenesis in inflammatory arthritis [25]. Therefore, additional anti-

arthritic effects of anti-osteoporotic agent can be attractive therapy in patients with inflamma-

tory arthritis, because it could expect dual therapeutic effects, preventing osteoporosis and

additional anti-arthritic effects.

NSAIDs, including celecoxib, are used in patients with SpA as a first-line therapy [4].

Although NSAIDs ameliorate symptoms of SpA, such as arthralgia and stiffness, whether they

can prevent spinal structural progression is unclear. Wanders et al. reported that NSAIDs sup-

press spinal structural progression in patients with AS [26]. However, several subsequent ran-

domized and observational studies failed to reproduce the effect [27]. In the present study,

NSAIDs alone did not suppress arthritis in SpA mice, but adding VnP-16 augmented the anti-

arthritic and immunomodulatory effects by regulating the Th17/Treg balance and inflamma-

tory cytokine expression. The effects on the arthritis score, inflammatory cytokine expression,

and Th17/Treg imbalance were most prominent in the VnP-16+celecoxib treatment group.

VnP-16 showed anti-osteoporotic effects by restraining the JNK-c-Fos-NFATc1 and αvβ3

integrin-c-Src-PYK2 signal pathways and promoting activity in the β1 integrin-FAK signal

pathway [20]. Nuclear FAK induces Treg recruitment [28] and α4β1 integrin activation

increases the immunosuppressive capacity of Tregs [29]. The inflammatory response of Th17

cells in a mouse model of multiple sclerosis depended on αvβ3 integrin signaling [30], and

NFATc1 was required to induce the Th17 transcription factor RORγt [31]. Therefore, VnP-16

may regulate Th17/Tregs via these signaling pathways. Although the precise mechanism of the

potential synergistic effect of VnP-16 and celecoxib was not uncovered here, the results suggest

additive therapeutic effects of VnP-16 on SpA. The second-line therapy for SpA is TNF-α
inhibitors [4], long-term treatment with which attenuated spinal structural progression in

patients with SpA [32]. In addition, the reduction by TNF-α inhibitors of spinal structural

damage has been suggested to be mediated by suppression of inflammation and C-reactive

protein (CRP) [33, 34], and the intrinsic effects of TNF-α inhibitors (which are independent of

inflammation and CRP control) [35]. IL-6 stimulates the production of CRP by hepatocytes

[36]. Therefore, controlling the expression of proinflammatory cytokines has therapeutic

Fig 2. VnP-16 reduces the spondylitis score of SpA mice. In vivo experiments were repeated twice and pooled data are presented (n = 10 per

group). Spine tissues were obtained from the vehicle-, celecoxib-, VnP-16 single-, and VnP-16+celecoxib-treated groups 12 weeks after curdlan

injection and stained with H&E and Safranin O. Black arrows indicate inflammatory cell infiltration. Bar graphs show the spondylitis score. Ns,

non-significant, �P< 0.05.

https://doi.org/10.1371/journal.pone.0262183.g002
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potential for SpA. In this study, VnP-16 alone suppressed proinflammatory cytokine (TNF-α
and IL-6) expression in the spine. Therefore, the therapeutic effect of VnP-16 on spinal struc-

tural progression in SpA is mediated by modulation of proinflammatory cytokine expression.

Although the pathogenesis of SpA is unclear, helper T cells are implicated. Th17 cells pro-

duce IL-17 and they are more numerous in patients with SpA; Th17 cell expression correlated

with SpA disease activity [7, 8]. Furthermore, IL-22+ expressing Th17 cells played an impor-

tant role in joint destruction in a mouse model of inflammatory arthritis [37]. Tregs promote

immune tolerance and attenuate inflammatory responses in various immune-mediated dis-

eases [38]. STAT3 inhibitor regulated the Th17/Treg imbalance in the SpA mouse model [10].

SKG mice have a rheumatoid arthritis-like phenotype mediated by spontaneous Th17 polari-

zation [39]. In addition, transplantation of CD4+ T cells extracted from curdlan-induced SpA

mice into severe combined immunodeficient mice induced features of SpA [23]. Therefore,

the SKG mouse enables assessment of the immunoregulatory mechanism of novel medications

in terms of the T-cell-mediated response. In this study, Treg expression was increased in both

the spine and spleen, while Th17 and IL-22+ Th17 was significantly decreased in spine tissue

of SpA mice by VnP-16. The Th17 population in the spleen also tended to decrease with VnP-

16 treatment. Although the suppression of Th17 by VnP-16 in the spleen was not significant,

Fig 3. VnP-16 reduces inflammatory cytokine expression in the nucleus pulposus of mice with SpA. IL-1β, IL-6, TNF-α, IL-17A expressing cells were

enumerated in the nucleus pulposus by immunohistochemical staining (n = 6 per group). ns, non-significant, �P< 0.05, ��P< 0.01, ���P< 0.001.

https://doi.org/10.1371/journal.pone.0262183.g003
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pSTAT3 regulation by VnP-16 was confirmed in vitro. These results suggest a regulatory role

of VnP-16 on the Th17/Treg imbalance via regulation of STAT3 in the SpA mouse model; this

is one of the anti-arthritic mechanisms mediated by VnP-16.

Prevention of syndesmophyte formation is important, because it is irreversible and can

cause substantial limitation of motion and reduce the quality of life of patients with SpA.

Abnormal new bone formation involves the following steps: 1) acute inflammation in the ver-

tebral corner, presenting as bone marrow edema by magnetic resonance imaging (MRI), 2)

chronic changes that appear as fat metaplasia by MRI, and 3) formation of syndesmophytes

and a bony bridge at the vertebral corner [40]. Bone marrow edema (acute inflammation) pre-

cedes fat metaplasia, which increases the risk of syndesmophyte formation [41]. Therefore,

proper management at the acute inflammation stage (bone marrow edema) can prevent fat

metaplasia and syndesmophyte formation in patients with SpA [41, 42]. In addition, bone

biopsy of bone marrow edema showed osteoclast predominance, whereas osteoblasts were pre-

dominant in fat metaplasia [43]. Bone-derived cells from the facet joints of patients with SpA

showed increased osteoblast differentiation upon stimulation with IL-17, suggesting that IL-17

is crucial for abnormal new bone formation in SpA [44]. In this study, VnP-16 reduced IL-17

Fig 4. VnP-16 reduces inflammatory cytokine expression in the cartilaginous end plate of mice with SpA. Immunohistochemical staining of IL-1β, IL-6, TNF-

α, and IL-17A in the cartilaginous end plate (n = 6 per group). Data are means ± SEM. ns, non-significant, �P< 0.05, ���P< 0.001, ����P< 0.0001.

https://doi.org/10.1371/journal.pone.0262183.g004
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expression in the spine of SpA mice. Considering its originally documented action, i.e., osteo-

clast inhibition [20], VnP-16 has potential to suppress new bone formation by suppressing the

expression of the osteoblast-activating cytokine IL-17 and inhibiting osteoclastogenesis at an

early stage (bone marrow edema). However, further studies are required to reveal the effects of

VnP-16 on syndesmophyte formation in SpA.

VnP-16 inhibited αvβ3 integrin-c-Src-PYK2–mediated bone resorption and enhanced β1

integrin-FAK signaling, promoting osteoblast differentiation [20]. Integrin expressed on T

cells promotes interactions with neighboring cells, cytoskeletal organization, and migration.

Integrins comprise α and β subunits, which have different effects on T cells. LFA-1 (αLβ2

integrin) and VLA-4 (α4β1 integrin) act on T-cell differentiation, extravasation, and costimu-

latory signaling, whereas α4β7 integrin interacts with MAdCAM-1 to induce gut homing of T

cells [22, 45]. VnP-16 may have immunoregulatory effects on cells of the monocyte/macro-

phage lineage or integrin-mediated signaling. Further studies are needed to confirm the

mechanism.

Fig 5. VnP-16 regulates type 17 helper T cell (Th17) and regulatory T cell (Treg) populations in the annulus

fibrosus of SpA mice. Spine tissue was stained with CD4–FITC, IL-17–PE, CD25–APC, Foxp3–PE to evaluate (A)

Th17, (B) IL-22+ Th17, and (C) Treg populations (n = 6 per group). Double-positive cells are shown in the bar graph.

Data are means ± SEM. ns, non-significant, �P< 0.05, ��P< 0.01, ���P< 0.001, ����P< 0.0001.

https://doi.org/10.1371/journal.pone.0262183.g005

Fig 6. VnP-16 regulates type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleens of SpA mice. Splenocytes were subjected

to flow cytometry using antibodies against IL-17A, CD4, CD25, and Foxp3 to determine the Th17 and Treg populations (n = 3 per group). Data are

means ± SEM. ns, non-significant, ��P< 0.01.

https://doi.org/10.1371/journal.pone.0262183.g006
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Conclusions

In conclusion, VnP-16 showed an anti-arthritic effect in SpA mice by modulating the Th17/

Treg imbalance and suppressing inflammatory cytokine expression in axial joints. VnP-16

plus an NSAID prevented SpA and ameliorated peripheral arthritis and spondylitis. Therefore,

VnP-16 exerts a protective effect against SpA.
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