

Correction: Mechanochemical enzymatic resolution of N-benzylated- β^3 -amino esters

Mario Pérez-Venegas¹, Gloria Reyes-Rangel¹, Adrián Neri², Jaime Escalante^{*2} and Eusebio Juaristi^{*1,3}

Correction		Open Access
Address:	Beilstein J. Org. Chem. 2017, 13, 2128–2130.	
¹ Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida I.P.N. 2508, Ciudad de México, 07360, Mexico,	doi:10.3762/bjoc.13.210	
² Centro de Investigaciones Químicas, Universidad Autónoma del	Received: 15 September 2017	
Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos,	Accepted: 29 September 2017	
62210, Mexico and ³ El Colegio Nacional, Luis Gonzáles Obregón 23, Centro Histórico, Ciudad de México, 06020, Mexico	Published: 12 October 2017	
	Guest Editor: J. G. Hernández	
Email:		
Jaime Escalante [*] - jaime@uaem.mx; Eusebio Juaristi [*] -	© 2017 Pérez-Venegas et al.; licensee Beilstein-Institut.	
juaristi@relaq.mx	License and terms: see end of document.	
* Corresponding author		
Keywords: ball-milling: ß ³ -amino acid: <i>Candida antarctica</i> lipase B: enzymatic		
resolution; mechanochemistry		

This correction refers to Beilstein J. Org. Chem. 2017, 13, 1728-1734. doi:10.3762/bjoc.13.167

The original published Tables 1–4 and Supporting Information File 1 contain some incorrect values. In this Correction article the whole corrected Tables are given. The positions of the corrected values are described in detail in the paragraphs below.

In Table 1 in entry 5 the yield (column 3) has been corrected.

In Table 2 in entry 4 the ee value of (S)-1 (column 5), and in entry 6 the yield (column 4) have been corrected.

In Table 3 entry 1 the ee of (S)-1a (column 4), in entry 2 the yield (column 3) and the *c* value (column 6), and in entry 3 the *c* value (column 6) have been corrected.

In Table 4 in entry 3 the yield (column 3) has been corrected.

A corrected version of Supporting Information File 1 is also part of this Correction. The new Supporting Information File 1 is the complete file with the corrections marked in yellow color.

Table 1: Search of the best parameters in the enzymatic enantioselective hydrolysis of rac-1a under ball milling.								
$ \begin{array}{c} Bn \\ NH \\ \hline OMe \\ rac-1a \end{array} $ $ \begin{array}{c} H_2O \\ CALB, LAG \\ HSBM \end{array} $ $ \begin{array}{c} Bn \\ NH \\ OH \\ (R)-2a \end{array} $ $ \begin{array}{c} Bn \\ NH \\ OH \\ (S)-1a \end{array} $ $ \begin{array}{c} Bn \\ NH \\ OMe \\ (S)-1a \end{array} $								
entry ^a	LAG additive ^b	yield (%) ^c (<i>S</i>)- 1a /(<i>R</i>)- 2a	time (h)	ee (S)- 1a (%) ^d	ee (<i>R</i>)- 2a (%) ^d	c ^e (%)	E ^f	
19	2M2B	51/49	0.5	99	80	55	46	
2	2M2B	70/30	0.5	89	77	54	23	
3	2M2B	51/49	1	99	95	51	>200	
4	AcOEt	86/13	1	69	95	42	81	
5	IPA	80/20	1	48	95	34	63	
6	CH ₃ CN	65/29	1	65	95	41	77	
7	hexane	40/60	1	97	86	53	55	
8	-	58/41	1	95	92	51	89	
9 g	-	58/42	1	93	86	52	45	
10 ^h	-	68/31	1	74	80	48	20	

^aReactions were carried out with 0.5 equivalents of water and 15 Hz of frequency. ^b0.2 mL of LAG additive was used. ^cDetermined after purification by flash chromatography. ^dDetermined by HPLC with chiral stationary phase. ^eCalculated from $c = e_s/(ee_s + ee_p)$. ^f $E = ln[1 - c(1 + ee_p)]/ln[1 - c(1 - ee_p)]$. ^g25 Hz of frequency was used. ^h0.25 equivalents of water were used.

Table 2: Substrate scope for the enzymatic resolution of <i>N</i> -benzylated- β^3 -amino esters.										
		Bn _{`NH} R ∕ ra	O ↓ OMe c-1 HS	H ₂ O CALB SBM, 15 Hz, 1 h 2M2B	Bn、 R	NH O OH + (R)-2	Bn _N R	H O ON (S) -1	/le	
entry ^a	rac	R	yield (%) ^b (<i>S</i>)- 1 /(<i>R</i>)- 2	ee ^c (S)- 1 (%)	$\left[\alpha\right]_{D}^{25^{d}}$	ee ^c (<i>R</i>)- 2 (%)	$\left[\alpha\right]_{D}^{25^{e}}$	c ^{f (} %)	Eg	absolute configuration ^h
1	1b	CH ₃ -(CH ₂)-	51/49	91	4.5	97	-36.5	48	>200	R
2	1c	CH ₃ -(CH ₂) ₂ -	53/43	84	2.1	98	-45.2	46	>200	R
3	1d	CH ₃ -(CH ₂) ₃ -	68/29	23	2.0	94	-35.3	20	40	R
4	1e	CH ₃ -(CH ₂) ₄ -	74/24	16	0.2	94	-40.0	15	38	R
5	1f	CH ₃ -(CH ₂) ₅ -	79/18	13	0.8	91	-39.7	13	24	R
6 ⁱ	1g	Ph	90/10	18	3.4	83	-35.0	18	13	S
7 ⁱ	1h	4-MeO-Ph	89/10	1	-0.5	80	-31.7	1	9	S
8	1i	<i>t</i> -Bu	89/4	4	-0.6	94	12.8	4	34	S

^aReactions were carried out with 0.5 equivalents of water and 0.2 mL of 2M2B at 15 Hz during 1 h. ^bDetermined after purification by flash chromatography. ^cDetermined by HPLC with chiral stationary phase. ^d c = 0.33 in CH₃Cl. ^ec = 0.33 in MeOH. ^fCalculated from $c = e_s/(ee_s + ee_p)$. $^{g}E = \ln[1 - c(1 + ee_{p})]/\ln[1 - c(1 - ee_{p})]$. ^hAssigned by chemical correlation and by HPLC with chiral stationary phase. ^{10.75} equivalents of water were used.

Table 3: Recycling capacity of immobilized CALB under HSBM conditions.								
	Bn_NH	O H ₂ O OMe rCALB, LAG HSBM	Bn NH O (R)-2a	Bn_NH O + (S)-1a				
entry ^a	Recycling cycle	yield (%) ^b (<i>S</i>)- 1a /(<i>R</i>)- 2a	ee ^c (S)- 1a (%)	ee ^c (<i>R</i>)- 2a (%)	c ^d (%)	E ^e		
1	_	51/49	99	95	51	>200		
2	1	65/35	35	88	28	22		
3	2	80/20	6	80	7	10		
4	3	100/0	0	-	-	-		

^aReactions were carried out with 0.5 equivalents of water and 0.2 mL of 2M2B at 15 Hz during 1 h. ^bDetermined after purification by flash chromatography. ^cDetermined by HPLC with chiral stationary phase. ^dCalculated from $c = ee_s/(ee_s + ee_p)$. ^e $E = ln[1 - c(1 + ee_p)]/ln[1 - c(1 - ee_p)]$.

Table 4: Scaling-up of the enzymatic hydrolysis reaction under ball-milling using substrate rac-1a. ^{Bn}∖ŅH Bn_{`NH} Bn_{`NH} Ο \cap H_2O \cap CALB OMe OMe **HSBM** rac-1a (R)-2a (S)-1a entrya catalyst/substrate (equiv) b yield (%)^c (S)-1a/(R)-2a ee^d (S)-1a (%) ee^d (R)-2a (%) c^e (%) E 19 1/1 >99 51 >200 51/49 95 2 1/3 52/48 62 93 52 40 1/6 53 93 3 61/38 36 47 4 1/9 59/40 49 94 34 53

^aReactions were carried out with 0.5 equivalents of water at 15 Hz during 1 h. ^b1 equivalent of enzyme = 40 mg; 1 equivalent of subtrate = 82 mg. ^cDetermined after purification by flash chromatography. ^dDetermined by HPLC with chiral stationary phase. ^eCalculated from $c = ee_s/(ee_s + ee_p)$. ^f $E = ln[1 - c(1 + ee_p)]/ln[1 - c(1 - ee_p)]$. ^g0.2 mL of LAG were used.

Supporting Information

Supporting Information File 1

Experimental section, NMR spectra, chromatograms and X-ray diffraction data.

[http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-13-210-S1.pdf]

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.13.210