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Progress of molecular biology resulted in the accumulation of information on biomolecular interactions, which 
are complex enough to be termed as networks. Dynamical behavior generated by complex network systems is 
considered to be the origin of the biological functions. One of the largest missions in modern life science is to obtain 
logical understanding for the dynamics of complex systems based on experimentally identified networks. However, 
a network does not provide sufficient information to specify dynamics explicitly, i.e. it lacks information of 
mathematical formulae of functions or parameter values. One has to develop mathematical models under 
assumptions of functions and parameter values to know the detail of dynamics of network systems. In this review, 
on the other hand, we introduce our own mathematical theory to understand the behavior of biological systems 
from the information of regulatory networks alone. Using the theory, important aspects of dynamical properties 
can be extracted from networks. Namely, key factors for observing/controlling the whole dynamical system are 
determined from network structure alone. We also show an application of the theory to a real biological system, a 
gene regulatory network for cell-fate specification in ascidian. We demonstrate that the system was completely 
controllable by experimental manipulations of the key factors identified by the theory from the information of 
network alone. This review article is an extended version of the Japanese article, Controlling Cell-Fate 
Specification System Based on a Mathematical Theory of Network Dynamics, published in SEIBUTSU BUTSURI 
Vol. 60, p. 349-351 (2020). 
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Introduction 

 
Throughout the history of biology, it has been shown that numerous species of biomolecules are involved in various 

biological phenomena and that they have complex regulatory relationships with each other. For example, Figure 1 shows 

While networks of biomolecules governing biological functions have been elucidated, their complexity makes it 
difficult to understand the behaviors. The mathematical theory introduced in this review, by which key factors are 
determined from network structure alone, will solve the difficulty of understanding dynamics of complex systems 
in biology. In a study applied to an actual gene network, the whole dynamical behaviors of the system could be 
reproduced by manipulating the activity of a small number of factors determined from the theory. By combining 
prediction by the theory with experimental verification, rational understanding of complex biological systems will 
be obtained.  

◀ Significance ▶ 
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a gene regulatory network including 85 factors for cell-fate specification in early development of ascidian identified by 
the research group of Dr. Sato [1]. Seven types of tissues, the epidermis, brain, nerve cords, muscle, notochords, 
mesenchyme and endoderm are produced during the early development of the ascidian from the 8-cell stage to the tail-
bud stage. The regulatory network responsible for the process was created through a series of experiments where each 
gene was knocked down by morpholino antisense oligonucleotides, and the effects of perturbation were identified by 
observing changes in gene expression during development.  

 

 

 
In general, during development, the number of cells in the embryo increases through cell division, while the diversity 

of gene expression patterns within the cell population increases. The term "gene expression pattern" is used to indicate 
which genes are active/inactive in a cell. As the results of series of inductions of different genes between cells, 
diversification of gene expression patterns in an embryo is achieved in the developmental process. In the case of ascidians, 
more than 7 different gene expression patterns are observed at the late gastrula stage, depending on the location of the 
body. Cells showing different gene expression patterns become different tissues at later developmental stages. In other 
words, the diversity of cell types observed in the adult ascidian is originated in the diversity of gene expression patterns 
at a certain developmental stage.  

It should be noted that a variety of gene expression patterns are produced from a single gene regulatory system. 
Essentially all cells have the same set of genes, and the same gene regulatory system. How can we think of a single system 
producing multiple states? The asymptotic behavior of a dynamical system after a sufficient time is helpful to understand 
the above question. In general, multiple attractors can appear in dynamical systems depending on the initial states. The 
emergence of multiple gene expression patterns from a single network system during development is thought to arise from 
multiple attractors in the corresponding dynamical system. The differences in the expression patterns between cells may 
arise from different initial condition caused by the cell-cell interactions or the biased cytoplasmic factors during cell 
division. In the case of ascidian development, gene expression dynamics based on the network shown in Figure 1 is 
considered to produce seven different expression patterns, which in turn produces seven different tissues. In other words, 
we can expect that the dynamics based on this gene regulatory network has the property of producing at least seven 
attractors.  

Let us reconsider what is the information on the regulatory network from dynamical point of views. A regulatory 
network represents the information about “which gene influence which gene”, that is, dependencies between variables in 
the system. When we consider an ordinary differential equation (ODE) system corresponding to the focal system, the 
network provides information of the argument set of right-hand-side functions of the corresponding ODE system (Figure 
2). On the other hand, since the network does not contain information of mathematical formulation of the function or 

Figure 1  A gene regulatory network for cell-fate specification in early development of ascidian (From Imai et al., 2006; 
modified by Mochizuki et al., 2013). 
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parameter values in the functions, it is impossible to specify the details of the dynamics explicitly from the information 
of network, alone. For studying dynamics of network systems, many mathematical studies have taken a modeling approach 
where mathematical models are constructed by assuming functional forms and parameter values, and tried to reproduce 
and explain observed biological phenomena. 

However, the system size should be small for the modeling approach working effective. To construct a mathematical 
model for a complex system such as the one shown in Figure 1, one must assume a large number of mathematical 
formulations of functions and determine an enormous number of parameter values. Finding appropriate values of 
parameters alone requires a great deal of effort, and the results obtained will include countless assumptions. It is obvious 
to anyone that such a mathematical model is not useful. The difficulty in understanding the behavior of biological networks 
is not so much their complexity, but rather the lack of information to determine their dynamics. 

In the following, we take a different approach from the standard modeling approaches, namely model-free approach. 
We study an aspect (but an important aspect) of dynamical behaviors determined from network information alone. When 
we carefully consider what is important to know in life sciences, we may not necessarily need to determine all the details 
on dynamics. If we obtain a logical conclusion from network information alone without introducing other assumptions, it 
will be important and useful not only for the mathematical sciences, but also for the life sciences. 

 
Structural Theory of Regulatory Networks - Linkage Logic 

 
Consider dynamics on a regulation network Γ = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a set of vertices and 𝐸𝐸 is a set of directed edges [2-

5]. A time-evolving quantity 𝑢𝑢𝑛𝑛 (𝑛𝑛 ∈ 𝑉𝑉) is assigned to each vertex, and the quantity varies according to the dependencies 
indicated by the regulatory network. Since the activity of biomolecules is the concentration of substances such as mRNA 
or proteins, these dynamics should include degradation or decay of activity. For example, let us consider a system of 
ordinary differential equations 

 
     𝑑𝑑𝑢𝑢𝑛𝑛

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑛𝑛�𝒖𝒖𝐼𝐼𝑛𝑛� − 𝑑𝑑𝑛𝑛(𝑢𝑢𝑛𝑛), 𝑛𝑛 = 1,⋯ , |𝑉𝑉| (1) 

 
where 𝑢𝑢𝑛𝑛 is a positive value indicating activity or concentration of a biomolecule. 𝑓𝑓𝑛𝑛 is a regulatory function for the 

activity of molecule 𝑛𝑛. Here, 𝐼𝐼𝑛𝑛 denotes the argument set of 𝑓𝑓𝑛𝑛, indicating the factor that influence the activity of molecule 
𝑛𝑛, i.e. 𝐼𝐼𝑛𝑛: = {𝑖𝑖|(𝑖𝑖 → 𝑛𝑛) ∈ 𝐸𝐸}. 𝒖𝒖𝐼𝐼𝑛𝑛  is a vector whose elements are 𝑢𝑢𝑖𝑖  (𝑖𝑖 ∈ 𝐼𝐼𝑛𝑛). 𝑑𝑑𝑛𝑛  is a positive increasing function that 
represent decay or degradation of biomolecule 𝑛𝑛 . In many biological systems, the specific forms of 𝑓𝑓𝑛𝑛  and 𝑑𝑑𝑛𝑛  are 
unknown. 𝐼𝐼𝑛𝑛 contain 𝑛𝑛 itself (𝑛𝑛 ∈ 𝐼𝐼𝑛𝑛), if and only if there is self-"activation" regulation. That is, the self-inhibition effect 
of 𝑢𝑢𝑛𝑛 can be included in the decay term 𝑑𝑑𝑛𝑛, and need not be shown separately. Among self-regulations, only the self-
activation, that cannot be represented by 𝑑𝑑𝑛𝑛, is included in 𝑓𝑓𝑛𝑛 by setting 𝑛𝑛 ∈ 𝐼𝐼𝑛𝑛. In the following, we consider regulatory 
networks redefined by 𝐼𝐼𝑛𝑛 constructed in this way. In other words, any self-regulatory arrows in the network below implies 
self-activation. 

The form of equation (1) with the separate decay term was introduced for easier understanding. This form is not actually 
necessary, and the theory described here can be applied to more general formula of ODEs. Details are shown in Appendix. 

Here we introduce an important concept in graph theory called a feedback vertex set (FVS) [6,7]. An FVS is “a subset 
of the vertices in a directed graph, removal of which leaves a graph without any directed cycles”. A directed cycle is a 
path in a graph that starts from a vertex, follows edges in the direction of the arrow, and returns to the original vertex. 

Figure 2  The relationship between a regulatory network (a), and differential equations (b) (Modified from Kobayashi et 
al., 2018). See Appendix for the meaning of the red boxes. 
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Figure 3 shows examples of simple networks with their FVS. The top-left graph is a simple directed cycle containing 

three genes, and any one of these three constitutes the minimum FVS, since removing any one would eliminate the cycle. 
In the top-center graph, two vertices at the top and bottom can be excluded since the cycles only pass through the three 
central vertices. Removing only one of the central three vertices still leaves a cycle. Removing any two of the three vertices 
eliminates all cycles, so any two of the three vertices are the minimum FVS. In the upper-right graph, a vertex 𝑛𝑛 ∈ 𝐼𝐼𝑛𝑛 with 
self-regulation is always contained in the FVS. In the bottom-left graphs, three loops pass through a central vertex. The 
bottom-right graph looks more complicated, but since all loops pass through the bottom right (or top right) vertex, the 
minimum FVS contains only one vertex in the bottom right (or top right). Choice of FVS and minimum FVS may not be 
unique. 

FVS is a concept in graph theory. Mochizuki and Fiedler et al. found that this definition also has important implications 
for dynamics on a graph [4,5]. The theorem claims that for a given dynamics of FVS, the dynamics of all variables in the 
system is determined uniquely in long term regardless of the regulatory functions (See Appendix for the detail). Note that 
the “unique” determination does not imply determining the dynamics of all variables “constructively”: exact values of 
non-FVS variables cannot be determined without knowing the functions 𝑓𝑓𝑛𝑛  (or 𝐹𝐹𝑛𝑛  in (A1)). However, the unique 
determination of dynamics of non-FVS for a given dynamics of FVS is sufficient to induce the following two practical 
significances. First, if a system has multiple asymptotic behaviors, the diversity of behaviors of the whole system should 
be detectable by observing dynamics of FVS only. That is (1) dynamics of the whole system is observable by observing 
FVS. Second, by controlling behaviors of FVS to converge to one of any asymptotic trajectories, the whole system 
spontaneously come to converge to the target trajectory. That is (2) dynamics of the whole system is controllable by 
controlling FVS. These claims hold no matter what the nonlinear function of each vertex is. Conversely, the set of vertices 
that realize (1) observation and (2) control of the whole system without depending on model (functions and parameters) 
is only FVS. In other words, given information of network, the set of vertices to observe or to manipulate can be 
determined without knowing the functions. 

The proof is given in the Appendix. Here, we give an intuitive explanation. First, consider a network with only one layer 
consisting of regulators (upper-side) and regulated (lower-side) nodes (Figure 4a). Let us assume that the behavior of the 
upper side are observable, i.e. the diversity of the behaviors of the upper-side can be captured.  

We focus on one of the observed upper-side behaviors. Given a behavior of the upper side uniquely, the behavior of the 
lower side should asymptotically approach a unique behavior after sufficient time (unless the lower side has self-loop, i.e. 
self-activation). We do not care the details of the asymptotic behavior of the lower side; the fact that the lower side is 
uniquely determined is rather important. For the purpose of capturing the diversity of behaviors, it is not needed to observe 
the lower behaviors.  

Next, let us consider a network containing a large number of vertices (Figure 4b). Even if the structure of the network 
is complicated, by choosing a set of vertices to observe “appropriately”, the behavior of the remaining vertices is uniquely 
determined after a long time, and there is no need to observe them. Of course, the validity of this argument depends on 
how we choose the set of vertices to observe. Then, let us consider how can we minimize the set of observations while 

Figure 3  Examples of hypothetical regulatory networks and minimum FVS. FVS is not always unique. An example is 
colored here. 
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satisfying the condition that “the behavior of the remaining vertices is uniquely determined”? The answer is to choose the 
minimal FVS. From the definition of FVS, the rest of the network excluding FVS has no directed cycles. Therefore, it 
should be possible to arrange all remaining vertices in one direction from top to bottom, and their behavior should be 
uniquely determined sequentially from top to bottom. Therefore, it is sufficient to observe FVS only in order to observe 
the behaviors of the entire network. 

By simply replacing "observation" in the above explanation with "manipulation", the controllability of the entire system 
by FVS is shown in the same way. The underlying logic here is simply that, given the upper-side behavior, the uniqueness 
of the asymptotic behavior of the lower-side is guaranteed independent of the choice of functions. This logic is universal 
beyond the formalism of dynamics. In fact, the importance of FVS in network dynamics was first pointed out in Boolean 
networks, which are discrete-time and discrete-state systems, by Akutsu et al. [8].  

A few additional explanations are in order. (1) For a given graph structure, FVS is the minimum target of 
observation/manipulation that guarantees observation/control of the whole system independent of the choice of functions. 
In other words, depending on the choice of function, it may be possible to observe/control the whole system by a smaller 
set of variables. In other words, given only network information, observation/manipulation of the FVS is a “necessary and 
sufficient” condition for observing/controlling the whole dynamics, and for network systems with functions known, 
observation/manipulation of the FVS is a “sufficient” condition for observing/controlling the dynamics. (2) A vertex with 
self-activation is always included in the FVS. In the logic shown in Figure 4a, if the lower vertex has self-activation, its 
behavior is not uniquely determined from the upper vertex. However, this is not a problem, since this vertex has a self-
activation, it is always included in the set to observe/manipulate i.e. FVS. (3) If there are vertices that do not receive any 
regulatory edge, they are not included in the minimal FVS. Considering the meaning of Eq. (1) (or (A1), (A2)), it is 
obvious that the dynamics of such vertices converge uniquely to an equilibrium point, and do not contribute to the diversity 
of behaviors. 
 
Control of Network Systems Based on Structural Theory 
 

We show a numerical demonstration of this theory in this section [5]. Figure 5a shows the regulatory network for the 
human circadian rhythm. From the network, oscillation of gene expression with 24-hour cycle appears, which is the origin 
of the physiological oscillations in humans. Figure 5a shows a network consist of 21 biomolecules determined from 
experiments, and it’s minimal FVS contains 7 molecules. As well as experimental studies, there have also been many 
mathematical studies on human circadian rhythms. In one of such mathematical studies, a 24-hour oscillation is 
reproduced in numerical simulation of a mathematical model, where the network in Figure 5a is used, Hill functions or 
mass action kinetics are used for regulatory functions, and parameter values are chosen appropriately [9]. 

We changed the parameter values slightly from the original study [9] to obtain behaviors different from that of the real 
circadian clock. Under a new parameter, the system has four invariant sets (Figure 5b,c). Let us call the two stable periodic 
solutions P1 and P2, the unstable periodic solution UP, and the unstable equilibrium point USS. In the following, we 
consider the control of switching dynamics between these four solutions. The procedure is as follows (1) First, numerical 
simulations are performed and the behaviors of FVS on the four solutions is recorded as a time series. (2) The dynamics 
is calculated numerically according to the ordinary differential equations as the unmanipulated state. Then, the 
manipulation of FVS is started at a certain time point, where the behaviors of vertices in FVS are brought closer to the 

Figure 4  An intuitive explanation of linkage logic theory. (a) Given the behavior of the upper vertices, the behavior of 
the lower vertex is determined uniquely. (b) Similarly, by giving (observing/manipulating) dynamics of an appropriate 
subset of vertices, the dynamics of the remaining vertices are determined uniquely. To minimize the set of vertices, where 
dynamics are given, under the constraint that dynamics of the remaining are determined uniquely, we should choose the 
minimal FVS. 
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target behavior (one of the time series prepared in (1)). (3) On the other hand, dynamics of variables other than the FVS 
factors are not manipulated, and calculated following the ordinary differential equations as is. The behavior of these 
variables not included in the FVS is observed. 

Figure 6 shows the behavior of two variables (Per1, Per2) not included in the FVS, obtained by the above manipulations. 
In Figure 6a, the dynamics was on P1 before the manipulation. After starting manipulation of FVS to match the behavior 
on P2, the dynamics of the whole system quickly leaves P1, approaches P2, and then oscillates periodically on P2. Figure 
6b shows the opposite, where the dynamics was oscillating on P2 before the manipulation. After manipulating the FVS to 
match the behavior on P1, the dynamics of whole system converges to P1. In conclusion, controlling the whole system to 
converge to the target trajectory was achieved by manipulating FVS only. 

Figures 6c and 6d are particularly interesting. In Figure 6c, the dynamics was on P1 before the manipulation. Then, FVS 
was manipulated to match the behavior of the unstable periodic solution UP. As a result, the whole system approaches 
and converges on this trajectory as if UP was a stable periodic solution. In Figure 6d, for the dynamics on P1, FVS was 
manipulated and fixed to the value of the unstable equilibrium point USS. As a result, the whole system approaches and 
converges to this point, as if USS was the stable equilibrium point. In the original 21-variable system, UP and USS were 
of course unstable solutions. However, under the FVS manipulation, the dynamics show behaviors as if they were stable. 
The proof of the theorem shown in Appendix implies that under FVS manipulation, the dynamics always asymptotically 
approaches a unique behavior from any initial state as if the system has a global solution. 
 
Control of the Ascidian Gene Regulatory Network 
 

In this section, we will demonstrate the utility of the theory by applying it to an actual biological network. As introduced 
at the beginning (Figure 1), by repeated perturbation experiments, Sato’s group determined a gene regulatory network 

Figure 5  The gene network that governs the human circadian rhythm (a). The red circle indicates one of the minimal 
FVS. (b, c) Four invariant sets of the dynamics: Green: P1, Blue: P2 (stable periodic oscillations), Red: UP (unstable 
periodic oscillations), Black: USS (unstable equilibrium point). 

Biophysics and Physicobiology Vol. 20

e200019_6



 
 
 

Mochizuki: Controlling network systems by a model-free theory 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

including 92 factors, from which 7 different cell types are generated during early development of ascidian [1]. Here, we 
attempt to understand the structure of this network in connection with the dynamics of cell fate specification. 

Analysis of this network revealed that, despite its apparent complexity, the minimal FVS contains only five vertices 
[10]. The 5 factors are Zic-r.b, Erk signalilng, (Foxd or Twist-like1), (Neurogenin or Delta.b), and (Foxa.a, Nodal, or 
Snail) (Figure 7). There are 12 possible ways to choose the set. In other words, if the network information is complete, 
and cell fates are indeed specified based on the dynamics of this network, then manipulation of these five factors should 
allow us to reproduce the seven tissues arbitrarily. To verify this prediction, Kobayashi et al. conducted experiments in 
which they manipulating five factors [10]. 

From 12 minimum FVSs, we selected the one that was easy to manipulate experimentally (Foxa.a, Foxd, Neurogenin, 
Zic-r.b, Erk). Note that these genes (except for Erk signaling) code transcription factors. Each of these factors is known 
active in multiple different lineages in ascidian development, and not specific to unique cell type. Next, in order to exclude 
the effects of cell-cell interactions, we created a single-cell embryo system by cytochalasin B treatment. Under the 
treatment, cytokinesis was halted while expression dynamics proceeded (Figure 8). The activities of Foxa.a, Foxd, 
Neurogenin, and Zic-r.b were manipulated by introducing mRNA (activator) or morpholino antisense oligonucleotides 
(inhibitor) into the fertilized eggs, and Erk signal was manipulated by adding FGF or U0126 to the culture medium. After 
the manipulated embryos were cultured and grown for a while, the expression of marker genes corresponding to the seven 
tissues (epidermis, brain, nerve cord, muscle, chorda tympani, mesenchyme, and endoderm) were measured, and the 
results of manipulation were analyzed. 

Figures 8(b) and (c) show the expression of marker genes without any manipulation of the FVS factor as a control. It 
turns out that only a limited cell fates i.e. epidermis, brain, or nerve cord were induced in the single-cell embryo. The fate 
of embryo is not uniquely determined, as marker gene expressions were varied between embryo. 

In Figure 9, shows results of an example manipulation, where three genes were suppressed and two factors were 
activated. Foxa.a, Foxd, and Neurogenin were suppressed using morpholino antisense oligos, Zic-r.b was activated by 
introducing the mRNA, and the Erk signaling pathway was activated by adding FGF to the culture medium. The 

Figure 6  Controlling dynamics of circadian rhythm by seven FVS factors. Dynamical behaviors of (Per1, Per2), that are 
not included in the FVS, are plotted on the plane. (a) From P1 to P2. (b) From P2 to P1. (c) From P1 to UP. (d) From P1 
to USS. 
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experiment was repeated 25 times using different embryos, and in all results (except for one case in which no marker 
genes was expressed), it was observed that only the mesenchyme markers were activated. In other words, under this 
manipulation, the fate of the embryo is uniquely and deterministically directed to the mesenchyme. 

In FVS manipulation, each of the five FVS factors is either activated or suppressed, i.e. there are 32(= 25) possible 
manipulations. A total of 32 exhaustive manipulation experiments were performed to capture all possible dynamics 
behaviors that this system can produce. The results are summarized in Figure 10. In many cases, the manipulations resulted 
in the unique and deterministic marker gene induction similarly to the example shown in Figure 9. For example, when all 
five genes were inactivated, only epidermal markers were always expressed, and when only Foxa.a was activated and the 
remaining four were inactivated, only endodermal markers were always expressed. It is important to note that in FVS 
manipulation, not only the activated factors are important for induction, but the manipulation of each FVS factor, including 
those are inactivated, is equally important. 

Throughout the exhaustive manipulations, there are methods by which marker expression for each of epidermis, 
endoderm, notochord, nerves, brain, and mesenchyme is induced uniquely and deterministically. We were indeed able to 

Figure 7  Gene regulatory network for cell-fate specification in ascidian early development. This network contains 92 
factors. The vertices circled in red indicate the selection of FVS factors by Kobayashi et al. [10]. Colored vertices mean 
that the FVS factors can be alternated between the same color. Vertices in yellow indicate marker genes for cell fates. 
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Figure 8  Experiments to control the gene regulatory network of ascidians. (a) Manipulate molecules in the FVS by 
introducing nucleotides into fertilized eggs or by adding chemicals to the culture medium. After culture, the cell fate is 
identified by the expression of marker genes. (b) The population average of marker gene expression under no 
manipulation of FVS genes. (c) Marker gene expression of each individual experiment under no manipulation. The 
numbers on the radar chart indicate how many times larger the maximum of the chart is compared to the expression 
level of normal embryos. In (c), the background color of the radar chart indicates that tissue-specific expression was 
observed. Green: epithelium, light blue: brain, dark blue: nerve cord. 

Figure 9  An example of FVS factor manipulation. Under this manipulation, only a single marker corresponding to the 
mesenchyme tissue was always active without variety between individuals. 
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induce six out of the seven tissues observed in normal development, except for the muscle tissue, using methods within 
the same framework [10]. Various experimental methods for tissue induction have been developed in developmental 
biology, but they are all empirical and specific to the focal tissue types. There has never been an achievement that 
manipulation criteria were determined rationally from mathematical theory and various cell fates were induced 
systematically within a single framework.  

On the other hand, muscle cells could not be induced despite the exhaustive manipulation of FVS (albeit in a binary 
range). Mathematically, the FVS is the minimal and sufficient target for manipulation to reproduce all the behaviors of 
the system. This result may imply that there is still some missing network information. Another possibility is that factors 
outside of the regulatory network, such as cell-cell interactions, play important roles in determining muscle fate. However, 
considering the fact that ascidian muscle tissue is a well-known example of autonomous development and has been known 
for over 100 years, cell-cell interactions are unlikely to play essential roles in this regard. 

There are cases where addition of a single regulatory edge to the regulatory network changes the FVS [11]. These may 
be potential candidates for unknown regulations. Therefore, a list of candidate unknown regulations was created by adding 
a hypothetical regulation one by one that could change the FVS. The list was examined by the Sato lab, and it was 
confirmed that one of them, the regulation from Mrf to Tbx6-r.b, actually exists and works. Adding this new regulation 
to the network, an FVS of size 6 was obtained including Tbx6-r.b, {Foxa.a, Foxd, Neurogenin, Zic-r.b, Erk, Tbx6-r.b}. 
In the previous experiment, only five factors without including Tbx6-r.b were manipulated. That may be the reason why 
the experiment could not reproduce all the tissue types.  

However, an exhaustive manipulation of the six new FVS factors would require 64(= 26) manipulation experiments, 
making this project even more difficult than the 32 manipulation experiments. Therefore, an experiment was conducted 
to activate the newly added factor, Tbx6-r.b, and inactivate the five factors originally included in FVS. Although this was 
only a pilot experiment, surprisingly, muscle markers were induced. Furthermore, it was confirmed that the other 6 tissues, 
which had been known to be induced by manipulating the 5 factors, were also induced by manipulating the 6 FVS factors. 
Thus, it was confirmed that the insufficiency of manipulation with 5 factors and the sufficiency of manipulation with 6 
factors [11]. 

Let us summarize the results of this section. By applying linkage logic theory to the ascidian gene regulatory network, 
it was demonstrated that the cell-fate specification system is indeed controllable by manipulating the activity of the FVS 
factors. Identifying the important molecules from the network structure alone, without using information on the biological 
properties of the molecules. Controlling the cell fate system completely is a remarkable achievement from both biological 
and mathematical viewpoints. In addition, it is interesting that the network, which serves as the basic information, was 
updated through the exchange of mathematical prediction and experimental test. We would say that this was possible 
since linkage logic is a model-free theory that does not assume functions or parameter values. It is a fairly strong 
proposition from theoretical side that the expected results were not obtained because the data were incomplete. This 
argument was possible because the theory does not introduce model assumptions. Experimental verification of the 
prediction from linkage logic is not just confirmation, but has the meaning of testing the completeness of the network 
information. 

Figure 10  Marker gene expression in the exhaustive 25=32 manipulations of the gene regulatory network in ascidians. 
Marker genes specifically expressed in each FVS-manipulated embryo are shown. “None” indicates that there is no 
predominantly expressed gene. 
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Concluding Remark and Outlook 
 

The linkage logic presented in this review is a mathematical theory that directly connects the network structure and 
dynamics of regulatory systems. The conclusion from the theory is quite simple: To understand the dynamics of complex 
regulatory networks, we should focus on the FVS. This is because the FVS is the minimal sufficient subset of variables 
to capture the dynamics of the whole system, and at the same time, the minimal sufficient subset of variables to control 
the whole system to converge to a desired behavior.  

We have so far introduced a method to determine driver nodes based on network structure in order to control a nonlinear 
dynamical system to converge to an arbitrary behavior. On the other hand, in the field of control theory, another criterion 
for selecting the driver nodes has been discussed for linear dynamical systems. Kalman [12] defined the controllability of 
a linear dynamical system based on the full rankness of the controllability matrix. Lin [13] gave a criteria to choose driver 
nodes from a network structure based on Kalman’s definition. Later, Liu et al. [14] adapted the method to many examples 
of regulatory networks by an algorithm using concept of ‘maximum matching’. Liu et al. calculated the size of the smallest 
set of driver nodes determined by this algorithm for various network systems, including those describing biological and 
social systems. Zanudo et al. [15] similarly compared the size of the driver node set between FVS control and maximum 
matching method for various network systems. Which method is more advantageous (i.e. yields a smaller set of driver 
nodes) depends on the structure of the network. Although proof of controllability is given only for linear systems, 
numerical control of nonlinear systems has been studied using the same guidelines. There have been both positive and 
negative reports on the possibility of controlling nonlinear systems with this method. 

The linkage logic theory introduced here is not only valid for specific system of ascidian cell-specification, but can be 
applied to any regulatory networks. Once we have enough information on regulatory relationships between biomolecules, 
we can discuss the behavior of the system of any organisms. Moreover, the mathematical formulation of our definition of 
a regulatory system implies that this theory is applicable not only to biological regulatory networks, but to any regulatory 
relationships. We may expect that the theory, which originally developed for living systems, will be used for 
understanding behaviors of high-dimensional dynamical systems, like economic systems or human relationships networks. 

 
Appendix 
 

(1) Formulation 
Consider a directed graph Γ = (𝑉𝑉,𝐸𝐸) where 𝑉𝑉 is a set of vertices and 𝐸𝐸 is a set of directed edges, where nodes represent 

biomolecules and edges represent regulatory linkages. Suppose that the dynamics of molecular activity on this graph is 
described by a system of ordinary differential equations in the form [4,5]: 

 
𝑑𝑑𝑢𝑢𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑛𝑛(𝒖𝒖)

                   = 𝐹𝐹𝑛𝑛�𝑢𝑢𝑛𝑛,𝒖𝒖𝐼𝐼𝑛𝑛�
 , 𝑛𝑛 = 1,⋯ , |𝑉𝑉| (A1) 

 
Here, 𝒖𝒖𝐼𝐼𝑛𝑛 is a vector notation with 𝑢𝑢𝑖𝑖 (𝑖𝑖 ∈ 𝐼𝐼𝑛𝑛) as elements. 
We also assume that (i) each 𝐹𝐹𝑛𝑛 is a continuous and differentiable function, (ii) there are no divergent solutions (𝐹𝐹𝑛𝑛 is 

bounded), and (iii) 𝐹𝐹𝑛𝑛 satisfies the “decay condition”:  
 
     𝜕𝜕1𝐹𝐹𝑛𝑛�𝑢𝑢𝑛𝑛,𝒖𝒖𝐼𝐼𝑛𝑛� < 0. (A2) 
 
Here 𝜕𝜕1𝐹𝐹 has a special meaning: “the partial derivative of 𝐹𝐹 with respect to the first argument”. This equation (A2) 

corresponds to the decay term or self-inhibition in equation (1). The set 𝐼𝐼𝑛𝑛 ⊆ 𝑉𝑉 is the input set of 𝑛𝑛, a subset of molecules 
that regulate molecule 𝑛𝑛, i.e. 𝐼𝐼𝑛𝑛: = {𝑖𝑖 ∣ (𝑖𝑖 → 𝑛𝑛) ∈ 𝐸𝐸}. The set 𝐼𝐼𝑛𝑛 includes 𝑛𝑛 (𝑛𝑛 ∈ 𝐼𝐼𝑛𝑛) i.e. a self-regulation, if and only if 
𝜕𝜕𝐹𝐹𝑛𝑛/𝜕𝜕𝑢𝑢𝑛𝑛 is “not always negative”. In other words, 𝐼𝐼𝑛𝑛 should not include the effects of decay or self-inhibition because 
they are already represented by the decay condition (A2). In the discussion below, we consider that the sets of 𝐼𝐼𝑛𝑛 (∀𝑛𝑛 ∈ 𝑉𝑉) 
directly represent the graphical structure of the regulatory network, i.e. the regulatory network is defined by the set of 𝐼𝐼𝑛𝑛. 
That is, if there exists a self-regulatory loop in a graph, it indicates an autoactivation regulation. 

Note that the decay condition 𝜕𝜕1𝐹𝐹𝑛𝑛 < 0 does not always imply 𝜕𝜕𝐹𝐹𝑛𝑛/𝜕𝜕𝑢𝑢𝑛𝑛 < 0. For example, suppose that we have a 
differential equation where 𝜕𝜕𝐹𝐹𝑛𝑛/𝜕𝜕𝑢𝑢𝑛𝑛 < 0 does not hold. In that case, using 𝐼𝐼𝑛𝑛 ≔ 𝐼𝐼𝑛𝑛 ∪ {𝑛𝑛} we can reconstruct the function 
as  

 
     𝐹𝐹�𝑛𝑛�𝜂𝜂𝑛𝑛,𝒖𝒖𝐼𝐼𝑛𝑛� ≔ 𝐹𝐹𝑛𝑛�𝒖𝒖𝐼𝐼𝑛𝑛� + 𝑢𝑢𝑛𝑛 − 𝜂𝜂𝑛𝑛 (A3) 
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where the decay condition (A2) is satisfied. In other words, when there is no decay term in the mathematical formula, 

we can interpret that there is a self-activating term that cancels out the decay term, which is assumed to exist. Thus, the 
requirement of decay conditions does not constrain the mathematical formula of the differential equations. 

 
(2) Two definitions 
Definition 1 (Feedback Vertex Set: FVS) 
In a directed graph Γ = (𝑉𝑉,𝐸𝐸), a subset 𝐼𝐼 ⊆ 𝑉𝑉 of vertices is called a feedback vertex set (FVS), if the graph Γ ∖ 𝐼𝐼 

excluding the subset 𝐼𝐼 has no directed cycles. 
 
FVS is one of the major concepts in graph theory, and it has been shown that finding an FVS for any graph is NP-hard 

problem [7,8]. 
 
Definition 2 (Determining nodes) 
In a dynamical system, a subset 𝐽𝐽 ⊆ 𝑉𝑉 of variables is called a set of determining nodes, if the following condition is 

satisfied:  
For any two solutions 𝒖𝒖(𝑡𝑡) and 𝒖𝒖�(𝑡𝑡) of the dynamics, convergence 𝒖𝒖�𝐽𝐽(𝑡𝑡) − 𝒖𝒖𝐽𝐽(𝑡𝑡) → 0 (𝑡𝑡 → +∞) of two solutions 

𝒖𝒖𝐽𝐽(𝑡𝑡), 𝒖𝒖�𝐽𝐽(𝑡𝑡) on the subset 𝐽𝐽 always implies the convergence 𝒖𝒖�(𝑡𝑡) − 𝒖𝒖(𝑡𝑡) → 0 (𝑡𝑡 → +∞) of two solutions 𝒖𝒖(𝑡𝑡), 𝒖𝒖�(𝑡𝑡) of 
the whole system 𝑉𝑉.  

 
A concept of determining nodes has been discussed in the field of dynamical systems theory, especially in the context 

of fluid dynamics. A set of determining nodes is a subset of variables such that one can identify any asymptotic behaviors 
of the whole system by observing them without observing all the variables in the system [16]. By considering the 
contrapositive of Definition 2, it is easy to understand that observations of determining nodes capture the diversity of the 
asymptotic behaviors of a dynamical system. The contrapositive (𝒖𝒖�(𝑡𝑡) − 𝒖𝒖(𝑡𝑡) ↛ 0 ⇒  𝒖𝒖�𝐽𝐽(𝑡𝑡) − 𝒖𝒖𝐽𝐽(𝑡𝑡) ↛ 0) means that 
"if two solutions do not asymptote to the same behavior, then (at least one of) the variables in the subset 𝐽𝐽 do not asymptote 
to the same behavior." A set of determining nodes is originally a concept related to a finite number of points in a space 
that should be measured to identify the solution of the Navier-Stokes equation, and its relationship with graphs has not 
been discussed at all.  

 
(3) The theorem and its proof 
Theorem (FVS = set of determining nodes) 
In the dynamics (A.1) on a directed graph, an FVS of the graph is a set of determining nodes regardless of the choice of 

𝐹𝐹𝑛𝑛. Conversely, if a subset of variables is a set of determining nodes regardless of the choice of 𝐹𝐹𝑛𝑛 , then it is an FVS of 
the graph.  

 
 

 

Figure A1  The structure of the theorem. 
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Here is an outline of the proof. First, we show that “FVS ⇒Set of determining nodes”. 
(1) For a given FVS 𝐼𝐼, a set 𝐾𝐾: = 𝑉𝑉 ∖ 𝐼𝐼 of vertices not included in 𝐼𝐼 is called the nonFVS. From the definition of FVS, 

a directed cycle cannot be composed only of the vertices in nonFVS 𝐾𝐾. Therefore, for each vertex 𝑘𝑘 ∈ 𝐾𝐾 in the nonFVS, 
the number 𝑘𝑘 can be reassigned so that 𝐼𝐼𝑘𝑘 ⊆ 𝐼𝐼 ∪ {1, … , 𝑘𝑘 − 1} (∀𝑘𝑘 ∈ 𝐾𝐾). That is, 𝑘𝑘 ∈ 𝐾𝐾 is reordered so that a regulator 
vertex has a younger number than the regulated vertex for each regulatory edge.  

(2) Let 𝑤𝑤𝑛𝑛(𝑡𝑡): = 𝑢𝑢�𝑛𝑛(𝑡𝑡) − 𝑢𝑢𝑛𝑛(𝑡𝑡) be the difference in variable 𝑢𝑢𝑛𝑛 between two dynamical solutions 𝒖𝒖(𝑡𝑡) and 𝒖𝒖�(𝑡𝑡) at time 
𝑡𝑡. Suppose that 𝑤𝑤𝑖𝑖(𝑡𝑡) → 0 is given for all vertices ∀𝑖𝑖 ∈ 𝐼𝐼 in the FVS 𝐼𝐼, and show by mathematical induction that 𝑤𝑤𝑘𝑘(𝑡𝑡) → 0 
for each vertex 𝑘𝑘 ∈ 𝐾𝐾 in the nonFVS 𝐾𝐾. For the dynamics of the difference of solutions 𝒘𝒘(𝑡𝑡): = 𝒖𝒖�(𝑡𝑡) − 𝒖𝒖(𝑡𝑡), we can derive 

 

                  = 𝐴𝐴(𝑡𝑡)𝒘𝒘(𝑡𝑡) (A4) 
 
     𝐴𝐴(𝑡𝑡) ≔ �∫ 𝜕𝜕𝑭𝑭

𝜕𝜕𝒖𝒖
�
𝒖𝒖(𝑡𝑡)+𝜃𝜃𝒘𝒘(𝑡𝑡)

𝑑𝑑𝑑𝑑1
0 � (A5) 

 
where 𝐴𝐴 is the matrix obtained by integrating each component of the Jacobian matrix of 𝑭𝑭 at 𝒖𝒖(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡) with respect 

to 𝜃𝜃. Note that any vertex in 𝐾𝐾 does not have self-regulation i.e. self-activation. Then dynamics of each 𝑘𝑘 ∈ 𝐾𝐾 can be 
represented by a linear nonautonomous dynamic equation 𝑤̇𝑤𝑘𝑘(𝑡𝑡) = −𝑎𝑎𝑘𝑘(𝑡𝑡)𝑤𝑤𝑘𝑘(𝑡𝑡) + 𝒃𝒃𝑘𝑘𝑇𝑇(𝑡𝑡)𝒘𝒘𝑰𝑰𝒌𝒌(𝑡𝑡), where the first term 
correspond to the decay condition (A.2) and the second term is from the second argument set in (A.1). The nonautonomous 
coefficients 𝑎𝑎𝑘𝑘(𝑡𝑡) ∈ ℝ and 𝒃𝒃𝑘𝑘(𝑡𝑡) ∈ ℝ|𝐼𝐼𝑘𝑘| are bounded by positive constants 𝑎𝑎0 and 𝑏𝑏0 as 0 < 𝑎𝑎0 ≤ 𝑎𝑎𝑘𝑘(𝑡𝑡) and |𝒃𝒃𝑘𝑘(𝑡𝑡)| ≤
𝑏𝑏0 , respectively. Assuming that 𝑤𝑤𝑛𝑛(𝑡𝑡) → 0 has already been shown for ∀𝑛𝑛 ∈ {1,⋯ , 𝑘𝑘 − 1}, let us show for 𝑛𝑛 = 𝑘𝑘 . 
Solving the equations yields: 

 

                → 0    (𝑡𝑡 → ∞) (A6) 
 
Note that the convergence of the first term is shown by exp(−𝑎𝑎0𝑡𝑡) → 0 (𝑡𝑡 → ∞), and the convergence of the second 

term is shown by the fact that 𝑤𝑤𝑗𝑗(𝑠𝑠) → 0 (𝑠𝑠 → ∞) for 𝑗𝑗 ∈ 𝐼𝐼𝑘𝑘 ⊆ 𝐼𝐼 ∪ {1, … , 𝑘𝑘 − 1}. When 𝑘𝑘 = 1, then 𝐼𝐼1 ⊆ 𝐼𝐼, it is obvious 
that 𝑤𝑤1(𝑡𝑡) → 0 from the similar argument. From the above the first half of the theorem is proved.  

“Set of determining nodes ⇒ FVS'” is shown by taking the contrapositive, that is, a subset of vertices which is not an 
FVS is not a set of determining nodes. Suppose 𝐼𝐼′ is not an FVS, i.e. 𝛤𝛤 ∖ 𝐼𝐼′ contains directed cycles. By choosing the 
function of the vertices appropriately, dynamics can be constructed so that 𝐼𝐼′ is not a set of determining nodes. For 
example, all functions included in 𝐼𝐼′ are taken to be simple decay 𝐹𝐹𝑛𝑛�𝑥𝑥𝑛𝑛 ,𝒙𝒙𝐼𝐼𝑛𝑛� ≔ −𝑥𝑥𝑛𝑛. From this, the behaviour of 𝛤𝛤 ∖ 𝐼𝐼′ 
cannot be captured by 𝐼𝐼′. However, there is a cycle within 𝛤𝛤 ∖ 𝐼𝐼′ and, by choosing these functions, it is possible to create 
diversity in the solutions such as multiple stationary points. In other words, 𝐼𝐼′, which is not an FVS, is not always a set of 
determining nodes for arbitrary functions. (End of proof) 

Here we add a supplementary note on the control of dynamic by manipulating the FVS. The theorem claims that when 
the behaviors 𝒖𝒖𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) of vertices in the FVS are made closer to the target behaviors 𝒖𝒖�𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) (𝒖𝒖�𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) − 𝒖𝒖𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) →
0 (𝑡𝑡 → +∞)), the behavior 𝒖𝒖(𝑡𝑡) of the whole system spontaneously approaches the target behavior 𝒖𝒖�(𝑡𝑡) (𝒖𝒖�(𝑡𝑡) − 𝒖𝒖(𝑡𝑡) →
0 (𝑡𝑡 → +∞)). The target 𝒖𝒖�𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) does not have to be an 𝜔𝜔-limit set such as stable equilibria or stable periodic oscillations, 
but can be an 𝛼𝛼-limit set such as unstable equilibrium points or unstable periodic solutions. Moreover, if we pay careful 
attention to the theorem, the target need not be the original asymptotic behaviors of the dynamical systems. Given any 
behaviors in the FVS, the entire system will asymptotically approach a uniquely determined behavior (whatever that may 
be). In other words, under any manipulation of FVS, the system loses the diversity of asymptotic behaviors. When FVS 
approaches the system's original asymptotic behavior, the entire system uniquely asymptotes to that behavior. 

     𝑑𝑑
𝑑𝑑𝑑𝑑
𝒘𝒘(𝑡𝑡) = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒖𝒖�(𝑡𝑡) − 𝑑𝑑

𝑑𝑑𝑑𝑑
𝒖𝒖(𝑡𝑡) 

                  = 𝑭𝑭�𝒖𝒖(𝑡𝑡) + 𝒘𝒘(𝑡𝑡)� − 𝑭𝑭�𝒖𝒖(𝑡𝑡)� 
                  = �𝑭𝑭�𝒖𝒖(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡)��

𝜃𝜃=0
1  

                  = ∫ 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑭𝑭�𝒖𝒖(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡)�𝑑𝑑𝑑𝑑1

0  

                  = ∫ 𝜕𝜕
𝜕𝜕𝒖𝒖
𝑭𝑭�𝒖𝒖(𝑡𝑡) + 𝜃𝜃𝒘𝒘(𝑡𝑡)� ∙ 𝒘𝒘(𝑡𝑡)𝑑𝑑𝑑𝑑1

0  

     𝑤𝑤𝑘𝑘(𝑡𝑡) = exp �−∫ 𝑎𝑎𝑘𝑘(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 �𝑤𝑤𝑘𝑘(0) + ∫ exp �−∫ 𝑎𝑎𝑘𝑘(𝜎𝜎)𝑑𝑑𝑑𝑑𝑡𝑡

𝑠𝑠 � 𝒃𝒃𝑘𝑘𝑇𝑇(𝑠𝑠)𝒘𝒘(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0  

                ≤ exp �−∫ 𝑎𝑎𝑘𝑘(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 � |𝑤𝑤𝑘𝑘(0)| + ∑ ∫ exp �−∫ 𝑎𝑎𝑘𝑘(𝜎𝜎)𝑑𝑑𝑑𝑑𝑡𝑡

𝑠𝑠 � |𝒃𝒃𝑘𝑘(𝑠𝑠)|�𝑤𝑤𝑗𝑗(𝑠𝑠)�𝑑𝑑𝑑𝑑𝑡𝑡
0𝑗𝑗∈𝐼𝐼𝑘𝑘  

                ≤ exp(−𝑎𝑎0𝑡𝑡) |𝑤𝑤𝑘𝑘(0)| + ∑ ∫ exp�−𝑎𝑎0(𝑡𝑡 − 𝑠𝑠)� 𝑏𝑏0�𝑤𝑤𝑗𝑗(𝑠𝑠)�𝑑𝑑𝑑𝑑𝑡𝑡
0𝑗𝑗∈𝐼𝐼𝑘𝑘  
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