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Temporal efficiency evaluation and 
small-worldness characterization in 
temporal networks
Zhongxiang Dai1, Yu Chen2, Junhua Li1, Johnson Fam3, Anastasios Bezerianos1 & Yu Sun1

Numerous real-world systems can be modeled as networks. To date, most network studies have been 
conducted assuming stationary network characteristics. Many systems, however, undergo topological 
changes over time. Temporal networks, which incorporate time into conventional network models, 
are therefore more accurate representations of such dynamic systems. Here, we introduce a novel 
generalized analytical framework for temporal networks, which enables 1) robust evaluation of the 
efficiency of temporal information exchange using two new network metrics and 2) quantitative 
inspection of the temporal small-worldness. Specifically, we define new robust temporal network 
efficiency measures by incorporating the time dependency of temporal distance. We propose a temporal 
regular network model, and based on this plus the redefined temporal efficiency metrics and widely 
used temporal random network models, we introduce a quantitative approach for identifying temporal 
small-world architectures (featuring high temporal network efficiency both globally and locally). In 
addition, within this framework, we can uncover network-specific dynamic structures. Applications 
to brain networks, international trade networks, and social networks reveal prominent temporal 
small-world properties with distinct dynamic network structures. We believe that the framework can 
provide further insight into dynamic changes in the network topology of various real-world systems and 
significantly promote research on temporal networks.

We live in an age of networks. Network models have been employed in the study of many complex systems, 
including biological systems, communication networks and ecological systems1. In a network analysis frame-
work, individual members of the studied system (such as the brain regions in a brain network or the countries in 
a trade network) are represented by nodes, and the interactions among them are modeled as edges. Various graph 
theoretical measurements have been developed for investigating network topologies and to characterizing the 
underlying processes2–6. An important property that many real-world systems possess is small-worldness, which 
refers to an optimal combination of global integration and local segregation for efficient information processing2. 
Notably, most network models to date have been static and thus have neglected the possible temporal variations 
in the network topology. However, many real-world systems undergo structural changes over time, and time is, in 
fact, a critical factor in these network models7–9. For example, brain functional connectivity networks have been 
repeatedly shown to be highly dynamic10–13. Static network models tend to oversimplify these systems and there-
fore provide limited insights into their underlying network dynamics. In recent years, temporal network models, 
which incorporate time into static network models, have attracted substantial attention and have yielded some of 
the first quantitative insights in the search for a better understanding of the dynamic changes in network topolo-
gies in many real-world systems8,14. Given the paucity of research in this area, only a limited number of attributes 
of temporal networks, including reachability15,16, modularity17–19, and centrality20,21, have been explored.

Among the characteristics of static networks, global integration and local segregation are closely related to 
the efficiency of information processing in such a network. A unified framework for efficiency assessment in 
static networks, which consists of global efficiency and local efficiency, has been developed and widely applied3,22. 
Networks with information flows that are both globally efficient (compared with regular networks) and locally 
efficient (compared with random networks) are considered to possess the optimal small-world architecture3. 
In this study, we hypothesize that the small-world properties of static networks can be extended to temporal 
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networks, and that systems with temporal small-world architectures should exhibit a special combination of top-
ological and temporal structures that can facilitate temporally efficient information processing at both the global 
and local scales. To date, no generalized and robust framework for quantifying the efficiency of information 
transfer and quantitatively identifying the presence of temporal small-world structures in temporal networks has 
been proposed. Moreover, investigating the prominent network structures that contribute to the efficiency of a 
temporal small-world network will provide a more in-depth understanding of dynamic systems.

In this study, we introduce the concepts of overall temporal global efficiency and overall temporal local effi-
ciency, which are measures of the efficiency of information exchange over time in a temporal network at the 
global and local scales respectively. Next, we revisit the various temporal random network models that have 
been proposed and define the temporal regular network architecture; these models are then employed as refer-
ences for the identification of temporal small-world architectures and the characterization of dynamic network 
structures. Finally, we demonstrate the effectiveness of the framework by applying it to three types of complex 
real-world systems, i.e., brain functional connectivity networks, international trade networks (ITN), and social 
networks (specifically, human proximity networks). In addition, we explore the correspondence between the 
static small-worldness of an aggregated static network and the temporal small-worldness of the corresponding 
underlying temporal network. Here, we adopt several assumptions regarding the temporal networks under study. 
First, the time dimension is assumed to be discrete, which enables each temporal network to be conceptualized 
as a sequence of static graphs in which the edges are instantaneous. As a result of this assumption, at each time 
step, two nodes are considered to be connected as long as a static network path exists between them. Second, the 
connections in the networks are assumed to be binary and undirected. Many real-world systems (such as brain 
networks and trading networks) can be suitably represented by this type of temporal network model8.

Methods
Temporal network. We begin by introducing the basic concepts related to temporal networks. A temporal 
network of the type under study can be represented by G =  {Gt}t = 1, 2, …, T, where Gt is a static graph of size N ×  N 
(where N is the number of nodes), which corresponds to the snapshot of the network at time t, and T is the life-
time (which is equal to the total number of time steps) of the network16,23. The set of nodes in Gt is constant in 
time, whereas the set of edges in Gt may vary with time. In this work, we refer to the connections in the snapshot 
static graphs at specific time steps as contacts and to the connections in the graph aggregated over the entire 
network lifetime as edges, i.e., an edge exists between a node pair if they are connected by at least one contact 
throughout the network lifetime. Mathematically, a temporal network can be formulated as a 3-dimensional 
matrix with dimensions of N ×  N ×  T. The network matrices consist only of ones and zeros, which indicate the 
presence or absence, respectively, of a contact at a particular position. A time-respecting path from node i to j is 
a sequence of contacts with non-decreasing time labels that starts at i and ends at j24. A time-respecting path is 
constructed over both the spatial and temporal dimensions, while its static counterpart (a path in a static graph) 
involves only spatial configurations. The temporal distance (analogous to the path length in a static graph) from 
node i to j at time t, τi→j(t), is defined as the smallest number of time steps required to reach node j from node 
i starting at time t25. Therefore, a temporal distance can be any positive integer, with the smallest value being 1 
(when i and j are connected through a static path at time t) and the largest value being infinity (when no time-re-
specting path exists from i to j at time t). Note that although the term “distance” is included in the definition of 
temporal distance, it is a measure in the time domain. Moreover, because of the characteristics of the time-re-
specting path, the temporal distance is influenced by both the topology of each of the snapshot static graphs and 
the temporal structure of the network.

The basic concepts related to temporal networks are illustrated in a sample network with N =  6 and T =  10 in 
Fig. 1. In this sample network, a time-respecting path exists from node A to C at t =  1: {(A→ B)t = 1, (B→ D→ E)t = 4, 
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Figure 1. A sample temporal network (N = 6, T = 10) represented as a sequence of contacts, with selected 
snapshot static graphs shown at the bottom panel. A time-respecting path from node A to C at t =  1 is 
highlighted by the black strokes: {(A→ B)t = 1, (B→ D→ E)t = 4, (E→ C)t = 6}.
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(E→ C)t = 6} (highlighted by the black strokes in Fig. 1); because this path is the shortest time-respecting path from 
A to C at t =  1, the corresponding temporal distance is τA→C(t =  1) =  6. The sample network in Fig. 1 demonstrates 
three characteristics of time-respecting paths and temporal distances in which they differ from their static-graph 
counterparts25: 1) time dependency, e.g., τC→D(t =  1) =  3, whereas τC→D(t =  3) =  8, and similarly, τA→B(t =  1) =  1, 
whereas τA→B(t =  4) =  ∞ ; 2) non-symmetry, e.g., at t =  1, there is a time-respecting path from A to C, whereas 
no time-respecting path exists from C to A (τA→C(t =  1) =  6, τC→A(t =  1) =  ∞ ), and similarly, τC→D(t =  1) =  3, 
whereas τD→C(t =  1) =  6; and 3) non-transitivity, e.g., at t =  1, time-respecting paths exist from F to C and from 
C to D, whereas no time-respecting path exists from F to D.

Overall temporal efficiency measures. Efficiency measures for temporal networks, including the tempo-
ral global efficiency and the temporal local efficiency, were first proposed by Tang and colleagues23. These metrics 
are robust against disconnected node pairs; however, they are based only on the temporal distances measured at 
the beginning (t =  1) of the network lifetime (averaged over all node pairs) and thus neglect the time dependency 
of the temporal distances. Moreover, simply averaging the efficiency measures proposed in ref. 23 over the entire 
network lifetime will produce a biased outcome because time-respecting paths become increasingly unlikely to 
exist as time approaches the end of the network lifetime, and thus, those time-respecting paths that occurred at 
earlier time steps tend to inflate the results. To address this issue, Pan and Saramäki25 proposed a periodic bound-
ary condition for calculating the average temporal distance: for each node pair, the first observed time-respecting 
path is appended to the end of the network lifespan. However, the formulation in ref. 25 assumes that no node 
pairs are disconnected, otherwise, the result would be infinity. In the remainder of this section, we introduce, for 
the first time, more generalized and unbiased efficiency measures for temporal networks.

Here, by extending the temporal distances considered in the efficiency calculation from the first time step into 
the entire network lifetime and adopting the periodic node-pair-specific boundary condition proposed in ref. 25, 
we calculate the overall temporal global efficiency (Et

glob) by evaluating the inverse of the temporal distances over 
all node pairs and throughout the network lifetime:
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where G is the temporal network under consideration, T is the network lifetime, and Et glob(t)(G, t) represents the 
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where N is the number of nodes in the network and τij(t) is the temporal distance from node i to j at time t. The 
values of both Et

glob(t) and Et
glob range from 0 to 1, and Et glob =  1 when every node pair is connected through a static 

network path at every time step (every snapshot static graph is fully connected). Because 1/τ (instead of τ) 
appears in the calculation, this definition still holds in the presence of disconnected node pairs, in which case 
τ =  ∞  for all t ∈ {1, 2, … , T} and such node pairs make no contribution to the overall network efficiency, i.e., 
1/τ =  0. A larger value of Et glob indicates a smaller average temporal distance among the nodes and fewer average 
time steps required for information from one node to reach another, corresponding to a more efficient overall 
information flow in the temporal network. Therefore, Et

glob is a strong indicator of how efficiently information is 
exchanged in a time-varying system.

Unlike in the definition of the temporal local efficiency in ref. 23, in which the neighbors of a node are 
obtained by aggregating all of its immediate neighbors (neighbors connected by a single contact) throughout 
the entire network lifetime, we define the neighbors of a node in a time-varying manner: neighbor identification 
for each node is performed at every time step. The notion of time-varying neighbors is important for accurately 
assessing the local information processing capability and fault tolerance of a temporal network because the set of 
neighbors that are directly affected by the removal of a node is time-dependent. In our formulation, the following 
two steps are repeated for each node at every time step: 1) identifying the immediate neighbors of the node and 
forming the corresponding sub-temporal network (with dimensions of n ×  n ×  T, where n is the number of neigh-
bors) and 2) calculating the efficiency (Et glob(t)) of the sub-temporal network. Subsequently, the overall temporal 
local efficiency (Et loc) is derived by averaging the efficiency values over all nodes and all time steps:
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where G(i, t) is the sub-temporal network that consists of all immediate neighbors of node i at time t and pre-
serves all contacts among these neighbors over the lifetime of the original network. Et glob(t)(G(i, t), t) represents 
the efficiency of G(i, t) at time t and is computed using equation (2). Et loc, whose values range from 0 to 1,  
measures the average efficiency of the temporal information exchange among the neighbors of a node and 
reflects the overall resilience of the temporal network to local failures caused by the removal of any node at any 
time point.

Notably, because the temporal efficiency measures proposed above are based on time-respecting paths and 
temporal distances, these two metrics depend on both the topological structure of the networks and the temporal 
configuration of the contacts in the networks, thereby quantifying the efficiency of information exchange over 
both the spatial and temporal dimensions.
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Temporal reference networks. In static network analysis, a small-world topology is discovered by 
comparing the efficiencies (global efficiency and local efficiency) of the network under study with those of 
random26 and regular lattice networks22,27. Analogously, to facilitate the quantitative assessment of temporal 
small-worldness based on the proposed temporal efficiency measures, reference temporal networks with highly 
random and highly regular architectures must be developed.

Temporal random networks. The richness of the complex structures in temporal networks allows the appli-
cation of powerful temporal randomization techniques7,8,14, which can be used to produce reference networks 
for temporal small-worldness identification and to reveal various dynamic structures in temporal networks. 
The randomization techniques employed in this study include randomized edges (RE), in which all edges in the 
time-aggregated network are randomly rewired under certain constraints; randomly permuted times (RP), in 
which the timestamps of different edges are randomly swapped; random times (RT), in which all timestamps 
in each node pair are randomly redistributed; and randomized contacts (RC), in which all contacts in the net-
work are randomly redistributed. As illustrated in Fig. 2, RE destroys the topological structures of the temporal 
network, whereas the other techniques progressively remove the temporal structures. The importance of differ-
ent network structures in terms of their contributions to the network’s information processing efficiency can be 
evaluated by successively removing them by means of various temporal randomization techniques and compar-
ing the temporal efficiency measures of the resultant random networks with those of the original network. The 
combination of RE and RC destroys most structures in a network; this combination is therefore employed to 
produce the reference random network for temporal small-worldness identification. More detailed descriptions 
(including pseudocode) of the algorithms for the different temporal randomization techniques are presented in 
the Supplementary Information.

Temporal regular network. Generalizing from the characteristics of static regular lattice networks, we define a 
temporal regular network such that the temporal distances in the network are small between neighbouring nodes 
and large between distant nodes. Therefore, in the 3-dimensional matrix representation of a temporal regular 
network, all contacts are expected to cluster around the space diagonals (two topologically opposite space diago-
nals are selected such that the temporal proximity between adjacent nodes is balanced). The network generation 
algorithm consists of three steps: 1) categorizing all contact positions into different layers, 2) repeatedly sampling 

Original temporal network

Remove the order of eventsRemove the topology of 
the aggregated network

Destroy topological structure Remove the exact timing 
and overall rate of events

Remove the distribution
of the number of contacts 
per edge

Destroy temporal structure

RE: Randomized edges

RP: Randomly permuted times

RT: Random times

RC: Randomized contacts

Randomized edges
(RE)

Randomly permuted 
times (RP)

Random times 
(RT)

Randomized contacts 
(RC)

Figure 2. Summary of different randomization techniques adopted in this work, with emphasis on the 
particular types of structures removed from the specific networks. The combined usage of these algorithms 
constitutes a framework for evaluating the significance of different temporal network structures.
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contacts from a layer probability distribution until the total number of contacts reaches that of the original tem-
poral network, and 3) randomly filling each layer with the corresponding number of contacts derived in step 2).  
The layer to which a contact position belongs is calculated based on the proximity of the position to the two 
space diagonals, with smaller layer numbers indicating positions closer to the diagonals. Topologically, the layers 
of contacts are distributed following a specific pattern, e.g., the contacts in the first layer connect two adjacent 
nodes, whereas those in the first two layers join each pair of three neighbouring nodes. All contact positions are 
classified into N – 1 layers, and the distribution of the layers depends on the number of nodes (N) and time steps 
(T) of the network. The layer probability distribution is defined such that when the layer number is incremented 
by 1, the probability of a contact falling into that layer decreases by p. As a result, the inner layers (closer to the 
space diagonals) have higher probabilities of being filled and the contacts that minimizes the temporal distances 
between neighbouring nodes are favoured, thereby leading to a temporally regular structure of the network. The 
resulting temporal regular network consists of two topologically opposite clusters of contacts that are “traveling” 
in a specific circular direction through time (as is evident in Fig. 3). The free parameter in the model, p, controls 
the degree to which the contacts cluster around the diagonals. After running the network generation algorithm 
and calculating the network efficiencies with different p values, we selected a value of 1/4 for this parameter (see 
the Supplementary Information for further details on the selection of p). An example temporal regular network 
(N =  14, T =  20) is shown in Fig. 3. The pseudocode of the generation algorithm for temporal regular networks is 
included in the Supplementary Information.

Temporal small-worldness identification and dynamic network structure characterization. By combining the tem-
poral efficiency measures and the temporal reference models defined above, we can quantitatively characterize the 
temporal small-world architecture, which features an optimal combination of temporal information communi-
cation on both the global and local scales: a temporal network is temporally small-world if the network possesses 
a larger overall temporal global efficiency than the corresponding temporal regular network and a greater overall 
temporal local efficiency than the corresponding temporal random network (with RE and RC randomizations), 
i.e., Et

glob,regular <  Et
glob <  Et

glob,random, and Et
loc,regular >  Et

loc >  Et
loc,random. In addition, the different temporal random 

networks destroy specific dynamic network structures, thereby enabling the investigation of the significance of 
individual network architectures in terms of their contributions to the temporal efficiency of information transfer.

Experimental data. To validate the effectiveness and generalizability of the proposed framework, we applied 
the proposed techniques to three representative types of temporal networks, namely, brain functional connectiv-
ity networks, ITNs, and social networks.

Brain functional connectivity networks. Temporal brain functional connectivity networks were constructed from 
the resting-state functional magnetic resonance imaging (fMRI) data recorded in two sessions of a longitudinal 
study involving 17 participants, which investigated the effect of mindfulness training in older adults with mild 
cognitive impairment (MCI). Each network consisted of nodes representing 14 brain regions (which constituted 
the default mode network28) and 94 time steps representing the network lifetime. A range of sparsity values (refer-
ring to the preservation of the top n contacts in each static graph, n =  3, 4, … , 28) were applied to obtain binary 
temporal networks, and temporal random and regular networks were generated. For each of the temporal brain 
networks, the temporal efficiency measures were calculated and then integrated over the entire sparsity range to 
examine the presence of significant between-session differences.
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Figure 3. An example temporal regular network (N = 14, T = 20). 
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International trade networks. Using the United Nations commodity trade database (UN COMTRADE29), we 
built a temporal ITN that consisted of 17 countries (the network nodes) and spanned 21 years (the network 
lifetime); the contacts were weighted based on the commodity-aggregated trade values and were assumed to be 
undirected. Subsequently, a series of sparsity values (representing the preservation of the top n contacts in each 
static graph, n =  10, 11, … , 30) were employed to produce different binary temporal networks.

Social networks. Temporal social networks were established using a dataset obtained from the SocioPatterns 
Project (http://www.sociopatterns.org/), which comprises the physical proximity data of 113 conference par-
ticipants (corresponding to 113 nodes) over approximately 59 hours at the ACM Hypertext 2009 conference in 
Turin, Italy, from June 29 to July 1, 200930. Further details about these data are provided in ref. 30–33 and the 
Supplementary Information. Three binary aggregated temporal proximity networks were obtained by applying 
three different aggregation time windows (half-hour, one-hour and two-hour windows), after which the windows 
with no contacts were removed, resulting in networks with 72, 38, and 20 time steps, respectively. In addition to 
the temporal small-world characteristics of these networks, the impacts of temporal persistence (the degree of 
similarity between adjacent snapshot networks) and the choice of aggregation window on the temporal network 
efficiencies were also explored.

For each of the real-world temporal networks described above, the corresponding temporal random and regu-
lar networks were generated, and the temporal efficiency measures were calculated for both the original networks 
and the reference networks. More detailed descriptions of the network construction process for all three types of 
networks are presented in the Supplementary Information.

Results
Brain functional connectivity networks. Figure 4 shows the spatio-temporal structure of one of the 
temporal brain networks (with 3 contacts preserved in each static graph), along with the corresponding temporal 
regular network and one of the temporal random networks (with RE and RC randomizations; see Supplementary 
Fig. S2 for the other random networks). The Et

glob and Et
loc of the brain networks in both sessions and the corre-

sponding temporal regular and random networks, averaged over all subjects, are plotted in Fig. 5. The efficiency 
measures integrated over all sparsity values (corresponding to the areas under the metric curves) are presented in 
Supplementary Table S1 to highlight the quantitative differences among the different types of networks. It can be 
observed from the figure that within the considered sparsity range, the temporal functional connectivity networks 
are both globally efficient (compared with the temporal regular network) and locally efficient (compared with the 
temporal random network with RE and RC randomizations); these findings are indicative of an optimal temporal 
small-world architecture. Moreover, as revealed in Fig. 5, all of the temporal randomization techniques resulted in 
significant variations of the temporal efficiencies of the brain networks, indicating the presence of diverse special 
network structures, the removal of any one of which severely affects the efficiency of temporal information com-
munication on both the global and local scales. Furthermore, as shown in Fig. 5, a statistically significant increase 
was revealed in the integrated Et

loc (p =  0.029, one-sided permutation test) after the 3-month training, whereas no 
significant change was discovered in the integrated Et

glob.

International trade networks. Figure 6 presents a spatio-temporal view of one of the ITNs (with 17 con-
tacts preserved in each snapshot static graph), together with the corresponding temporal regular network and one 
of the temporal random networks (with RE and RC randomizations). The Et

glob and Et
loc values of the temporal 

ITNs and all reference networks are plotted in Fig. 7. The efficiency values integrated over the entire sparsity range 
are presented in Supplementary Table S2 to illustrate the quantitative differences among the different types of net-
works. As shown in the figure, within the considered sparsity range, an optimal temporal small-world architecture 
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was revealed in the temporal ITNs through the comparison of their temporal efficiencies with those of the tem-
poral regular network and temporal random network (with RE and RC randomizations). Two major observations 
can be made by comparing the efficiency measures between the ITNs and the different corresponding temporal 
random networks (Fig. 7): 1) in terms of the temporal structures, RP and RT caused insignificant changes to the 
efficiency measures, whereas RC significantly altered the temporal network efficiency, and 2) in terms of the top-
ological structures, RE, both alone and when combined with other techniques, resulted in significant variations 
in Et

glob and Et
loc.

Social networks. The Et
glob and Et

loc values of the temporal human proximity network constructed with 
one-hour aggregation window, together with those of the corresponding reference networks, are shown in Fig. 8. 
The efficiency measures of the networks constructed with half-hour and two-hour windows are presented in 
Supplementary Fig. S3. As shown in these figures, for all three aggregation time windows, comparisons of the 
efficiency measures of the proximity networks with those of the temporal random and regular networks reveal 
a temporal small-world architecture in all three networks. Moreover, for all time windows, the RP-randomized 
networks exhibit reduced temporal persistence (Supplementary Table S3), together with increased Et

glob and 
decreased Et

loc (Fig. 8 and Supplementary Fig. S3). Furthermore, lengthening the aggregation window improves 
the temporal efficiency measures both globally and locally (Supplementary Table S4) through increasing the 

Figure 5. (a) Overall temporal global efficiency and (b) overall temporal local efficiency of the brain 
functional connectivity networks in both sessions (averaged over all subjects in each session), and those of 
the corresponding temporal regular and random networks (each efficiency value of the reference networks is 
averaged over all subjects, all iterations, and both sessions). Horizontal axis represents the different number of 
contacts preserved in each snapshot static graph. The integrated temporal efficiency measures (over the entire 
sparsity range) are shown at the bottom of the corresponding plot (mean ±  standard error for each session), and 
the p value is displayed for the metric showing statistically significant session difference (Et

loc).
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average nodal degree of the network (Supplementary Table S5). More detailed descriptions of the results of the 
human proximity network analysis are presented in the Supplementary Information.

Discussion
Recent advances in temporal network analysis methods permit quantitative investigations of dynamic network 
structures and provide effective tools for understanding, predicting and optimizing the behaviour of complex 
systems that undergo topological variations over time. In the current work, we have presented a generalized 
and robust analytical framework for temporal network characterization and have demonstrated the reliability 
of that framework by applying it to three types of complex real-world systems: brain functional connectivity 
networks, ITNs, and social networks. In addition, we also investigated the correspondence between the temporal 
small-worldness of a temporal network and the static small-worldness of the corresponding aggregated static 
network and presented detailed analysis and discussions in the Supplementary Information.
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Brain functional connectivity networks. To date, most graph theoretical studies of the brain functional 
connectivity networks have been conducted under the assumption of stationary network characteristics4,34. 
However, the functional coupling among different brain regions has been discovered to be highly dynamic10–13. 
Therefore, the analytical framework introduced in the current study, which incorporates the temporal variations 
in functional connections into the graph theoretical framework, has the potential to provide deeper insight into 
the intrinsic organization of brain functional networks.

In previous studies, through the application of graph theory, small-world topologies have been discovered 
in brain functional connectivity networks, featuring both dense local clustering of neighbouring brain regions 
and short path lengths between distant brain regions22,27,35. In this work, to account for the dynamic variations in 
functional connections, we extended the definition of small-worldness to temporal brain networks and revealed 
the optimal temporal small-world organization of brain functional connectivity networks (Fig. 5). The results 
of this study therefore demonstrate that the overall dynamic exchange of information among brain regions is 
efficient and that the special temporal structure of the brain functional networks facilitates effective coordination 
of various brain regions for globally integrated brain functions; meanwhile, the transfer of information over time 
among neighbouring brain regions is also efficient, facilitating the effective temporal functional specialization of 
the temporal brain network.

Comparisons between the studied brain networks and the different corresponding temporal random networks 
revealed that all of the considered temporal randomization techniques could significantly alter the temporal net-
work efficiency (Fig. 5). Therefore, the functional connectivity network is highly dynamic, and the results indicate 
that temporally efficient communication of information in the brain network is facilitated by the combination of 
various prominent network architectures, including the topology of the aggregated brain network, the order of 
the functional connectivity events, the number of preserved connections in each time window, and the distribu-
tion of the total number of contacts between each pair of brain regions. Each of these dynamic structures carries 
information on the fundamental organization of the temporal functional connectivity network, the disruption of 
which will cause the optimally efficient behaviour of the temporal functional connectivity network to degrade. 
This finding further corroborates previous studies discovering the abundant dynamics contained in brain func-
tional connectivity networks10–13.

More interestingly, as revealed in Fig. 5, the integrated Et
loc was significantly improved after 3 months of mind-

fulness training. This finding might suggest that mindfulness practice significantly improves the efficiency of 
local temporal information processing and the fault tolerance of the temporal functional connectivity network. 
Therefore, our finding provides further neuroimaging evidence to support the notion that mindfulness practice 
could improve the cognitive function in older adults with MCI36. More importantly, this result also demonstrates 
the effectiveness of the temporal efficiency metrics introduced in this work in revealing the underlying dynamic 
characteristics of brain functional networks.

International trade networks. Recent advances in complex network theory have also sparked new interest 
in ITNs37–39. Temporal information is an inherent component of international trade relationships, because the 
spreading of events (such as economic crises) over time in an ITN can have dramatic worldwide impacts40,41. 
Therefore, temporal network analysis, which integrates time into the conventional network models, has the 
potential to uncover more in-depth characteristics of international trade.

Using the analytical framework introduced in this study, a temporal small-world architecture was discovered 
in the investigated ITNs (Fig. 7), which suggests that the trades among these 17 countries are temporally efficient 
at the global network scale, featuring short average temporal path lengths between all pairs of countries, and that 
the trade network is also efficient at the local scale and resistant to local network failures such as the removal of 
certain countries from the network. This finding might provide further evidence for the coexistence of globaliza-
tion and regionalization in international trade42,43.

Moreover, by examining the variations in the temporal network efficiencies induced by different temporal ran-
domization techniques, two prominent dynamic network structures were revealed. First, the temporal network 
efficiencies were found to be minimally affected by the RP and RT techniques; however, they are significantly 
altered by the RC technique (Fig. 7). This phenomenon reflects the significance of one of the network structures, 
namely, the distribution of the number of contact events between each node pair, which is preserved by RP and 
RT but destroyed by RC. The prominence of this network structure results from strong bias in the contact distri-
bution and the existence of certain specific connections that appear highly frequently over time, which are evident 
in Fig. 6 and directly reflect the large, steady trade volumes between certain trade partners. For example, as shown 
in Fig. 6, when the top 17 trade partners in each year are retained, 12 trading pairs are consistently present in the 
network every year, such as the USA and China as well as the USA and Canada. This finding also serves as novel 
quantitative evidence for the strong persistence over time of the topology of ITN44,45, which results from the 
bias of the trades towards some specific pairs of countries. Secondly, the substantial alterations in the temporal 
efficiencies caused by RE randomization suggest that the aggregated structure of the temporal ITN significantly 
contributes to the efficiency of international trade. This phenomenon demonstrates that the trade relationships 
among these countries are formed such that the overall ITN performance is optimized. Another noteworthy pat-
tern in Fig. 7 is the discontinuous jumps in the curves of some of the random networks (RE, RC, RE +  RP, RE +  
RT and RE +  RC). This phenomenon can be explained as discontinuities in the rate of increase of the number of 
edges in the aggregated graph as the number of contacts increases in each time step (this behaviour can be further 
attributed to the persistence of contacts) and the relative sensitivity of the RE and RC algorithms to the aggregated 
number of connections.

Social networks. In the analysis of physical proximity networks, although static network analysis has pro-
vided deep insight into the characteristics of these networks, the dynamic network properties can only be assessed 
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by integrating the temporal variations in human contacts into these network models46,47. Technological advances 
in recent years have significantly expanded the availability of high-resolution human proximity data, thereby 
greatly facilitating the temporal network analysis of proximity networks48.

The observed presence of temporal small-world architecture in the proximity networks investigated in this 
study might indicate that the temporal evolution and topological arrangement of the interpersonal interactions 
is optimized such that both the overall interactions among all conference participants and the localized commu-
nications within small communities are organized to be efficient. This discovery complements the observation of 
static small-worldness in the aggregated network of the same dataset30, suggesting that both the topological and 
temporal structures of the proximity network are optimally arranged for efficient information exchange. In addi-
tion, the temporally persistent structure in these social networks, which is quantified by adjacency correlation47, 
causes the efficiency of interpersonal communication to be deflated globally yet inflated locally. In networks 
with relatively high temporal persistence (high degree of similarity between adjacent snapshot static graphs), the 
temporal global efficiency is reduced because the strong similarity between adjacent snapshot networks increases 
the number of required time steps needed to build a time-respecting path between two distant nodes; the tempo-
ral local efficiency is enlarged due to the temporal stability of densely connected local communities. Moreover, 
lengthening aggregation window in the temporal proximity network analysis was discovered to boost the tem-
poral network efficiency both globally and locally, which might be explained by the increasing connection den-
sity at each time step. More detailed discussions of the results of the social network analysis are provided in the 
Supplementary Information.

Effectiveness and generalizability of the proposed analytical framework for temporal networks.  
The analytical framework for temporal networks proposed in this study is effective and generalizable for three 
reasons. First, the proposed temporal efficiency measures can be used to measure the efficiency of temporal infor-
mation exchange among the network nodes and to reveal the underlying network characteristics. For example, 
in the brain network analysis, Et

loc was discovered to be a neurobiologically meaningful metric due to its ability 
to quantify the structural alterations of the studied brain functional networks that resulted from mindfulness 
practice. Secondly, the framework permits the quantitative identification of temporal small-world architectures 
in complex systems that undergo topological variations over time. Compared with static small-world network 
analysis, the ability to identify the presence of temporal small-worldness in real-world systems has the potential 
to promote a more comprehensive and in-depth understanding of the overall information transfer occurring 
in the underlying dynamic processes of these systems. Third, the contributions of different dynamic network 
structures to the temporally efficient performance of a temporal network can be quantitatively evaluated. Many 
real-world systems are rich in dynamics, and the overall efficient behaviour of these systems may be the result of 
the interactions among many different prominent network structures. For example, in the ITN analysis, both the 
distribution of the number of significant trade events between each pair of trade partners and the time-aggregated 
structure of the temporal trade network were discovered to be special configurations of the investigated temporal 
ITN, which combine to facilitate optimally efficient international trades among the countries involved. We believe 
that taken together, these results suggest that the analytical framework proposed in this study is a beneficial 
means of temporal network characterization that is applicable in studies of diverse types of real-world systems 
that can be appropriately modelled as temporal networks.

Methodological considerations. In this work, we assumed the contacts in the investigated temporal net-
works to be unweighted and undirected. However, weighted and/or directed network models have also been 
widely applied in the study of many real-world systems using static graph theoretical methods. For example, 
the edges in brain functional connectivity networks can be weighted by the magnitudes of the corresponding 
inter-regional correlations, and directionality can be added by examining the causal associations between pairs of 
brain regions4,49; in ITNs, the edges can be weighted by trade volumes50 and directed in accordance with import/
export relationships37,50; and human proximity networks are often weighted by the total durations of the con-
tacts30,51. Therefore, in future studies of temporal networks, new analytical tools can be developed by extending 
the method to consider weighted and/or directed contacts and modifying the definitions of the temporal effi-
ciency measures accordingly.

When modelling a dynamic system as a series of snapshot static networks, an appropriate aggregation time 
window must often be selected, which may exert an important influence on the resulting network characteris-
tics8,47,52. In the study of human proximity networks, we explored the properties of networks constructed with 
three different aggregation time windows, and both consistencies and differences were discovered. Although the 
main focus of the current study is the analysis, rather than the modelling, of temporal networks, future studies 
exploring the influence of the time windows used in the modelling of different systems might reveal more of the 
underlying dynamic characteristics of these systems.

Conclusion
In this study, we presented a comprehensive analytical framework for temporal networks, which encompasses 
a robust assessment of the efficiency of temporal information exchange, the characterization of temporal 
small-worldness and the quantitative investigation of dynamic network structures. Subsequently, we applied the 
proposed analytical techniques to brain functional connectivity network, ITNs, and social networks, all of which 
exhibited temporal small-world architectures and distinct dynamic network structures, thereby demonstrating 
the effectiveness and generalizability of the proposed framework.
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