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Abstract

Motivation: Large-scale metabolic models are widely used to design metabolic engineering strategies for diverse
biotechnological applications. However, the existing computational approaches focus on alteration of reaction
fluxes and often neglect the manipulations of gene expression to implement these strategies.

Results: Here, we find that the association of genes with multiple reactions leads to infeasibility of engineering strat-
egies at the flux level, since they require contradicting manipulations of gene expression. Moreover, we identify that
all of the existing approaches to design gene knockout strategies do not ensure that the resulting design may also
require other gene alterations, such as up- or downregulations, to match the desired flux distribution. To address
these issues, we propose a constraint-based approach, termed GeneReg, that facilitates the design of feasible meta-
bolic engineering strategies at the gene level and that is readily applicable to large-scale metabolic networks. We
show that GeneReg can identify feasible strategies to overproduce ethanol in Escherichia coli and lactate in
Saccharomyces cerevisiae, but overproduction of the TCA cycle intermediates is not feasible in five organisms used
as cell factories under default growth conditions. Therefore, GeneReg points at the need to couple gene regulation
and metabolism to design rational metabolic engineering strategies.

Availability and implementation: https://github.com/MonaRazaghi/GeneReg

Contact: zniko@uni-potsdam.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational modeling of metabolic networks has become a
prominent approach in the design of cell factories that accomplish a
desired goal, e.g. improving yield of a chemical compound (Burgard
et al., 2003; Kamp and Klamt, 2017; Patil et al., 2005; Pharkya and
Maranas, 2006; Pharkya et al., 2004; Ranganathan et al., 2010;
Rocha et al., 2010). The design of cell factories is achieved by meta-
bolic engineering strategies which involve a combination of knock-
outs, over- or under-expression of native genes of a host organism
along with insertion of genes from other organisms and even syn-
thetic enzymes which do not occur in nature (Erb et al., 2017). The
creation of metabolic manipulation strategies has largely been pro-
pelled by the developments in the constraint-based modeling frame-
work (Burgard et al., 2003; Kamp and Klamt, 2017; Patil et al.,
2005; Pharkya and Maranas, 2006; Pharkya et al., 2004;
Ranganathan et al., 2010; Rocha et al., 2010). The existing compu-
tational approaches for prediction of metabolic engineering

strategies can be roughly grouped into optimization-based or
enumeration-based. The former use optimization-based formulation
of the engineering task and can accommodate the gene manipula-
tions, while the latter enumerate set of reactions whose knockouts
achieve a desired goal (Maia et al., 2015).

Common to both types of approaches is that they result in engin-
eering strategies that specify how the fluxes through selected reac-
tions are to be manipulated to achieve the desired goal. For instance,
OptKnock uses bilevel programming to identify reaction knockouts
which improve a desired goal while ensuring growth (Burgard et al.,
2003). In addition, OptReg approach also uses bilevel programming
to identify up- or downregulation of reaction fluxes and reach a
metabolic engineering goal (Pharkya and Maranas, 2006). In con-
trast, the concept of minimal cut sets can be used to enumerate reac-
tion knockouts of specific size that disrupt a function in the
network. The latter has been recently employed to demonstrate that
growth-coupled overproduction is feasible for almost all metabolites
in five organisms used in metabolic engineering (Kamp and Klamt,
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2017). Yet, what a majority of the existing approaches neglects to
determine is whether or not the predicted strategies can, in fact, be
realized by appropriate manipulation of the underlying set of genes,
included in the models via the gene–protein–reaction (GPR) rules.

GPR rules characterize the genes and respective proteins that
catalyze reactions. They can either be included as additional annota-
tion of reactions (Reed et al., 2003) or as part of the stoichiometric
matrix that represents the stoichiometry of the reactions included in
the model (Machado et al., 2016). GPR rules specify whether a pro-
tein catalyzes a reaction on its own or if there are isoenzymes, en-
zyme complexes or their combinations (Reed et al., 2003). For
instance, a reaction catalyzed by two isoenzymes, encoded by the
genes g1 and g2, is denoted by the GPR rule (g1 OR g2); further, a re-
action catalyzed by an enzyme complex composed of two units,
encoded by g1 and g2, is denoted by (g1 AND g2). We refer to GPR
rules that include more than one gene as complex rules. For in-
stance, in the metabolic network in Figure 1A, the metabolite M1 is
taken up as a substrate from the environment to produce metabolite
M5, the undesired by-product M4, and the metabolite M6, which
denotes the engineering objective. The GPR rules in this example are
such that R4 is a reaction catalyzed by an enzyme complex com-
posed of two proteins encoded by the genes of g1 and g3. Further, to
carry flux, reaction R2 requires any of the two isoenzymes encoded
by the genes g1 and g2.

The participation of genes in multiple GPR rules and the inclu-
sion of complex GPR rules may lead to conflicts on the level of gene
manipulations. For instance, in the network presented in Figure 1A
and B, with the objective of maximizing the production of metabol-
ite M5, the pathway through R2 and R3 yield the optimal solution
(Fig. 1C). On the other hand, maximizing the production of M6

requires flux via the reaction R4 and blocking any flux through reac-
tions R2 and R3 (Fig. 1D). On the level of gene manipulations, R4

can carry flux if the proteins encoded by the genes g1 and g3 are pre-
sent. However, to remove the reaction R2, it is necessary to knock-
out genes g1 and g2, which encode the associated isoenzymes.
Therefore, this leads to an infeasible design for the objective of max-
imizing the production of M6 due to contradicting gene manipula-
tion—the need for simultaneous presence and absence of the
product encoded by the gene g1.

We hypothesize that such infeasibilities are likely to occur in
metabolic engineering strategies obtained with the existing compu-
tational approaches in genome-scale metabolic models. For instance,
by using a metabolic model of Escherichia coli, OptKnock predicts
that 63% increase in production of succinate in comparison to the
wild-type is possible by knocking out pyruvate formate lyase and
lactate dehydrogenase (Burgard et al., 2003). Looking closer at the
GPR rules of pyruvate formate lyase (EC2.3.1.54) in the E.coli
iJR904 model (Reed et al., 2003), we observe that it involves five
genes (three enzymes) in a complex GPR rule: (b3951 AND b3952)
OR (b0902 AND b0903) OR b3114. Knocking out this reaction
requires that the three isoenzymes are knockedout. However, the
last two terms form the GPR rule of the 2-oxobutanoate formate
lyase, which will be also knockedout although the metabolic engin-
eering strategy must not alter the flux through the respective reac-
tion. As another example, OptReg proposes a metabolic
manipulation strategy that leads to 94.3% of the maximum theoret-
ical yield of ethanol production of 19.87 mmol/(gDW h). In this de-
sign, the overproduction is possible by knocking out pyruvate
formate lyase, which is likewise also infeasible (Pharkya and
Maranas, 2006). Moreover, Machado et al. (2016) tested the feasi-
bility of strain designs proposed by the enumeration-based method
(Kamp and Klamt, 2017) and the results show that fewer than 10%
of the proposed solutions are actually feasible, when GPR rules are
considered. All these examples demonstrate that complex GPR rules
often lead to contradicting gene manipulations, referred to as gene
conflicts, and that there is a need for overcoming this important
problem in the design of metabolic engineering strategies.

Two constraint-based approaches, OptGene (Patil et al., 2005)
and OptORF (Kim and Reed, 2010), facilitate manipulation of
genes. However, OptGene suffers from non-linear constraints,
which render it impractical for usage with large-scale models. This

issue is partly addressed by using an evolutionary programming ap-
proach, which, however, allows only to approximate the solution.
In contrast, OptORF allows only gene knockouts and off–on over-
expression, while finer manipulations are not considered. Although
OptORF includes linear constraints that capture the environmental
regulation of metabolism, it is challenging to implement this ap-
proach since it requires additional information about condition-
specific activation of enzyme-coding genes that is not readily avail-
able even for model organisms that experience multi-factorial envir-
onmental cues (see Section 3.2, for further details). There is a
modified version of OptORF which is based on bilevel programming
that only considered knockout manipulations while claiming to cou-
ple reaction and gene manipulations (Kim et al., 2011). This variant
can be seen as analogous to OptKnock (Burgard et al., 2003), with a
modified objective that prefers fewer gene knockout. While this vari-
ant of OptORF is feasible to implement (see https://github.com/
MonaRazaghi/GeneReg), the considered constraints that couple re-
action flux and its activity [on–off, see constraint A.3 in
Supplementary Text of Kim et al. (2011)] leads to the case in which
a reaction does not carry flux (since the lower flux bound is often set
to zero), although it is considered active. Therefore, we recognize
that there is no working solution that resolves gene conflicts while
allowing fine tuning of gene manipulations, which is the problem we
address in this study.

Another elegant way to approach this problem is to rely on logic-
al transformation of model (LTM) that enforces gene–reaction asso-
ciations. These associations can then be combined with constraint-
based approaches for metabolic engineering (Zhang et al., 2015).
LTM is based on inclusion of pseudo-reactions and metabolites that
facilitate the simulation of complex GPR rules (i.e. isoenzymes and
protein complexes). As a result, the metabolic models extended
based on LTM have usually 2- to 5-fold more reactions and metabo-
lites in comparison to the original models, while leaving the number
of gene intact (Zhang et al., 2015). However, LTM only allows the
simulation and design of knockout strategies, while fine-tuned up-
and downregulations of genes are not considered. The question that
remains is whether the metabolic engineering strategies feasible at
the gene level can be achieved with a considerably smaller number
of variables, rendering the models applicable with more involved
constrained-based approaches (e.g. considering integer-value
variables).

Moreover, and most importantly, both approaches with and
without LTM when applied to design knockout strategies do not en-
sure that the engineering goal is achieved only by gene knockout
(i.e. without any other transformations, such as up- or downregula-
tion). For instance, in the metabolic network in Figure 1A and B,
with the objective of maximizing the production of metabolite M5,
knockout strategies only propose blocking flux through reactions R2

and R3 (Fig. 1D) and ignore the fact that the engineering goal is im-
possible without upregulation of R4. This possibility is also not pre-
cluded by the elegant LTM approach.

Here, we first investigate how complex the GPR rules are across
organisms, including those relevant for biotechnological applica-
tions, for which there are high-quality metabolic models available.
We then propose an optimization-based approach, called GeneReg,
which predicts gene manipulation strategies while avoiding gene
conflicts. Finally, we show that the approach is applicable to
genome-scale metabolic networks of E.coli and Saccharomyces cere-
visiae, and pinpoint the differences in comparison to the contenders.
Applications of GeneReg brings into question recent claims about
feasibility of growth-coupled overproduction of key metabolites in
major production organisms, namely E.coli, the Gram-positive bac-
terium Corynebacterium glutamicum, the filamentous fungus
Aspergillus niger and the cyanobacterium S. sp. PCC6803 (Kamp
and Klamt, 2017). Altogether, GeneReg provides the means for ra-
tional and feasible design of cell factories.

2 Materials and methods

Inspired by the OptReg approach, we devise an optimization-based
approach, termed GeneReg, to predict metabolic engineering
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strategies without gene conflicts. A reaction flux is called up-/down-
regulated if the flux value is considerably higher/lower with respect
to its steady-state value at the optimal growth (made precise by
introducing a parameter C, below). To this end, we first determine
the flux range of every reaction subject to the steady-state con-
straints. The steady-state assumption can be described by a system
of linear equations as:

dx

dt
¼ S � v ¼ 0; (1)

where Sm�r is the stoichiometry matrix, in which m is the number of
metabolites and r is the number of reactions. Here, x is the vector of
size m, representing metabolite concentration, and v is the vector of
size r of flux values. We apply flux variability analysis (FVA) to cal-
culate the feasible minimum and maximum flux values, vmin

i and
vmax

i , for each reaction i (1 � i � r). We then calculate the min-
imum and maximum fluxes, vL

i and vU
i , that each reaction i supports

at the optimal growth (i.e. biomass production).
The parameter C 2 ½0; 1� is defined to be tunable and quantifies

the deviation from the maximum and the minimum flux values at
the optimal growth: reaction i is referred to as upregulated if its flux
value is in the range

vU
i 1� Cð Þ þ vmax

i C � vi � vmax
i : (2)

In contrast, reaction i is considered downregulated if

vmin
i � vi � vL

i 1� Cð Þ þ vmin
i C: (3)

For every reaction i (1 � i � r), we introduce two binary varia-
bles yu

i and yd
i which take, respectively, a value of 0, if the reaction is

up- or downregulated, and 1, otherwise. These binary variables
allow to bound the range of flux values according to the correspond-
ing gene manipulations. Based on the following constraints, the bin-
ary variables yu

i and yd
i enable us to switch between the flux ranges

and determine whether or not the reaction i is up- and downregu-
lated, respectively:

vL
i yu

i þ ðvU
i 1� Cð Þ þ vmax

i CÞð1� yu
i Þ � vi; (4)

vi � vmax
i

� �
1� yu

i

� �
þ vU

i yu
i ; (5)

vmin
i 1� yd

i

� �
þ vL

i yd
i � vi; (6)

vi � vL
i 1� Cð Þ þ vmin

i C
� �

1� yd
i

� �
þ vU

i yd
i : (7)

Equations (4) and (5) show that in case of upregulation, i.e.
when yu

i ¼ 0, the flux range is [vU
i 1� Cð Þ þ vmax

i C, vmax
i ] and

[vL
i , vU

i ], otherwise. Similarly, Eqs. (6) and (7) restrict the flux range
in response to downregulation. The constraints in Eqs. (2)–(7) are
motivated by OptReg (Pharkya and Maranas, 2006), and resolve
the issue of this approach so that down- and upregulated reactions
in an engineering strategy have fluxes which do not fall in the FVA
ranges at optimal growth (i.e. those of the wild-type) if they are
declared as altered.

Another constraint is imposed by the fact that a reaction can be
the target of at most a single type of manipulation; thus, the follow-
ing constraint is added:

1� yu
i

� �
þ 1� yd

i

� �
� 1: (8)

In addition and in analogy to OptReg, a limit on the total num-
ber of reaction manipulations (L) can be captured by:

Xr

i¼1

1� yu
i

� �
þ 1� yd

i

� �
� L: (9)

Besides, for reversible reactions either the forward or the back-
ward reactions can be the target of a manipulation. To impose this
constraint, we first split all reversible reactions into forward and
backward reactions, and then set the following constraints:

yd
if
þ yd

ib
� 1; (10)

yu
if
þ yu

ib
� 1; (11)

where if and ib are, respectively, the indices of the forward and
backward reactions of the reversible reaction i. Constraints (8)–(11)
also appear in OptReg (Pharkya and Maranas, 2006).

To overcome the shortcomings of reaction-based strategies, we
opt to design a manipulation strategy that is feasible at the gene
level. Therefore, we introduce novel constraints that capture the
coupling between the modulation of the reactions and the respective
genes. Our main contribution is the encoding of constraints for the
different GPR rules in a form of a mixed-integer linear program
(MILP).

In the simplest case, when the reaction i is catalyzed by the prod-
uct of a single gene gi1 , can be captured by two equality constraints:

gu
i1
þ yu

i ¼ 1; (12)

gd
i1
þ yd

i ¼ 1: (13)

Equations (12) and (13) model the coupling between gene ma-
nipulation and the up-/downregulation of reaction i, i.e. y

u=d
i ¼ 0

implies that gi1 must be manipulated, and y
u=d
i ¼ 1 implies that

gi1 remains unchanged. To prevent conflicts, for every gene j; we add
the constraint that gd

j þ gu
j � 1.

Further, if the reaction i is catalyzed by n isoenzymes each
encoded by an independent gene, the GPR rule (gi1 OR gi2 OR . . .
OR gin ), is captured by two sets of inequality constraints:

1 �
Xn

j¼1

gij
u

 !
þ n � yu

i � n; (14)

n �
Xn

j¼1

gij
d

 !
þ n � yd

i � 2n� 1: (15)

The left-hand side of Eq. (14) models the upregulation of reac-

tion i, i.e. yu
i ¼ 0, which implies that

Pn
j¼1

gij
u � 1, i.e. at least one of

the genes must be upregulated. The right-hand side of Eq. (14)

Fig. 1. Illustration of gene conflicts. (A) Metabolic network with eight reactions,

four internal and four exchange, transforming six metabolites together with (B) the

stoichiometric matrix representation. (C) Maximizing the production of metabolite

M5 is realized by the pathway through R2 and R3, and allowing only knockouts, (D)

maximizing the production of metabolite M6 requires flux via the reaction R4 and

blocking reactions R2 and R3. The latter leads to a gene conflict since the product of

gene g1 has to be both present and absent from the network to facilitate flux through

R4 and blocking of R2. Note that the mutant flux distribution also requires upregu-

lation of flux through reaction R4
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models the case when the reaction i is not upregulated, i.e. yu
i ¼ 1,

whereby gij
u ¼ 0, which implies that no gene encoding an isoenzyme

is upregulated. In addition, Eq. (15) models the presence or absence
of downregulation of reaction i. Similarly, for the case that the reac-
tion i is catalyzed by an enzyme complex composed to n units, the
GPR rule (gi1 AND gi2 AND . . . AND gin ) is captured by two sets of
inequality constraints:

n �
Xn

j¼1

gij
u

 !
þ nyu

i � 2n� 1; (16)

1 �
Xn

j¼1

gij
d

 !
þ nyd

i � n: (17)

In the case of a more complicated reaction i, where the reaction
is catalyzed by n isoenzymes each encoded by either a single gene or
an enzyme complex, which we refer to as complex isoenzymes, the
GPR rule (g1;1 AND g1;2 AND . . . AND g1;i1 ) OR (g2;1 AND g2;2

AND . . . AND g2;i2 ) OR . . . (gn;1 AND gn;2 AND . . . AND gn;in ) is
captured by four sets of inequality constraints:

81 � j � n : 0 �
Xij

k¼1

gu
j;k

0
@

1
A� ijG

u
j � ij � 1; (18)

1 �
Xn

j¼1

Gu
j

 !
þ n � yu

i � n; (19)

81 � j � n : 1� ij �
Xij

k¼1

gd
j;k

0
@

1
A� ijG

d
j � 0; (20)

n �
Xn

j¼1

Gd
j

 !
þ nyd

i � 2n� 1; (21)

where Gu
j and Gd

j (j ¼ 1; . . . ; n) are variables defined to represent
the status (up-/downregulation) of the complex of (gj;1 AND gj;2

AND . . . AND gj;ij ).
Moreover, for each gene, there is either a possibility for upregu-

lation or downregulation, and to avoid conflict in manipulation, the
following constraint is added for each gene g in the model:

gu þ gd � 1: (22)

Instead of the bilevel optimization formulation of OptReg,
which maximizes the flux toward the synthesis of the desired bio-
chemical while simultaneously maximizing growth, here, we min-
imize the number of gene manipulations while guaranteeing that:
(i) a certain factor, agrowth, of optimal growth is achieved and (ii)
the flux toward the objective is at least a given factor of the max-
imum product yield. The objective of the optimization problem in
GeneReg is to minimize the number of gene manipulations while
guaranteeing that a certain factor of optimal growth is achieved,
and the flux toward the synthesis of the engineering objective is at
least a given factor, fObj, of its maximum possible value (when
optimized as a sole objective). This can be guaranteed by having
the flowing constraints:

vgrowth � abiomass � vmax
growth; (23)

vengineering obj � fObj � vmax
engineering obj; (24)

where abiomass < 1 and fObj � 1 are given constants. The objective
function can be written as

P
gi2Genesðgd

i þ gu
i Þ. Combining the linear

objective function with the linear constraints presented in Eqs. (1)–
(24) leads to our proposed MILP formulation of GeneReg, which is
implemented in Matlab2017b and is available at https://github.com/
MonaRazaghi/GeneReg.

3 Results

3.1 Complex GPR rules across organisms
To determine whether gene conflicts may arise in the design of meta-
bolic engineering strategies, we first investigate the occurrence of
complex GPR rules in 21 metabolic models across different species
from the BiGG database (King et al., 2016) (Supplementary Table
S1). We find that between 48.5% and 93.1% of reactions in the
models are associated to at least one gene. Of these reactions, be-
tween 12.4% and 54.8% have complex rules, with an average num-
ber of rules per gene ranging from 1.4 to 13.7 (Fig. 2 and
Supplementary Table S1). In addition, we observe that the max-
imum number of GPR rules in which a gene participates varies from
8 to 1040. Since a gene can be associated with multiple reactions, it
can be included in different rules. Calculating the maximum percent-
age gene occurrence in rules over all genes in a model, we find that it
varies between 1.5% and 28.5% over the considered models (Fig. 2
and Supplementary Table S1). We also observe that some of the
GPR rules for one reaction are embedded as part of other, more
complex rules, and refer to these as rule repetitions. We find that the
average rule repetition ranges from 0.02% to 0.4%, while the max-
imum rule repetition ranges from 1.4% to 25.1% across the models
(Fig. 2 and Supplementary Table S1). Therefore, we conclude that
complex rules are present to a considerable degree in the analyzed
metabolic models and, therefore, gene conflicts are expected to be
present in the design of metabolic engineering strategies. As a result,
to arrive at metabolic engineering strategies that are feasible at the
gene level, we rely on the GeneReg approach explained in detail in
Section 2.

3.2 Feasible strategy for overproduction of ethanol in

E.coli
To assess the performance of the proposed optimization approach,
GeneReg, we employed it on the iJR904 metabolic model for E.coli,
to determine a modification strategy for overproducing ethanol feas-
ible at the gene level. This model includes 761 metabolites partici-
pating in 1075 reactions (821 irreversible and 254 reversible
reactions), along with 904 genes associated to 873 GPR rules. The
maximum possible flux for ethanol synthesis (vmax

ethanol) is 20 mmol/
(gDW h), while the maximum flux of ethanol synthesis (vU

ethanol) at
the optimal growth (of 0.922 per hour) is 0.046 mmol/(gDW h). We
are interested in designing a metabolic engineering strategy that
results in 30% of the maximum production of ethanol at reduction
in growth not larger than 50% of the optimal. To ensure the exist-
ence of a feasible solution, the tunable parameter C is set to 0.01,
and no limit is placed on the total number of reaction

Fig. 2. GPR rules in metabolic models across species. GPR rules are collected from

metabolic models of 21 organisms across kingdoms of life. The bar-plot illustrates

the maximum percentage of rules in which any gene occurs (green, max gene rule

occurrence), the maximum percentage of rule repetition in more complex rules (yel-

low, max GPR repetition), and the percentage of reactions with complex GPR rules

(blue, percentage of reactions with complex rules). Complex rules are prevalent in

large-scale metabolic networks, increasing the likelihood for gene conflicts in meta-

bolic engineering strategies
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manipulations. With this setting, GeneReg identifies a modification
strategy which involves 85 genes and 300 reactions, of which 114 in-
clude GPR rules (see Supplementary Tables S2 and S3).

The modified reactions take part in 14 metabolic subsystems.
The eight metabolic subsystems with the largest number of modified
reactions include the cell envelope biosynthesis pathway (28),
cofactor and prosthetic groups (24), nucleotide salvage pathway
(12), histidine metabolism (9), membrane lipid metabolism (7), tyro-
sine, tryptophan and phenylalanine metabolism (7), valine, leucine
and isoleucine metabolism (6), methionine metabolism (6)
(Supplementary Table S3).

It can be expected that avoiding conflicts in gene-based strategies
may lead to a larger number of manipulations in comparison to the
number of manipulations in reaction-based designs. To compare the
strategy proposed by GeneReg with that of reaction-based designs
with respect to the number of reactions manipulated, we applied a
modified version of OptReg. The modification to optReg include: (i)
flux ranges in response to up-/downregulations (see Section 2) and
(ii) the minimization of the number of reaction manipulations, while
guaranteeing that a certain factor of optimal growth is achieved.
The strategy predicted by the modified OptReg implies the manipu-
lation of 99 reactions, of which 74 are associated with GPR rules
(see Supplementary Table S4). This implies that, with the compar-
able number of manipulations based on the reaction associated with
genes, GeneReg proposes a feasible strain design of similar size
while addressing the shortcomings of the reaction-based design.

To assess GeneReg and the modified version of OptReg, we
examine the reactions associated with GPR rules proposed for ma-
nipulation by both approaches. To increase the production of etha-
nol, the solution of GeneReg includes 114 reactions with GPR rules,
110 of which need to be downregulated and the other four are upre-
gulated. Respectively, out of 74 reactions considered by the modi-
fied OptReg, 73 have to be downregulated and the only reaction to
be upregulated is fatty acid oxidation (n-C16:0). The complex GPR
rule corresponding to fatty acid oxidation (n-C16:0) comprises four
genes that also participate in GPR rules of three other reactions,
whose flux must remain unchanged. This again indicates at the in-
feasibility of the strategy proposed by modified OptReg. In compari-
son, the reactions proposed by GeneReg to be upregulated involve
three genes b1262, b1263 and b1264, which participate in no other
reactions (see Supplementary Table S5).

Taking a closer look at the list of reactions to downregulate
shows that the strategy devised by GeneReg specifies 37 more reac-
tions in addition to the 73 proposed by the modified OptReg. To il-
lustrate the issue, we consider a reaction that is predicted to be
downregulated by both approaches, namely UDP-sugar hydrolase.
This reaction is associated with gene b0480, which itself is present
in the GPR rules of 11 other reactions. While all of these reactions
must have unaltered flux, according to OptReg, they are all consid-
ered as downregulated in the strategy proposed by GeneReg (see
Supplementary Tables S3 and S4).

Comparison with OptGene is not possible due to the mentioned
non-linear constraints involved, rendering the application to
genome-scale models impractical. Comparison to OptORF is not
feasible due to the lack of public implementation and availability of
fully parameterized model, detailing the active reactions as input to
this approach. For a comparison on a small example, akin to that
shown in Figure 1, please, see Supplementary Material.

3.3 General observations for the tunable parameter
As previously explained, the tunable parameter C determines the de-
gree of deviation from the wild-type flux values at the optimal
growth. To investigate the effect of this parameter on the proposed
strategy for overproducing ethanol, we used five different values of
C in the optimization formulation, and determine the effect of tun-
ing this parameter on the number of reactions and genes required to
be manipulated (Fig. 3). As shown in Figure 3, the higher value of
the tunable parameter results in a larger number of genes and reac-
tions (with or without GPR rules) to be manipulated. For values of
the parameter C of at least 0.05, no feasible solution can be identi-
fied. The question is then how general are these observations?

The parameter C determines the range in which a particular re-
action is considered up- or downregulated. By increasing the value
of parameter C the ranges for up-/downregulations, determined by
FVA, become smaller. Therefore, the number of reactions and genes
that need to be manipulated increases. Importantly, in the case of
knockouts, the sets of genes and reactions that need to be knocked-
out for a given value of C are always subsets of the sets proposed for
a higher value of the C. However, this is not guaranteed for up-/
downregulation, since the changes in the ranges of up-/downregula-
tion have effect on the definition of correspondingly regulated reac-
tions. Therefore, GeneReg looks for new sets of upregulated
reactions and genes (see Supplementary Table S6).

To determine which value of C to use, we recommend that a
search in the interval [0, 1], with increments of 0.01, is conducted
up to reaching infeasibility for the MILP formulation of GeneReg
and based on the strength of the modifications (e.g. promoters,
silencing) used in the engineering strategy. Following this sugges-
tion, we also conducted empirical tests for the time required to de-
sign an engineering strategy. Our results indicate that the running
time on the different values for C ranges from 18.8 to 992.8 min, for
overproducing ethanol in E.coli (see Supplementary Table S6). The
timing in other models is expected to depend on the size of the
model and the engineering strategy to be reached.

3.4 Feasible strategy for overproduction of lactate in

S.cerevisiae
The findings from the E.coli model have motivated us to examine
the performance of GeneReg on a larger metabolic model. To this
end, we employed GeneReg on the metabolic model of S.cerevisiae,
yeast 7.6 (Aung et al., 2013), to identify a metabolic engineering
strategy that increases the production of lactate—a compound that
has diverse applications in food-processing and industry (Chang
et al., 1999). We used the yeast 7.6 model that contains 2220 metab-
olites participating in 3493 reactions, of which 2302 are associated
with GPR rules accounting for 909 genes. The optimal growth is
23.73 per hour associated with the maximum flux toward lactate
synthesis is 56.66 mmol/(gDW h), while the maximum possible flux
toward lactate synthesis is 1000 mmol/(gDW h). Here, we are inter-
ested in achieving 20% of the maximum production of lactate, while
guaranteeing that 80% of optimal growth is achieved. The tunable
parameter C is set to 0.001 and no limit is placed on the total num-
ber of reaction manipulations. GeneReg predicts a modification
strategy in which 134 reactions needed to be manipulated, out of
which 41 are associated with GPR rules. The minimum number of
genes required to implement these manipulations is 36 (see
Supplementary Table S7).

Fig. 3. The effect of the tunable parameter in GeneReg. The figure summarizes the

effect of five values for the tunable parameter C on the characteristics of the engin-

eering strategy for overproducing ethanol in iJR904 metabolic model of E.coli

(Reed et al., 2003) in terms of the number of reactions (with or without GPR associ-

ations) and genes. Increasing the value of the tunable parameter leads to an increase

in the number of genes and reactions to be manipulated, up to the value when in-

feasibility is reached
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3.5 Comparison of model size between GeneReg and

LTM
LTM provides an elegant way to fully capture the gene–reaction as-
sociation while considering the specific types of GPR rules. While
LTM leads to the increase in the number of metabolites and reac-
tions (Zhang et al., 2015), it is also important to determine the num-
ber of variables and constraints used in the design of a metabolic
engineering strategy. These numbers determine the size of the
MILPs used. Therefore, we examined the number of variables as
well as equality and inequality constraints resulting from the appli-
cation of GeneReg and LTM to models of five organisms: E.coli
[iJR904 (Reed et al., 2003)], S.cerevisiae [yeast 7.6 (Aung et al.,
2013)], the Gram-positive bacterium C.glutamicum [iJM658 (Mei
et al., 2016)], the filamentous fungus A.niger [iMA871 (Andersen
et al., 2008)] and the cyanobacterium S. sp. PCC6803 [iJN678
(Nogales et al., 2012)]. For the case when only knockouts are con-
sidered, as shown in Table 1, the number of variables in LTM in
comparison to GeneReg is 1.7-fold larger for the yeast 7.6 model
and as much as 3.2-fold larger for the model of A.niger. Similarly,
the number of constraints is at least 2-fold larger in LTM in com-
parison to GeneReg across all five models. Therefore, we concluded
that GeneReg consistently results in smaller models. Moreover, for
the case of GeneReg with up- and downregulation of reaction fluxes,
the number of variables in LTM is 1.1-fold larger for the yeast 7.6
model and as much as 2-fold larger for the

model of A.niger. In this case, the number of constraints in
GeneReg and LTM is similar (see Supplementary Table S8). Most
importantly, LTM allows the design of engineering strategies that
involve knockouts, but does not facilitate the development of strat-
egies that include up- and downregulation of genes, which is the
principal novelty of GeneReg.

3.6 Infeasibility of overproduction for key metabolites in

five major production organisms
Kamp and Klamt (2017) used the concept of minimum cut set to de-
sign optimal reaction-based strategies, and showed that it is feasible
to overproduce almost all metabolites in genome-scale metabolic
models of the five organisms, enumerated above, even at no growth.
To investigate the feasibility of gene-based strategies, we applied
GeneReg to increase the production of metabolites participating in
the tricarboxylic acid (TCA) cycle as well as amino acids present in
the five models analyzed above (see Supplementary Tables S9 and
S10). Looking at the structure of GPR associations in each organ-
ism, we find that more than a fifth of the rules involve at least two
genes (Fig. 4). Therefore, this result suggests infeasibility of optimiz-
ing the production of metabolites at the core of central metabolism,
like the intermediates of the TCA cycle.

To increase the likelihood of finding a solution, the tunable par-
ameter C is set to 0.005 and 0, allowing small flux changes to be

considered, and we place no limit on the total number of reaction
manipulations. A metabolite is considered as an optimization object-
ive, if there is room for improvement of the metabolite synthesis, i.e.
the ratio of vmax to vU is bigger than 1 for its sink (or exchange) re-
action. The results show that feasible metabolic strategies at the
gene level exist only for the increased production of malate, citrate,
aspartate, cysteine, glutamine and methionine in the E.coli model
and the increased production of pyruvate in S.cerevisiae, when the
parameter C is set to 0.005 and at least 20% of optimal growth is
achieved (see Supplementary Tables S9 and S10).

We would like to emphasize that the metabolic engineering strat-
egies from constraint-based modeling approaches depend strongly
on the constraints and the model used for their design. For instance,
the overproduction of pyruvate, succinate, serine and threonine is
not feasible when the upper-bound of 20 mmol/(gDW h) for oxygen
uptake is imposed and glucose (the default carbon source) is the sole
carbon source used in the iJR904 E.coli model (see Supplementary
Table S11). While GeneReg predicts that an increase in production
of fumarate is not feasible under the previously mentioned con-
straints, the usage of glycerol as a carbon source allows the possibil-
ity for overproduction of this compound, in line with experimental
evidence (Li et al., 2014). By considering three different environ-
ments (see Supplementary Table S11), we found that only for three
amino acids, i.e. tryptophan, tyrosine and valine, GeneReg reports
infeasibility for increase of production by 10% in these

Table 1. Comparison of the number of variables and constraints in GeneReg and LTM

Number E.coli (iJR904) S.cerevisiae (yeast 7.6) C.glutamicum (iJM658) A.niger (iMA871) S. sp. PCC6803 (iJN678)

Original Metabolites 761 2220 982 1049 795

Reactions 1329 4821 1452 1988 1087

Genes 904 909 658 731 622

LTM Metabolites 2103 5112 2461 4862 1828

Reactions 2930 8630 3408 7225 2313

Variables 6764 18 169 7474 15 181 5305

Eq. constraints 5033 13 742 5869 12 087 4141

In. constraints 5860 17 260 6818 14 450 4626

GeneReg Variables 3614 10 622 3593 4707 2886

Eq. constraints 1539 4426 1838 1513 1404

In. constraints 3324 10 986 3484 5026 2650

Note: The comparison is performed for five models of organisms used as cell factories. Eq. and In. constraints stand for Equality and Inequality constraints, re-

spectively. The number of reactions considers the splitting of reversible reactions.

Fig. 4. The structure of GPR associations in five organisms used as cell factories.

This figure summarizes the structure of GPR associations in the models of E.coli

[iJR904 (Reed et al., 2003)], S.cerevisiae [yeast 7.6 (Aung et al., 2013)], the Gram-

positive bacterium C.glutamicum [iJM658 (Mei et al., 2016)], the filamentous fun-

gus A.niger [iMA871 (Andersen et al., 2008)) and the cyanobacterium S. sp.

PCC6803 [iJN678 (Nogales et al., 2012)]. More than a fifth of the rules involve at

least two genes, which suggests infeasibility of optimizing the production of metabo-

lites at the core of central metabolism
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environments in contrast to feasible engineering strategies docu-
mented in the literature (Chávez-Béjar et al., 2008; Panichkin et al.,
2016; Park et al., 2007). However, closer look at this strategy point
out they consider alteration (e.g. removal) or allosteric regulation
effects of metabolites on enzymes, for which the constraint-
modeling framework remains underdeveloped. In addition, the par-
ameter C also will have effect on the reported infeasibilities. For in-
stance, when C ¼ 0, GeneReg predicts that fumarate production can
be increased by 20% even under default constraints of iJR904 E.coli
model. Therefore, GeneReg demonstrates the need to couple gene
regulation and metabolism to understand the limits of metabolic en-
gineering under specific assumptions of the constraint-based model-
ing framework.

4 Conclusion

Here, we proposed GeneReg, a constraint-based approach based on
MILP formulation to design gene manipulation strategies that facili-
tate under- and overexpression of genes at a genome-scale level.
GeneReg formulation of up- and downregulation of reactions is
motivated by OptReg, but is modified to account for differences be-
tween wild-type and mutant ranges. The novelty of GeneReg con-
sists of constraints that ensures coupling of the reaction and gene
manipulations as well as constraints that avoid conflict at the gene
level. As a result, GeneReg facilitates the generation of manipulation
strategies feasible at the gene level.

Our findings demonstrate that GeneReg is applicable with large-
scale metabolic networks in model organisms as well as organisms
used as cell factories. In contrast to the results about growth-
coupling of the overproduction of almost every metabolite, we
found that there is no strategy feasible at the gene level that leads to
overproduction of any intermediates in the TCA cycle as well as
amino acids present in the analyzed models (with few exceptions in
E.coli and S.cerevisiae) under the default growth conditions.
However, we also identify that changes in environmental cues (e.g.
carbon used) has an effect on the proposed engineering strategies, in
line with experimental evidence. Therefore, coupling of gene and re-
action levels, along with context-dependent activity and allosteric
regulation of enzymes, should be given further emphasis in future
studies aimed at design of feasible and more accurate metabolic en-
gineering strategies, and motivates the integration of gene regulatory
and metabolic networks for improved prediction of complex traits.
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