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Abstract

Pandemic and seasonal infectious diseases such as influenza may have serious negative health and economic
consequences. Certain non-pharmaceutical intervention strategies – including school closures – can be implemented
rapidly as a first line of defense against spread. Such interventions attempt to reduce the effective number of contacts
between individuals within a community; yet the efficacy of closing schools to reduce disease transmission is unclear, and
closures certainly result in significant economic impacts for caregivers who must stay at home to care for their children.
Using individual-based computer simulation models to trace contacts among schoolchildren within a stereotypical school
setting, we show how alternative school-based disease interventions have great potential to be as effective as traditional
school closures without the corresponding loss of workforce and economic impacts.
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Introduction

Pandemic diseases, such as the 2009 H1N1 influenza pandemic,

threaten global health and economics if their spread is unchecked

[1–5]. The impacts of pandemics have both top-down (imposed

government or corporate regulations on individuals) and bottom-

up (loss-of-workforce due to individual morbidity and mortality)

repercussions [1–3,6,7]. Therefore, lessening the impact of

pandemics via public health interventions is critical. Various

non-pharmaceutical intervention strategies – for instance, wearing

face masks, increased hand washing, and school closures – are a

first line of defense against such threats because they can be

implemented rapidly (in contrast to vaccination campaigns, etc.)

[8–12]. These types of interventions seek to reduce the effective

number of contacts between individuals within a community, and

have been shown via post hoc analysis to ameliorate the impacts of

previous influenza pandemics, e.g., the 1918 Spanish influenza

pandemic [13–15]. However, the efficacy of closing schools to

reduce disease transmission among school-age children is unclear

[16–18], and school closures result in significant economic impacts

because caregivers leave the workforce to care for unattended

schoolchildren [1–3,6,19] – making the decision to close schools in

a community controversial. Another complicating factor is that

previous models have indicated that the timing of school closings is

critical to the disruption of disease dynamics within a community

and have typically recommended specific closure durations (e.g.,

1–2 weeks) [8–11,16,20], but implementation of school closures

according to the specified timing and duration guidelines is greatly

hampered by a community’s ability to detect disease prevalence

and sustain economic losses.

In light of the potential problems involving school closure, one

might ask whether there are reasonable alternatives. Our research

uses individual-based computer simulation models to trace

contacts among schoolchildren within a stereotypical school

setting. In doing so, we show how other alternative school-based

disease interventions have great potential to be as effective as

traditional school closures, but without the corresponding loss of

workforce and undesirable economic impacts.

As it became evident that an H1N1 influenza pandemic was

emerging during the spring of 2009, local and national

governments around the world started to focus on strategies for

mitigating the impact of the looming pandemic. In Mexico, large-

scale public health campaigns educated people about protective

practices and eventually culminated in an unprecedented closure

of government, schools, and businesses for a week to disrupt

transmission of the disease [21]. Within the United States, similar,

but less drastic, non-pharmaceutical disease interventions were

being considered and implemented. By the end of April, schools in

the Dallas–Fort Worth region of Texas (as well as elsewhere within

the U.S.) were closing as a measure to control the spread of the

pandemic influenza strain [22]. Originally, the U.S. Centers for

Disease Control and Prevention (CDC) recommended, as part of

its guidance for non-pharmaceutical interventions, that schools

close for a period of two weeks; by 5 May 2009, however, the

CDC revised those recommendations to one of merely isolating

sick children. All told, 726 schools closed for various periods of

time within the U.S. during this early-pandemic period [13].

School closure policies and policy changes met with criticism

from the public within the U.S. due to the associated loss of

productivity. Research has indicated that school closure could

have an economic impact of up to £0.2–£1.2 billion per week in

the U.K. (based on 2005 data and uncorrected for inflation) and

thus is potentially a costly intervention for countries to impose [2].

Furthermore, although research is still being conducted on the

issue, it is unclear how beneficial school closure is with regard to

slowing a pandemic on local and national scales [8–10,16–

18,20,22]. In fact, the efficacy of school closure at preventing

disease spread is unknown in general because school closure is
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often confounded by seasonal holidays, bans on public places, or

increased circulation of children outside of school [14,23,24].

Thus, school closure represents a potentially costly intervention

with unknown effects.

The spread of a disease can be viewed as a chain (Fig. 1) or as an

‘‘infection tree.’’ Transmission between individuals requires that

(1) individuals come into contact and (2) as a result of that contact,

an individual becomes infected. Contacts between individuals may

be direct or indirect, for example, via non-sterile surfaces. Because

transmission among school children is considered to be a primary

mode of disease propagation [10,11,25], school closure is an

appealing intervention – thereby suspending all contacts that

would occur amongst children within schools. Closing schools may

also protect one of the most vulnerable age classes within the

population. For example, the 2009 H1N1 influenza pandemic

disproportionately affected individuals under the age of 65 in

terms of mortality and morbidity [26], and children under the age

of 18 may have been subject to the highest attack rates [27].

Many recent models of school closure utilize a synthetic

community structure where students who are dismissed from

school are still active within the community [10,11]. Contrary to

what might be expected, the loss in contacts in a school setting

does not necessarily lead to an overall loss in contacts within a

community, and, in turn, a reduction in disease transmission.

These non-intuitive results of school closure are sometimes

referred to as ‘‘perverse effects.’’ Unfortunately, little-to-no real-

world data currently exist on the frequency of in-school contacts

[28,29] versus in-community contacts when schools are closed, but

it is generally assumed that there is a net reduction in contacts.

Regardless of the presumed changes in contact rates, the

messages of models of school closure for influenza are nearly

unanimous: If the number of contacts among school children is

reduced sufficiently early within a pandemic peak disease, then

incidence rates are reduced and the time to peak incidence can be

delayed [8–11,14,16–18,20,23,24]. These benefits coupled with

ease of implementation make the closing of schools particularly

tempting – despite the negative ramifications – especially when

compared with other interventions such as vaccination where the

vaccine’s effectiveness is unknown and its production takes many

months.

Analysis

Because of the uncertainty of vaccine production, delivery, and

effectiveness, and the costliness of even short-duration school

closures, we investigated alternatives to school closure that may

achieve similar beneficial results. To this end, we simulated the

number of contacts occurring among individuals within a typical

school setting (based on a U.S. school structure) using the discrete-

event simulation software Arena from Rockwell Automation [30].

Our archetypal school houses 352 students based in 22 classrooms,

each of which is home to 16 students (Fig. 2). The school building

consists of two floors with a lunchroom and a schoolyard; the

schoolyard is used during recess periods. A central entryway to the

building and hallways allow student movement into and around

the school. Our simulation monitored student movement and

contacts; every contact occurring during a school day was written

to a Microsoft Access database with a time stamp, the individuals

involved, and the location. We analyzed the simulation results

after the completion of 30 replications of each intervention

strategy.

In our baseline model, students follow this schedule. Students

arrive at school between 7:45–7:50 a.m., and proceed to their

classrooms via hallways and/or a staircase by 8:00 a.m. The

hallways are divided into 56 different zones (visible in Fig. 3). If

hallway movement is not constrained, individuals move haphaz-

ardly along the network via a series of Bernoulli random variables.

Figure 1. Basic disease transmission. When infected individuals
(red circles) contact other individuals (shown as arrows), those
individuals become infected with some probability based on the
transmissibility of the disease weighted by the duration of the contact
between the two individuals; conversely, some individuals are not
infected during a contact (empty circles). School closure is aimed at
disrupting/eliminating contacts between children, who are often the
most effective disease transmitters. Panel A shows undisturbed
transmission in a population, while Panel B shows the reduction in
transmission in a similar population where contacts have been blocked/
avoided due to an intervention.
doi:10.1371/journal.pone.0029640.g001
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Students stay in their respective classrooms from 8:00–10:00

a.m., at which point they walk to the schoolyard for recess

(30 minutes). In the baseline case, students cluster randomly into

the 44 schoolyard zones, and students move between zones after

random-length stays – a mixture of lengths that are N (12,4),
N (8,4), and N (3,1) minutes, depending on how much time is

left in the recess period, where N (m,s2) denotes a normally

distributed random variable with a mean of m and a variance of

s2. The Arena software does not allow the generation of

negative times; thus, for all random time intervals, if any

negative random numbers are generated, they are then

truncated to zero. Students return to class until lunch at 12:30

p.m. At lunch, students enter a queue to receive lunch and

afterward randomly sit at one of the 28 lunch tables (8 places per

table). The time for one of three parallel attendants to serve a

child after he reaches the front of the lunchroom queue is

N (10,4) seconds. Once a child sits at a table, the time spent

eating is N (15,4) minutes. After eating, students go to the

schoolyard to play until 2:00 p.m. Afterward, classes resume

until the completion of the school day at 4:00 p.m. A video of a

realization of the process is available at http://www.isye.gatech.

edu/,sman/speedup.wmv.

Travel times are a function of the distance traveled; travel

times and paths both involve randomness. For example, at the

beginning of the day, a student must travel from the entrance of

the school to his or her classroom. In order to do so, the student

moves into new hallway zones in the direction of their

classroom. The new zone is chosen uniformly at random from

the available adjacent zones in the direction of travel, and the

duration spent in that zone is dependent on a student’s walking

speed (Fig. 2). Students are randomly assigned walking speeds

that are N (36,9) meters per minute distributed (i.e., roughly

1.5 miles per hour).

Contacts are counted separately for each type of school area.

Within classrooms, a contact may occur when students occupy

adjacent seats. Moreover, students may move within the

classroom, so that additional contacts are possible. Contact rates

are inversely related to the distance between seated students. For

instance, under the baseline case scenario, students one, two, or

three seats away from each other have a 90%, 70%, or 50%

chance of contact, respectively. Contacts are allowed once an

hour. Under a no-movement constraint imposed on classrooms,

contact probabilities decrease to 50%, 25%, or 10%, respectively.

Adjacency also determines contacts while seated in the lunchroom

or in the lunchroom queue as well. For example, students seated at

the same table will contact each other with certainty, while

students in the serving queue have a 100% chance of contact with

adjacent students. Students in the same schoolyard or hallway

zone may contact each other with probabilities of 20% and 15%,

respectively.

We studied the effects of a variety of interventions that we

believed would provide effective reductions of contact rates among

children and were relatively non-disruptive to the functioning of

the school. The interventions were as follows:

1. Baseline (B): The children can move about the entire school

freely on their way to their scheduled rooms, sit anywhere they

want in the classrooms, and go wherever and with whomever

they want in the schoolyard and in the lunchroom. Every child

has the same schedule.

2. Hall Restriction (HR): The children must stay in a defined

walking area between their classrooms, the lunchroom, and the

schoolyard (typically, the right-hand side of any hall as they

travel). There are no restrictions while in the classroom,

lunchroom, or schoolyard.

3. Classroom Restriction (CR): The children must remain seated

while in their classroom. There are no hall, lunchroom, or

schoolyard restrictions.

4. Schoolyard Restriction (SR): Each child stays is a randomly

specified schoolyard area (with children from random class-

rooms). There are no hall, classroom, or lunchroom restric-

tions.

5. SR with Classmates (SRC): The children stay in a classroom-

specific schoolyard area with their classmates. There are no

hall, classroom, or lunchroom restrictions.

6. Lunchroom Restriction (LR): The children can eat only with

their classmates. There are no hall, classroom, or schoolyard

restrictions.

7. Different Schedules (DS): Each classroom follows one of three

different schedules put forth by the school: the current

schedule, a shift of 45 minutes, and a shift of 90 minutes.

Other than that, the children can move throughout the entire

school freely, sit anywhere they want in the classrooms, and go

wherever and with whomever they want in the schoolyard and

lunchroom.

8. All interventions (AI): HR+CR+SRC+LR+DS.

9. Almost All Interventions (AAI): HR+CR+SR+DS.

Although our primary interest in these simulations was to

observe the possible reduction in contact counts, we performed a

post hoc analysis to examine the influence of the proposed

interventions on disease transmission. In order to do this, we

utilized the contact data stored within the resulting Microsoft

Access databases. We assumed that five infectious individuals

entered the school at the beginning of the day. Contacts and the

place of contact with these infectious individuals were tallied

Figure 2. Layout of school’s lower level and single student
example. The figure shows the general layout of the school. The
entrance to the building is at the top-center of the figure. The hallway
(dark gray) encircles the lunchroom (orange) and the schoolyard.
Classrooms sit on the exterior walls of the building. Stairs (tan) allow
students to go to the upper level of the school. The upper level has the
identical layout but without the lunch and recess spaces. Colored lines
indicate the paths traveled by one student during a particular
realization of the simulation. Line colors indicate the time of day the
path was traveled. The numbered white lines indicate how many
contacts occurred in a particular school area.
doi:10.1371/journal.pone.0029640.g002
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during the school day. Because duration of contacts plays a role

in disease transmission [31,32], we weighted contacts as follows:

contacts lasted t~10, 5, 3, and 1 minutes in classrooms, the

lunchroom, the schoolyard, and hallways, respectively. Based on

total contact duration, the probability of escaping infection

wEscape was calculated as wEscape~(1{wInf )
t where wInf is the

probability of transmitting the disease per minute of contact; we

examined values of wInf ranging from 0.01 to 0.3. A Bernoulli

trial based on wEscape then determined if an individual became

infected.

Results and Discussion

We simulated 30 independent replications of each intervention

under the various scenarios. Besides graphically animating the

movement of students, we were able to monitor the build-up of

queues as well as the utilization of various resources (e.g., seats in a

classroom). The multiple replications allowed us to establish

statistically valid differences among the various intervention

strategies with respect to minimizing the expected number of

contacts between children. Table 1 presents the means and

Figure 3. A heat diagram showing total contacts occurring in each school area during a simulated day. Panel A depicts the number of
contacts that occurred during the baseline (B) set of simulations; Panel B depicts the number of contacts that occurred during the most-effective
intervention (AAI). The left-hand column is the lower level of the school and the right-hand column the top level. Unsurprisingly, the highest density
of contacts occurred in the entryway of the building (top-center lower level). Without interventions, schoolrooms have a relatively high number of
contacts; with the AAI interventions, the relative contribution of classrooms is greatly diminished. Likewise, contacts occurring in other shared spaces
(lunchroom and schoolyard) were also drastically reduced.
doi:10.1371/journal.pone.0029640.g003
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standard deviations for the number of contacts counted during the

simulation. Here we report on the total contacts among students,

decomposed into the various areas of the school, under the

intervention strategies outlined above.

Generally speaking, the more interventions we imposed, the

lower the total number of contacts. The table shows that

interventions targeted at specific locations clearly reduced contacts

in that location (e.g., schoolyard contacts dropped from

5,648+81:0 to 2,147+81:8 with intervention SR). Each student

contacted *92 other students in the baseline case (B); under the

best-case test scenario (AAI), this dropped to *41 contacts per

student. Comparing the AI and AAI interventions, it is clear that

intervention strategies are not strictly additive in nature. Indeed,

there are some interesting anomalies which aptly demonstrate that

one must take second-order effects into account when considering

policy decisions. Most notably, the AAI set of interventions, in

which the LR intervention is turned off and the SRC intervention

is partially turned off, actually results in fewer contacts than the AI

set (Table 1). This follows because the AI interventions force

children to stay amongst their classmates, resulting in more intra-

class contacts, while the AAI interventions allow students to spread

out less densely in the lunchroom and schoolyard areas, resulting

in fewer contacts (Fig. 3).

While our simulation efforts have been motivated by school

closures in response to influenza, we have not specifically included

influenza disease transmission as part of our model for a number of

reasons: First, it is not clear exactly how influenza is transmitted

(e.g., droplet versus aerosol) and what an ‘‘effective’’ contact is (i.e.,

contacts resulting in disease transmission) [33,34]. Second, school

closures are not limited to being used as an intervention for

influenza, so our results apply to other directly transmitted

infectious diseases for which school closure might be used as an

intervention. Third, reducing contact rates should be highly

correlated with reducing transmission (as supported by our post-

hoc transmission analysis); as discussed earlier, however, there may

exist important second-order effects that reduce this correlation.

Finally, typical school closure models implicitly use the identical

mechanism to reduce disease burden, i.e., by stopping contacts.

To verify that reducing contact counts produces a correlated

drop in disease transmission, we assessed the number of potential

transmission events by considering what would happen if five

infectious children entered the school (Fig. 4). Transmission events

were strictly based on assumed contact durations for given locales

and an assumed probability of infection per unit time (wInf ranged

from 0.01 to 0.3; see Analysis). This simple version of disease

transmission revealed several interesting results: Using all

proposed interventions (AI) outperformed the ‘‘almost all’’ (AAI)

intervention strategy despite having a larger contact count. This

suggests that AI reduced the number of unique contacts between

individuals in comparison to AAI and is therefore perhaps the best

intervention option. Similarly, the SR and SRC interventions

outperformed expectations based on raw contact counts; this effect

is probably driven by the high degree of mixing – which produces

novel contacts – that we assumed would occur during school

recess. Another unexpected result of our transmission analysis was

that the classroom restrictions (CR) can be quite effective, and, in

particular, was the best single intervention (i.e., excluding the AI

and AAI interventions) at lower infection probabilities. This result

occurs because of the extended duration of classroom contacts

between students; when the infection probability per minute is

higher, raw contact counts become more important, and the CR

intervention no longer performs as well. At higher transmission

rates, employing staggered school schedules (DS intervention), is

the best single intervention (as expected).

We chose a broad range of transmission rates for our analysis in

order to maintain generality. Little empirical information exists on

the probability of transmitting during a direct contact; such rates

could possibly be inferred, however, from estimates of the basic

reproductive number (R0) of a disease. For influenza, R0 varies

seasonally but could potently encompass values from around 1

(e.g., an early estimate of R0 for the 2009 pH1N1 pandemic was

1.2 [35]) to nearly 4 for the 1918 pandemic [36]. These would

indicate transmission rates more in line with the rates shown on

the left-hand side of Fig. 4. Along similar lines of reasoning, the

reduction in transmission shown in Fig. 4 gives an idea of the

expected reduction in R0 (e.g., if an intervention prevents 30% of

new infections, then the intervention, by definition, leads to a 30%

reduction in R0). Thus, interventions such as AI and AAI might be

necessary for diseases with an R0 over 2; on the other hand, the

less drastic CR intervention might suffice in cases where R0ƒ1:5 –

which is what we would typically expect for influenza.

Clearly, it is necessary to empirically assess the results of our

simulations. Critical features of this would be to actually determine

the number and duration of contacts that occur in various locales

at schools. Furthermore, the contact structure is likely to be

variable depending on the type of school under consideration (e.g.,

Table 1. Representative simulation results for total number of contacts among students.

Intervention B HR CR SR SRC LR DS AI AAI

Schoolyard 5,648 5,701 5,648 2,147 2070 5,544 1172 1,362 492

+81:0 +67:3 +81:0 +81:8 +78:8 +103:6 +35:8 +46:8 +31:3

Classroom 11,407 11,413 4,751 11,402 11,415 11,403 11,384 4,736 4,761

+57:6 +52:4 +48:3 +44:8 +45:5 +48:6 +52:6 +53:6 +34:9

Hall 18,948 16,318 18,948 18,874 18,940 18,842 10,096 8,842 8,906

+218:6 +173:8 +218:6 +272:1 +225:1 +215:0 +153:7 +95:7 +98:4

Lunchroom 1,977 1,893 1,977 1,981 1,976 1,953 895 1,591 790

+9:7 +6:6 +9:7 +10:0 +8:0 +12:8 +21:1 +5:3 +17:3

Total Contacts 37,980 35,325 31,324 34,404 34,401 37,742 23,547 16,531 14,949

+240:3 +193:7 +238:3 +287:8 +242:9 +243:9 +167:7 +119:4 +110:4

The abbreviations for the different intervention types can be found in the text. Contact counts were tabulated separately for different areas of the school. Results are
based on 30 replications of the simulation per intervention; values given are the means + standard deviations.
doi:10.1371/journal.pone.0029640.t001
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elementary vs. secondary schools). As discussed in the previous

paragraph, if public health officials were to employ only a single

intervention (and not combinations of interventions), then

knowing the transmission rate becomes pivotal in choosing the

appropriate intervention (Fig. 4). We feel that most of the chosen

interventions should be readily implementable in a typical school.

Only one of the proposed interventions (DS) actually alters the

duration of the school day, and the rest essentially require

organization of a student body and enforcement by school officials

– which may be no trivial task. Plans are underway to perform all

of the above empirical assessments in a U.S. elementary school.

We have shown that alternatives to complete school closure can

significantly reduce contacts in a simulated school setting. Use of

such alternative methods could allow school and public health

officials to freely impose restrictions in schools without the

disruptive consequences (social, economic, and educational) of

traditional closure strategies. This also allows officials to apply

restrictions for longer periods of time, thus increasing the

likelihood of successful intervention (compared to brief closures

which must be precisely timed to have any benefit). As mentioned

above, relying strictly on the simulation results presented here

would be overly optimistic; thus plans for future research include

empirically examining contact rates in schools [28,29], the

observed effects of interventions such as the ones proposed here,

and more in-depth simulation that includes complex school

structures and disease-specific transmission.

By utilizing our proposed alternative school-based interven-

tions, economic losses can be minimized, thereby reducing

concerns regarding timing and duration of these interventions. In

any case, it is essential for policy-making bodies (public or private)

to understand the options for and utilization of novel pande-

mic interventions to minimize impacts associated with future

pandemics.
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