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Background: Deregulated purine metabolism is critical for fast-growing tumor cells by
providing nucleotide building blocks and cofactors. Importantly, purine antimetabolites
belong to the earliest developed anticancer drugs and are still prescribed in clinics today.
However, these antimetabolites can inhibit non-tumor cells and cause undesired side
effects. As liver has the highest concentration of purines, it makes liver cancer a good
model to study important nodes of dysregulated purine metabolism for better patient
selection and precisive cancer treatment.

Methods: By using a training dataset from TCGA, we investigated the differentially
expressed genes (DEG) of purine metabolism pathway (hsa00230) in hepatocellular
carcinoma (HCC) and determined their clinical correlations to patient survival. A
prognosis model was established by Lasso‐penalized Cox regression analysis, and
then validated through multiple examinations including Cox regression analysis,
stratified analysis, and nomogram using another ICGC test dataset. We next treated
HCC cells using chemical drugs of the key enzymes in vitro to determine targetable
candidates in HCC.

Results: The DEG analysis found 43 up-regulated and 2 down-regulated genes in the
purine metabolism pathway. Among them, 10 were markedly associated with HCC
patient survival. A prognostic correlation model including five genes (PPAT, DCK, ATIC,
IMPDH1, RRM2) was established and then validated using the ICGC test dataset.
Multivariate Cox regression analysis found that both prognostic risk model (HR = 4.703
or 3.977) and TNM stage (HR = 2.303 or 2.957) independently predicted HCC patient
survival in the two datasets respectively. The up-regulations of the five genes were further
validated by comparing between 10 pairs of HCC tissues and neighboring non-tumor
tissues. In vitro cellular experiments further confirmed that inhibition of IMPDH1
significantly repressed HCC cell proliferation.
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Conclusion: In summary, this study suggests that purine metabolism is deregulated in
HCC. The prognostic gene correlation model based on the five purine metabolic genes
may be useful in predicting HCC prognosis and patient selection. Moreover, the
deregulated genes are targetable by specific inhibitors.
Keywords: hepatocellular carcinoma, purine metabolism, bioinformatics, prognosis risk model, biomarker
INTRODUCTION

It is central for all living organisms to uptake nutrients and
execute metabolism. As one of the most abundant metabolic
products, purines are essential for life because they provide
building blocks (adenine and guanine) of DNA and RNA (1,
2). Purines are also significant components of several important
biomolecules including ATP, GTP, cAMP, NADH, and
coenzyme A. These biomolecules actively participate in energy
production, cellular signaling pathways, redox metabolism, and
fatty acid synthesis. Furthermore, purines are involved in
immune responses and host-pathogen (tumor) interactions (3).
There are two main purine metabolism pathways in mammalian
cells, namely purine de novo biosynthesis pathway and
complementary salvage pathway. Most cellular requirements of
purines are satisfied via salvage pathway by recycling degraded
bases (1, 2). However, rapid proliferating cells and tumor cells
have higher demands of purines which are mainly fulfilled
through up-regulation of purine de novo biosynthesis pathway.
Several enzymes in this pathway further form purinosome, a
dynamic multienzyme complex, to facilitate purine metabolic
flux (4).

Because purines play a crucial role in tumor cell replication,
purine antimetabolites (e.g. 6-mercaptopurine and 6-thioguanine)
have been developed as the earliest anticancer drugs and are still
prescribed to treat patients with acute lymphocytic leukemia, acute
myeloid leukemia, and chronic myeloid leukemia (5, 6). 6-
mercaptopurine and 6-thioguanine compete with purine
derivatives hypoxanthine and guanine respectively to bind to
hypoxanthine-guanine phosphoribosyltransferase (HGPRT), an
indispensable enzyme in purine salvage pathway. These
competitions and the resultant xenobiotic metabolites can repress
the biosynthesis of inosine or guanine nucleotides and subsequent
DNA replication. In addition, antifolates (e.g. methotrexate and
lometrexol) are clinically applicable to treat leukemia, lymphoma,
lung cancer, breast cancer, etc. Mechanically, the antifolates inhibit
the production of 10-formyltetrahydrofolate (10-fTHF), an essential
cofactor for synthesis of inosine 5’-monophosphate (IMP, the final
product of purine de novo biosynthesis) (7). However, many of
these therapeutic inhibitors affect proliferation of normal cells and
result in undesirable toxicities including liver diseases, nausea, fever,
and skin rashes. Therefore, there are urgent needs to identify novel
regulation nodes of purine metabolism to repress oncogenesis and
cancer development with minimal effects on normal cells.

Purines are present physiologically in the highest concentrations
in liver and kidney. An important question is whether liver cancer
overexpresses some targetable genes involved in purine metabolism
pathway, because targeting these genes might specifically inhibit
2

HCC but spare normal liver cells. The knowledge to be obtained will
also be helpful for the treatment of other types of cancer, so that
targeting these genes may induce less hepatotoxicity. Similar to
other types of cancer (8–10), hepatocellular carcinoma (HCC, the
predominant type of liver cancer) has deregulated purine
metabolism as demonstrated by metabolomics analyses (11, 12).
Notably, some serum or urine purine nucleosides were found
to be useful as minimally invasive diagnostic biomarkers of
HCC (11, 13). A few purine metabolic enzymes have been
reported to be deregulated in HCC: e.g. up-regulations of a
trifunctional enzyme GART (phosphoribosylglycinamide
formyltransferase, phosphoribosylglycinamide synthetase,
phosphoribosylaminoimidazole synthetase) (14) and a
bifunctional enzyme ATIC (5-aminoimidazole-4-carboxamide
ribonucleotide formyltransferase/IMP cyclohydrolase) (15) in the
purine de novo biosynthesis pathway; and down-regulation of
xanthine dehydrogenase (XDH) (16) in the purine degradation
pathway. The upstream regulators of purine metabolism were
recently discovered. Both mammalian target of rapamycin
(mTOR) (17) and dual-specificity tyrosine phosphorylation–
regulated kinase 3 (Dyrk3) (18) can activate transcription factor 4
(ATF4)-mediated transcription of methylenetetrahydrofolate
dehydrogenase 2 (MTHFD2). The latter enzyme is responsible for
the generation of the key cofactor 10-fTHF for IMP biosynthesis. In
the present study, we explored the differentially expressed genes
(DEG) involved in purine metabolism (hsa00230) and their
prognostic significances in HCC by using a TCGA training
datasets. A prognostic model was constructed based on five
purine metabolism genes by Lasso‐penalized Cox regression
analysis. The model was then validated by an ICGC test dataset.
The workflow of this study was summarized in Figure 1A.
MATERIALS AND METHODS

Data Collection
The training dataset of mRNA expression of 374 cases of HCC
and 50 normal liver tissues were downloaded from the Cancer
Genome Atlas database (TCGA, https://portal.gdc.cancer.gov/);
while the corresponding clinical trait data from UCSC Xena
database (http://xena.ucsc.edu/). The test dataset of gene
expression and clinical trait data (the Liver Cancer-RIKEN JP)
were downloaded from the International Cancer Genome
Consortium (ICGC) database (https://icgc.org/). There are 130
genes in purine metabolism pathway (hsa00230) according to
KEGG (https://www.kegg.jp/); and 116 genes are present in both
TCGA and ICGC datasets for analyses.
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DEG Analysis and Survival Analysis
DEG analysis was performed by Wilcoxon method and then
visualized by volcano plot and heatmap using the pheatmap
package of R program v3.6.1 (R Foundation for Statistical
Computing, Vienna, Austria). The statistical significance was
set at an adjusted P < 0.05 and the cutoff of fold changes (FC) at
log2FC ≥ 1 or ≤ −1. The gene expression was divided
dichromatically (high or low) according to the median
expression of the respective gene. The prognostic significance
of DEG was determined by Kaplan-Meier method with log-rank
test and the statistical significance was set at P < 0.01. Altogether,
343 HCC patients with more than 30 days’ follow-up in the
TCGA dataset were included for the analysis.

Construction and Validation
of a Prognostic Risk Model
Lasso-penalized Cox regression analysis was utilized to construct
a prognostic risk model based on the mRNA expressions of the
Frontiers in Oncology | www.frontiersin.org 3
significant prognostic genes. The model formula was constructed
as: risk score = (b1 × mRNA1 expression) + (b2 × mRNA2
expression) ⋯ + (bn × mRNAn expression). The obtained
prognostic correlation model was then validated by the ICGC
test dataset which includes 229 cases of HCC patients with more
than 30 days’ follow-up. The survminer package of R software
was used to test the performance of the model with the optimal
cutoff value determined by the surv_cutpoint function to divide
the HCC patients dichromatically into high-score or low-score
groups. The timeROC package was used to draw time-dependent
receiver operating characteristic (ROC) curves and to evaluate
the predictive value of the prognostic model.

Multivariate Cox Regression Analyses
The independent significance of the prognostic risk model from
common clinical characteristics (such as age, gender, BMI, AFP,
tumor grade, TNM stage) was examined through multivariate
Cox regression analyses (Supplementary Tables 1 and 2).
A

B

C

FIGURE 1 | Differential gene expression analysis in TCGA database. (A) Flow chart of the study. (B) Volcano plot of differentially expressed purine metabolism
genes. The red dot represents up-regulated genes, and green dot represents down-regulated genes. (C) Heatmap of differential gene expression.
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Altogether, 222 cases of HCC from TCGA database and 229
HCC from ICGC database with complete clinical data were
analyzed separately by the Cox analysis. P < 0.05 was
considered statistically significant.

Construction of a Predictive Nomogram
Nomogram is widely used for the prognosis prediction of cancer
patients (19). We used the rms package of R to establish a
prognostic nomogram model for assessing overall survival (OS)
in HCC patients. The C index as a measure of predictive power
was used to assess the performance of each model (20). Here we
used the coxph function of the survival package to calculate C-
index, and the lrtest function of the rms package to compare
different models.

Gene Set Enrichment Analyses (GSEA)
To explore the concomitant signaling pathways that are altered
in those HCC patients with high predictive score, we performed
GSEA analyses by GSEAv4.0.3 tool (http://software.
broadinstitute.org/gsea/index.jsp) with KEGG gene set
(c2.cp.kegg.v7.0.symbols). P < 0.05 and false discovery rate
(FDR) <0.25 were considered as statistically significant.

External Validations of Protein
Expressions and Genetic Alterations
in HCC and Examinations of Pan-cancer
mRNA Expressional Changes
Next, we studied protein expressions of the candidate genes in
the Human Protein Atlas database (http://www.proteinatlas.org)
and genetic alterations in the cBioportal database (https://www.
cbioportal.org/). The pan-cancer mRNA changes of the
candidate genes were also explored in the TIMER database
(https://cistrome.shinyapps.io/timer/).

Cell Culture and Cell Viability Assay
The human HCC cell lines HepG2, SNU-398, and SNU-449 were
obtained from the American Type Culture Collection (Manassas,
USA), while human immortalized normal hepatic L02 cell line
from China Academy of Science Shanghai Cell Bank (Shanghai,
China). These cells were cultured in either RPMI 1640 medium
or Dulbecco’s Modified Eagle’s medium supplemented with 10%
fetal bovine serum (Gibco, USA) and 100 U/ml of penicillin and
streptomycin in a 5% CO2 incubator at 37°C. Inhibitors against
ATIC (pemetrexed), IMPDH (mycophencolate mofetil, MMF),
DCK (gemcitabine), and RRM2 (osalmid) were purchased from
MedChemExpress (Shanghai, China). The cell viability was
determined by MTT assay (Amersco, Houston, USA)
according to the manufacturer’s instructions.

RNA Extraction and Quantitative
Real-Time PCR
Total mRNA was extracted from cells using TRIZOL reagent
(Invitrogen) following the manufacturer’s protocol. Equal
amounts of RNA were reverse-transcribed to cDNA using the
PrimeScript RT Master Mix (Takara) and analyzed by
quantitative PCR (StepOnePlus; Life Technologies). b-actin
Frontiers in Oncology | www.frontiersin.org 4
and SFRS4 was used as loading control to normalize gene
expression. Primer pairs used are listed below. PPAT: 5′-AGC
ACC CAC AGC ATA CTC C-3′ and 5′-ACA CTG GAA TAA
GAC GAC CAA TG -3′; ATIC: 5′-TTG GAG ACT AGA CGC
CAG TTA-3′ and 5′-GGC ATC TGA GAT ACG CCT TTG-3′;
DCK: 5′-CCA TCG AAG GGA ACA TCG CT-3′ and 5′-GGT
AAA AGA CCA TCG TTC AGG T-3′; RRM2: 5′-CAC GGA
GCC GAA AAC TAA AGC-3′ and 5′-TCT GCC TTC TTA TAC
ATC TGC CA-3′; IMPDH1: 5′-TGA AGA AGA ACC GAG
ACT ACC C-3′ and 5′-TCC AGA CGG TAT TTG TCA TCC T-
3′; SFRS4: 5′- AAA AGT CGG AGC AGG AGT CA-3′ and 5′-
CTC TTC CTG CCC TTC CTC TT-3′; b-actin: 5′-GGA CTT
CGAGCA AGAGAT GG-3′ and 5′- AGC ACT GTG TTGGCG
TAC AG-3′; SFRS4: 5’-AAA AGT CGG AGC AGG AGT CA-3,
and 5’- CTC TTC CTG CCC TTC CTC TT-3’.

Human HCC Samples
Ten pairs of dissected human primary HCCs and matched
adjacent nontumor liver tissues were obtained from the
Department of Hepatobiliary Surgery, First Affiliated Hospital
of Guangxi Medical University, with approval from the institute
review board (GXMU-20160302-10). All the 10 HCC cases are
affected by HBV infection and belong to BCLC-0 or BCLC-
A stages.
RESULTS

DEG Analysis and Survival Analysis Using
the TCGA Training Dataset
First, to identify the differentially expressed genes of purine
metabolism pathway (KEGG hsa00230) in HCC, we compared
the mRNA expressions of 374 cases of HCC with those of 50
normal liver tissues in the TCGA-LIHC dataset. Altogether,
there are 43 up-regulated and 2 down-regulated genes with
more than 2-fold changes (adjusted P < 0.05) in HCC tissues
(Figures 1B, C). Then Kaplan-Meier survival analyses were
carried out with the identified genes individually using the
corresponding survival data from the UCSC Xena database.
Among the 45 differentially expressed genes, 10 up-regulated genes
are markedly associated with poorer patient survival (P < 0.01,
Figure 2).

Construction of a Prognostic Risk Model
Next, we applied Lasso‐penalized Cox regression analysis and
identified five independent genes after removal of redundant
genes (Supplementary Figure 1). Among the five genes, four
belong to the purine de novo biosynthesis pathway, including
ATIC [as previously reported in (15)], inosine monophosphate
dehydrogenase 1 (IMPDH1), phosphoribosyl pyrophosphate
amidotransferase (PPAT), and ribonucleotide reductase
regulatory subunit M2 (RRM2). The fifth gene deoxycytidine
kinase (DCK) predominantly converts deoxycytidine into
deoxycytidine monophosphate, as one of the initial steps in the
nucleotide salvage pathway.
January 2021 | Volume 10 | Article 583053
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A prognostic model was constructed based on the
correlations between HCC prognosis and mRNA expressions
of the five genes. The model was obtained as: risk score = 0.259 *
PPAT + 0.028 * DCK + 0.026 * ATIC + 0.018 * IMPDH1 + 0.016
* RRM2. Notably, PPAT has the highest influence on the
prognosis of HCC patient. As shown in Figure 3A upper
panel, the HCC patients can be divided into high‐ and low‐risk
groups with an optimal cut-off of risk score at 1.49. The patients
in the high-risk group had shorter survival time, compared to
those in the low-risk group (Figure 3A middle panel). The
heatmaps of mRNA expressions of the five prognostic genes in
343 HCC patients are shown in the below panel. The ROC curves
further found that area under the curve (AUC) of OS at 1-, 2-,
and 3-year were 0.810, 0.695, and 0.685, respectively (Figure 3B).
The median OS (1.2 years) of the high-risk group was
Frontiers in Oncology | www.frontiersin.org 5
significantly shorter than that of the low-risk group (6.7 years,
P < 0.0001, Figure 3C).

Validation of the Prognostic Model
Using the ICGC Test Dataset
To validate the prognostic model in predicting HCC prognosis,
the clinical HCC data from the ICGC database were used as a test
dataset. Again, the HCC patients were divided into high- and
low-risk groups with an optimal cutoff at 2.69 according to the
prognostic risk model (Figure 3D). The AUC of the OS at 1-, 2-,
and 3-year are 0.707, 0.723, and 0.709, respectively (Figure 3E).
Consistent with the results using the TCGA cohort, the median
OS (3.3 years) of the high-risk group in ICGC dataset is
significantly shorter than that of the low-risk group (median
OS not reached, P < 0.0001, Figure 3F). Overall, the results
FIGURE 2 | Survival analysis of genes related to purine metabolism in HCC. Kaplan-Meier survival curves of OS for 10 genes with survival significance in the TCGA database.
January 2021 | Volume 10 | Article 583053
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indicated a good performance of the prognostic risk model for
HCC survival prediction.

To answer the question whether the mixed model offive genes
is better than the respective models of single gene, we compared
the time-dependent AUROC scores (Supplementary Figure 2).
As shown in the panel A of TCGA dataset, the AUROC score of
the mixed model is higher than that of individual model in year
1, year 2, and year 3. In the panel B of ICGC dataset, although the
score of the mixed model is not the highest, it ranks one of the
top three scores among all. More importantly, models based on
single gene is not stable. In the TCGA dataset, PPAT model
seems to be the best among all five selected genes. But in the
ICGC dataset, RRM2 is the best. Therefore, the mixed model of
five selected genes can stably predict HCC overall survival,
compared to the respective models based on single gene.

The Prognostic Risk Model Is Independent
of Common HCC Clinical Characteristics
To determine whether the prognostic model was independent of
common clinical characteristics in predicting HCC prognosis, we
performed univariate and multivariate Cox regression analysis
Frontiers in Oncology | www.frontiersin.org 6
using the two separate TCGA and ICGC datasets. In the TCGA
dataset, the prognostic model was found to have the highest
hazard ratio (HR = 3.070) in univariate analyses (Figure 4A).
More importantly, the multivariate Cox regression analysis
showed that the prognostic model (HR = 2.557, 95% CI =
2.909–8.783), TNM stage (HR = 2.243), and vascular invasion
(HR = 1.960) were independent risk factors of OS (Figure 4B).
Consistent results were achieved in the ICGC dataset that the
prognostic model was found to be significant in both univariate
and multivariate Cox analysis (HR = 3.977, 95% CI = 2.109–
7.501; Figures 4C, D). The prognostic risk model that was
constructed based on mRNA expressions of purine metabolism
genes remains to be the strongest influencer of HCC survival.

Because both the prognostic model and TNM stage are
independent prognostic factors for OS in the two separate
datasets, we conducted stratified analyses in order to explore
whether the prognostic model was effective in predicting HCC
patients with different TNM stages. In the TCGA cohort
(Figures 5A, B), the prognostic model could differentiate OS
in the HCC patients of early TNM stage (I + II, P = 0.0013).
However, the prognostic model failed (P = 0.14) in those of late
A

B

D

E

FC

FIGURE 3 | Risk score model, time-dependent ROC analysis, and survival analysis for the prognostic risk model in HCC. (A–C) Risk score model, time dependent ROC
analysis, and survival analysis in the TCGA database, respectively. (D–F) Risk score model, time-dependent ROC analysis, and survival analysis in ICGC cohort, respectively.
January 2021 | Volume 10 | Article 583053
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TNM staging (III + IV), probably because of the small sample
size (N = 42). In the ICGC cohort (Figures 5C, D), the high-risk
HCC patients differed significantly on HCC survival from the
low-risk patients with either early TNM stage (P = 0.00018) or
late TNM stage (P = 0.0026).
Frontiers in Oncology | www.frontiersin.org 7
Nomogram was built by including TNM stage and the risk
score in the two datasets (Figures 6A, B). The calibration plots
for the probability of survival at 1, 2, 3, and 5 years demonstrate
good agreements between the nomogram predictions and actual
observations (Figures 6C–J). In order to further compare the
A B

DC

FIGURE 4 | Univariate and multivariate analyses of factors associated with survival in TCGA and ICGC. (A) Univariate and (B) multivariate analysis of risk factors for
overall survival in TCGA. (C) Univariate and (D) multivariate analysis of risk factors for overall survival in ICGC.
A B

DC

FIGURE 5 | Combined survival analysis of the TNM stage and prognostic model in patients with HCC. (A) Kaplan−Meier survival curves of OS for high and low risk
combined with TNM stage I + II in TCGA cohort. (B) Kaplan−Meier survival curves of OS for high and low risk combined with TNM stage III + IV in TCGA cohort.
(C) Kaplan−Meier survival curves of OS for high and low risk combined with TNM stage I + II in ICGC cohort. (D) Kaplan−Meier survival curves of OS for high and
low risk combined with TNM stage III + IV in ICGC cohort.
January 2021 | Volume 10 | Article 583053
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effectiveness of risk score, TNM stage and the nomogram, we
calculated the C-index of the risk score, TNM stage, and
nomogram (Table 1). In the TCGA cohort, the C index of
nomogram is 0.695 (95% CI = 0.611–0.780), higher than that of
risk score 0.660 (95% CI = 0.580–0.740, P < 0.05) and TNM stage
0.603 (95% CI = 0.523–0.683, P < 0.05). Similar results were
obtained in the ICGC cohort.

Pathway Analysis by GSEA
To further explore the potential molecular mechanisms involved
in the high-risk patients with up-regulated purine metabolism,
we performed GSEA pathway analysis. We found 38 significantly
enriched KEGG pathways in TCGA and ICGC cohort. Thirty-
one pathways enrich in the high-risk group, including cell cycle,
RNA degradation, spliceosome, WNT signaling pathway, and
ubiquitin-mediated proteolysis (Supplementary Table 3). The
top five representative pathways are shown in Figures 7A, B. In
contrast, seven pathways enrich in the low-risk group, including
Frontiers in Oncology | www.frontiersin.org 8
complement and coagulation cascade, PPAR signaling pathway,
primary bile acid biosynthesis, retinol metabolism, drug
metabolism cytochrome p450 (Supplementary Table 4). The
top five pathways are shown as well in Figures 7C, D.

External Validation of the Prognostic Risk
Model Using a Pancreatic Cancer Dataset
Consistent to the mRNA up-regulations, the protein levels of
these five genes are also increased in HCC, compared to the
normal liver tissues based on analysis using the Human Protein
Atlas (Supplementary Figure 3A). We studied the genetic
alterations among these five genes in HCC. RRM2 is the most
frequently (2.5%) altered gene, with amplification as the most
common alteration (Supplementary Figure 3B). The other four
genes have less than 1% genetic alterations respectively.

Next, we determined whether the five prognostic genes were
also overexpressed in other types of tumor by exploring the
TIMER database. Consistent with the above results, we found
A B

D E F

G IH J

C

FIGURE 6 | Prognostic nomogram for survival prediction. (A) Nomogram for overall survival in TCGA cohort. (B) Nomogram for overall survival in ICGC cohort.
The calibration curves of overall HCC survival at 1-, 2-, and 3-years in the TCGA database (C–F) and ICGC database (G–J) are presented.
TABLE 1 | C-index of risk score, TNM stage, and the nomogram.

TCGA P value ICGC P value
C-index (95% CI) C-index (95% CI)

Nomogram 0.695 (0.611–0.780) ─ 0.756 (0.672–0.840) ─
riskScore 0.660 (0.580–0.740) <0.05 0.716 (0.622–0.810) <0.05
Stage 0.603 (0.523–0.683) <0.05 0.693 (0.613–0.773) <0.05
January 2021 | Volume 10 | Article
 583053
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that ATIC, PPAT, IMPDH1, RRM2, and DCK were all
significantly overexpressed in different types of cancer
(Supplementary Figure 3C). This pan-cancer up-regulations
of the selected five genes strongly support their significance of
regulatory nodes and potential cancer targets.
IMPDH1 Inhibitor Mycophencolate Mofetil
Inhibits HCC Cell Proliferation
Lastly, the wet-lab qRT-PCR experiments compared the mRNA
expressions of PPAT, ATIC, IMPDH1, DCK, and RRM2 in
between 10 pairs of human primary HCC tissues and
neighboring non-tumor liver tissues. The results demonstrate
that these five purine metabolic genes are all up-regulated in
HCC (Figure 8A), which are consistent with the results by the
bioinformatics analyses (Figure 1C).

We then accessed the mRNA levels of these five genes among
three HCC cells lines and one immortalized L02 hepatocyte.
Compared with L02 hepatocytes which express relative low levels
of these five genes, SNU-398 cells over-express all five genes
while HepG2 and SNU-449 cells over-express IMPDH1 and
DCK (Figure 8B). As expected, SNU-398 cells are sensitive to
cytotoxicities of all selected inhibitors including pemetrexed
against ATIC (Figure 8C), mycophencolate mofetil against
IMPDH1 (Figure 8D), gemcitabine that sensitizes DCK-
overexpressing cells (Figure 8E), and osalmid against RRM2
(Figure 8F). Notably, low dosages of mycophencolate mofetil are
effective to inhibit all tested HCC cells lines but not the
immortalized L02 hepatocytes, suggesting the potential
application in HCC treatment. The rest three drugs fail to
show specific inhibitions against three HCC cells but spare the
immortalized L02 hepatocytes.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

In this study, we determined the significant dysregulated genes of
purine metabolism and their clinical significance in HCC. The
prognostic risk model based on five purine metabolic genes
(ATIC, IMPDH1, PPAT, RRM2, and DCK) reliably predicted
HCC patient survival in both TCGA and ICGC datasets. The
multivariate Cox regression analysis confirmed that the risk
score and tumor stage were independent prognosticators in
predicting HCC prognosis, apart from other common HCC
clinical characteristics. These five genes are pan-cancer up-
regulated. More importantly, these genes particularly IMPDH1
are targetable in cancer treatment.

The present study showed that the five genes involved in
purine metabolism (Figure 8G) were significantly up-regulated
and associated with poorer HCC prognosis. Among them, four
genes (PPAT, ATIC, IMPDH1, and RRM2) belong to the purine
de novo biosynthesis pathway which is indispensable for cancer
cell proliferation (1, 2). Importantly, PPAT (with the highest
coefficient in the predictive model) and ATIC (the third) are
responsible for the first and final steps respectively in the
pathway. PPAT catalyzes the first committed step that converts
5-phosphoribosyl-1-pyrophosphate (PRPP) into 5-
phosphoribosyl-1-amine (PRA). Varambally‘s laboratory
reported that PPAT and another enzyme PAICS in the purine
biosynthesis pathway may drive lung adenocarcinoma cells to
switch to aerobic glycolysis (the Warburg Effect) (21). This
carbon-involved metabolic reprogramming directed glycolytic
intermediates into purine de novo biosynthesis rather than TCA
cycle and consequently promoted cancer cell proliferation and
invasion. Notably, PPAT was over-expressed, at least partially,
through genomic amplification in lung adenocarcinoma and its
A B

DC

FIGURE 7 | The significantly enriched KEGG pathways in TCGA and ICGC cohort by GSEA. (A) Five representative KEGG pathways in TCGA cohort and (B) ICGC
cohort with high‐risk group. Five representative KEGG pathways in TCGA cohort (C) and ICGC cohort (D) with low‐risk group are listed.
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FIGURE 8 | The purine metabolic genes are over-expressed in HCC and targetable specifically by IMPDH1 inhibitor. (A) The mRNA expression of the five selected
purine metabolic genes (PPAT, ATIC, IMPDH1, DCK, and RRM2) were compared between 10 pairs of HCC tumor tissues and adjacent non-tumor liver tissues.
(B) The mRNA expressions were also accessed in three HCC cell lines (including SNU-398, HepG2 and SNU-449) and one immortalized L02 normal hepatocyte.
(C–F) MTT assay was used to compare the cell viability between HCC cell lines and L02 hepatocytes, after the respective treatments with increasing doses of
pemetrexed (C), mycophencolate mofetil (D), gemcitabine (E), and osalmid (F) for 48 h. Data were shown as the mean ± SD. (G) The involved purine metabolism
pathway was summarized.
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expression was associated with cancer aggression (21). PPAT
expression by estrogen receptor a signaling pathway also
promoted folate-mediated one-carbon metabolism and
subsequent cell survival and growth in breast cancer (22).
Moreover, Nakayama and coworkers recently demonstrated
that PPAT played essential roles in nitrogen metabolic
reprograming particularly in neuroendocrine cancer including
small cell lung cancer (23). Glutamine-sourced nitrogen shifts
from anaplerotic reaction into the TCA cycle to purine
biosynthesis and consequently promoted cell proliferation.
This novel metabolic finding may help explain earlier
observations that glutamine g-nitrogen was required for cell
survival in Kaposi’s sarcoma-associated herpesvirus (KSHV)
induced cancer (24). Consistently, PPAT silencing repressed
cancer cell proliferation (24). Unfortunately, specific chemical
inhibitor against PPAT is yet commercially unavailable.

ATIC catalyzes the final two steps in purine biosynthesis
pathway with cofactor 10-fTHF to generate IMP. It has been
shown that this gene was overexpressed in HCC and correlated
with poorer patient prognosis (15). The authors reported that
ATIC mechanically activated mTOR-S6 kinase 1 signaling. Indeed,
ATIC silencing impaired HCC cell proliferation and migration
(15). Recent bioinformatics studies using TCGA dataset concurred
that ATIC as one of the autophagy-related genes was associated
with increased cancer risks of HCC (25) and lung cancer (26).
Importantly, fusion proteins of ATIC and anaplastic lymphoma
kinase (ALK, a common oncogene) were frequently found in
lymphoma patients (27, 28). ALK also phosphorylates ATIC at
Y104 and enhances its enzymatic activity. ALK-mediated ATIC
phosphorylation can rescue cancer cells from antifolate agents
induced cell death (27, 29). Intriguingly, ATIC frameshift
mutation and missense substitution were found in a case report
who had increased sensitivity to radiation (30). Subsequent
biochemical studies suggested that ATIC-involved purine
biosynthesis may help DNA damage repair (30). Therefore, these
results together suggested that ATIC might play an important role
in carcinogenesis and cancer cell survival. Pemetrexed is an
inhibitor targeting multiple purine enzymes including GART and
ATIC. It repressed both ATIC-overexpressing SNU-398 cells and
low-expressing HepG2 cells (Figure 8C). It suggests that HepG2
cells may possibly have other over-expressing enzymes that are
sensitive to pemetrexed. Consistently, the ATIC-deficient SNU-449
cells are resistant to pemetrexed.

IMPDH1 catalyzes the synthesis of xanthine monophosphate
(XMP) from IMP, which is a rate-limiting step to synthesize
guanine nucleotides. Inhibitors of IMPDH1 e.g. MPA and others
are currently applied clinically in the treatment of autoimmune
diseases and prevention of organ transplant rejection (31, 32).
IMPDH1 upregulation has been reported in many types of
cancer including glioblastoma (33), colorectal cancer (34), small
cell lung cancers (35), and clear cell renal cell carcinoma (36). High
IMPDH1 expression was correlated with poorer patient survival in
clear cell renal cell carcinoma (36). It was recently reported that
IMPDH1 cooperated withmetastasis-related protein Y-box binding
protein 1 (YB-1) and thus promoted tumor metastasis (36). More
importantly, our in vitro cellular study confirmed that low doses of
Frontiers in Oncology | www.frontiersin.org 11
mycophencolate mofetil were efficient to inhibit all three tested
HCC cells but spare the normal L02 hepatocytes cells (Figure 8D).
This finding warrants further preclinical studies to explore the
potential application of mycophencolate mofetil in HCC treatment.

RRM2 is one of two subunits (small) of ribonucleotide reductase
which catalyzes the conversion of ribonucleotides into
deoxyribonucleotides. RRM2 plays an essential role in DNA
synthesis, cell proliferation, and drug resistance of cancer cells.
Accumulating results showed that RRM2 silencing resulted in
repressed cancer cell growth and decreased drug resistance in
many types of cancer including HCC (37–41). Yamada’s
laboratory combined microarray analysis comparing HCC and
normal liver tissues and siRNA silencing screening (41). They
found RRM2 among four genes were over-expressed in HCC.
More importantly, silencing of RRM2 inhibited HCC cell growth
and xenograft growth. Furthermore, a recent study showed that
sorafenib (the first-line therapeutic drug of HCC) targeted RRM2
by decreasing its expression (42). RRM2 overexpression partially
rescued HCC cells from sorafenib-induced reduction of colony
formation. Interestingly, both RRM2 and DCK are reported to be
associated with the drug sensitivity of gemcitabine (a common
chemotherapeutic drug for pancreatic cancer and many other types
of cancer). DCK is a key rate-limiting enzyme in the nucleoside
salvage pathway. It promotes the conversion of chemotherapeutic
deoxyribonucleoside prodrugs to nucleoside triphosphate
derivatives which execute stronger cytotoxic effects. DCK activity
is associated with increased chemosensitivity to gemcitabine,
contrary to the pro-chemoresistance effect of RRM2. Thus, it has
been proposed that the expressional ratio of DCK to RRM2 was a
predictive marker for the efficacy of gemcitabine treatment (43, 44).
Recent bioinformatic studies also showed that DCK was over-
expressed in HCC and correlated with increased infiltration of
immune cells but with poorer patient survival (45, 46). However, in
the present study, both DCK and RRM2 were found to be over-
expressed in HCC (Figure 8A). The cytotoxicity studies showed
that only SNU-398 cells that over-express RRM2 were sensitive to
the inhibitor osalmid (Figure 8F). Consistently, the two low-
expressing HepG2 and SNU-449 cell lines, together with the
immortalized L02 cells are resistant. However, gemcitabine failed
to differentiate DCK-overexpressing HCC cell lines from the
immortalized L02 hepatocytes.

Our research also has certain limitations. The TCGA database
lacks clinical outcome variables about tumor progression and post-
surgery clinical data, such as vascular invasion status, tumor size,
HCC recurrence, and post-surgery treatments. Due to the
incompleteness of clinical data, some cases in the TCGA dataset
were excluded for nomogram analysis. It may possibly affect the
statistical power. Thus, our study cannot rule out that the patient
survival may be affected by postoperative treatments or by other
critical clinical factors. Further, we only used online database
analysis. The usefulness of the prognostic model in the real
world is yet unclear. Future cohort studies are necessary to
validate the predictive value of the model in HCC. Lastly,
whether these five genes are targetable in HCC or other types of
cancer is unknown. Although we showed that mycophencolate
mofetil (IMPDH1 inhibitor) could inhibit HCC cell proliferation,
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whether a cocktail containing inhibitors against some or all five
genes is useful and safe to treat patients with HCC (a highly
heterogenous cancer) is yet to be tested. Therefore, future
preclinical experiments and clinical studies are needed to
evaluate the predictive value of the prognostic model and to test
whether this prediction could be used to guide HCC treatment.
CONCLUSION

Our study suggests that purine metabolism is deregulated in HCC.
A prognostic gene correlation model consisting of five purine
metabolic genes (PPAT, DCK, ATIC, IMPDH1, and RRM2) may
be useful in predicting the prognosis of HCC. Mycophencolate
mofetil (an IMPDH1 inhibitor) could inhibit HCC cell proliferation
in vitro, suggesting that the genes in the predictive model are a
potential therapeutic target in HCC. However, these results need to
be verified by future preclinical and clinical studies.
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